An Extended Bridging Domain Method for Continuum-Atomistic Simulations of Discontinuities

Robert Gracie

Advisor: Dr. T. Belytschko

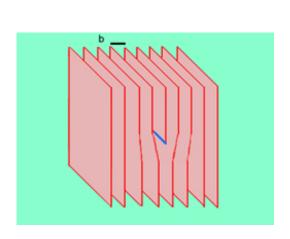
July 1st, 2008

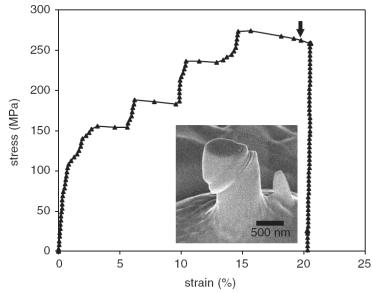
Outline

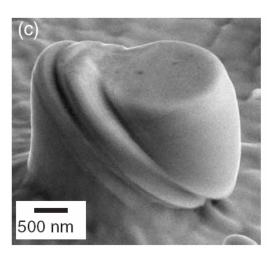
- Motivation
- Extended FEM for Dislocations
- Bridging Domain Method for Discontinuities
- Numerical Examples
- Conclusions and future work

Focus Materials

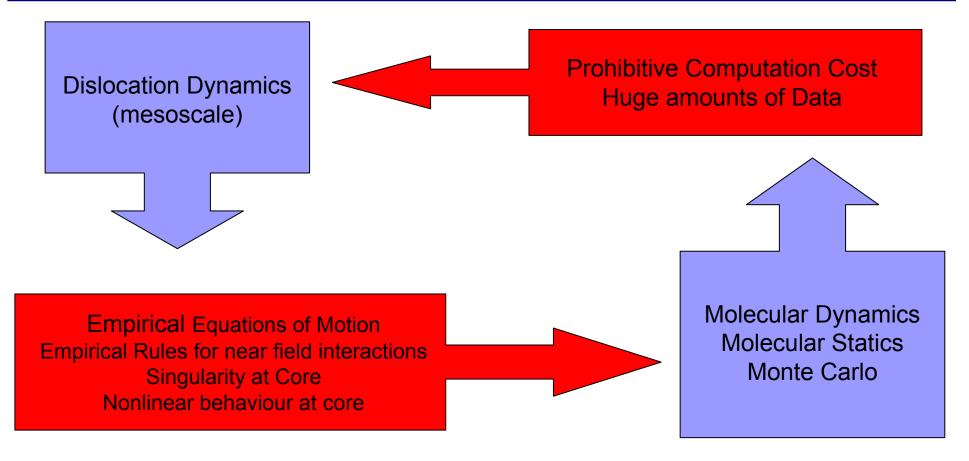
- Crystalline materials. (Metals, Graphene, etc)
- Plastic behaviour is the result of dislocation motion.
- Recent experiments allow for more quantitative comparisons with simulations



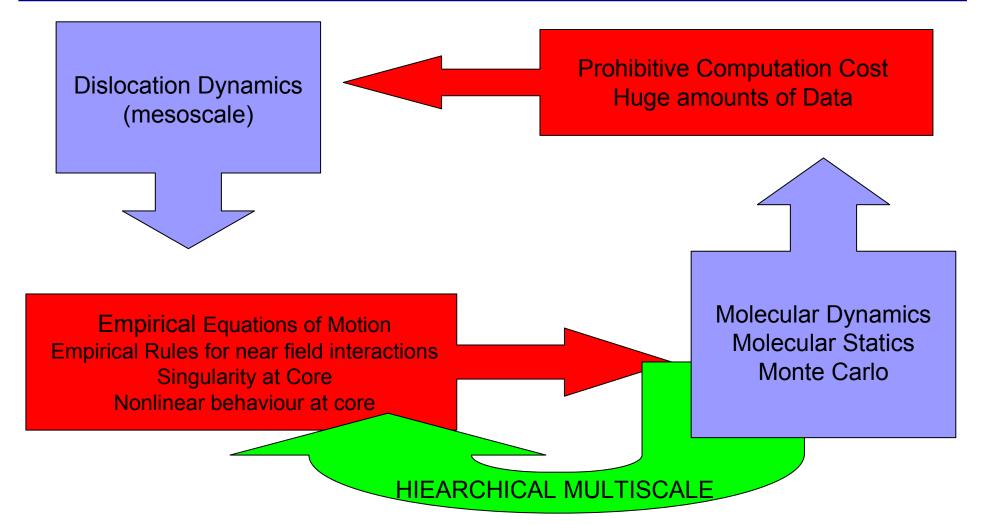




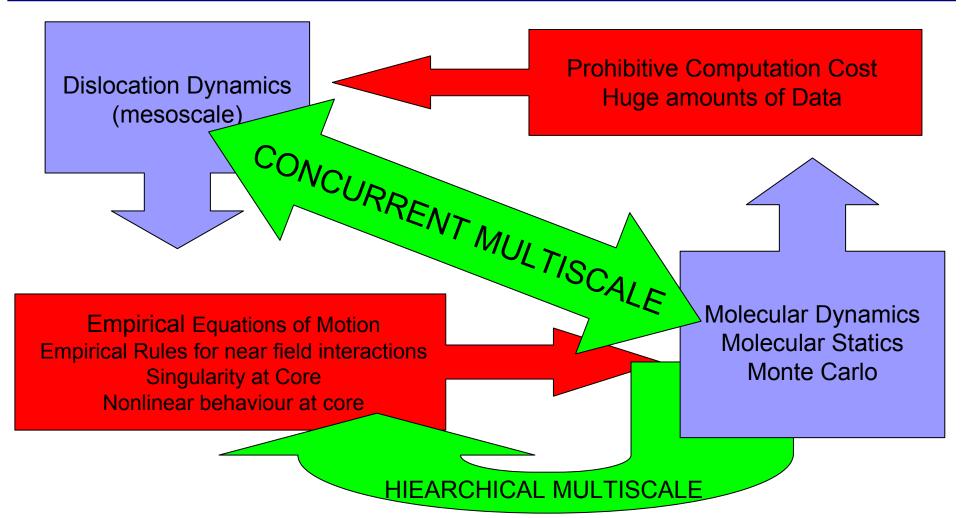
Submicron Au Columns Volkert, 2006



Motivation Summary

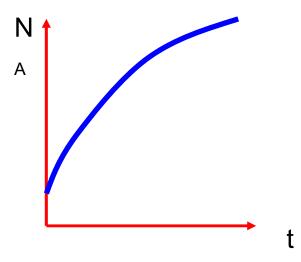


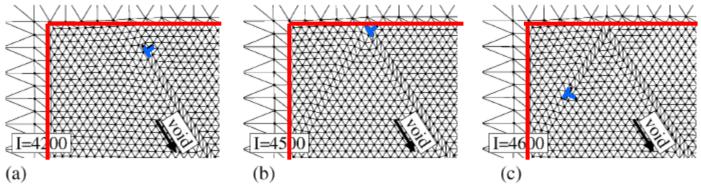
Motivation Summary



Characteristics of Concurrent Multiscale Models

- Dislocations tend to move towards MM/CM interface
- Adaptivity required
- Must follow complete dislocation path
- Total number of atoms becomes very large.

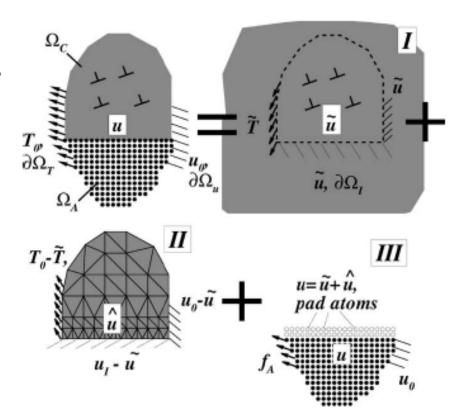




Shilkrot, Miller, Curtin (2004)

CADD: Coupled Atomistic and DD

- Shilkrot, Miller, Curtin 2002, 2004
- Quasicontinuum based coupling.
- Superposition based DD.
- Linear Isotropic Continuum.
- Dislocation "JUMP" across MM/CM interface
- Significant reduction of number of atoms
- Difficult to see extension to 3D.
- Empirical DD rules and laws



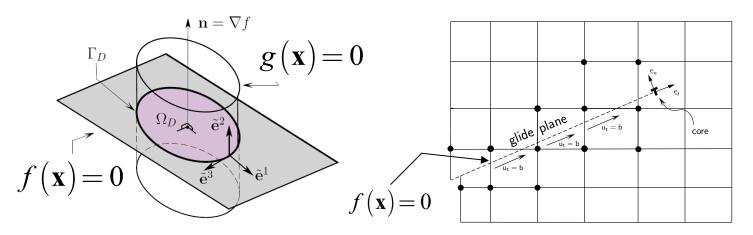
Outline

- Motivation
- Extended FEM for Dislocations
- Bridging Domain Method for Discontinuities
- Numerical Examples
- Conclusions and future work

XFEM Dislocation Model

R. Gracie – Northwestern University

- Introduced by Gracie, Ventura, & Belytschko IJNME 2007
 - Belytschko and Gracie IJP, 2008 & Gracie, et al. JMPS 2008.



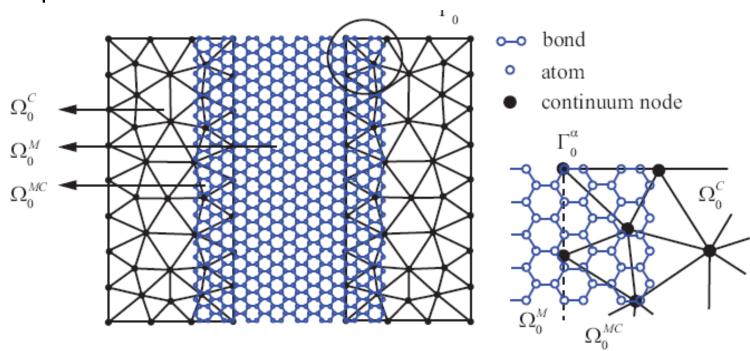
$$\mathbf{u}(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x})\mathbf{u}_{I} + \mathbf{b}H(f(\mathbf{x}))H(-g(\mathbf{x}))\sum_{J \in S^{D}} N_{J}(\mathbf{x})$$

H() is the Heaviside step function

Burgers Vector b is a known quantity, so no additional degrees of freedom

Bridging Domain Method

- Belytschko & Xiao (2003,2004)
- Overlapping domain decomposition scheme.
- Compatibility in the handshaking domain is enforced by Lagrange Multipliers.



Bridging Domain Method

R. Gracie – Northwestern University

Total Energy Potential:

$$E = E_{\alpha}^{C}(\mathbf{u}) + E_{\alpha}^{M}(\mathbf{s}) + \lambda^{T} \cdot \mathbf{g}(\mathbf{u}, \mathbf{s})$$

Constraints:

$$g_{iI} = u_i^h(\mathbf{X}_I) - d_{iI}^A, \forall I \mid \mathbf{X}_I \in \Omega^{MC}$$

Energy of Continuum:

$$E_{\alpha}^{C}(\mathbf{u}) = \int_{\Omega^{C}} (1 - \alpha) w^{C}(\mathbf{F}(\mathbf{u})) d\Omega$$

Energy of Atomistics:

$$E_{\alpha}^{M}\left(\mathbf{u}\right) = \frac{1}{2} \sum_{i}^{n^{A}} \sum_{i \neq j}^{n^{A}} \frac{\alpha_{i} + \alpha_{j}}{2} V\left(r_{ij}\right)$$

 \mathbf{O}^C : Continuum domain

 Ω^M : Molecular domain

 Ω^{MC} : Coupling domain

 \mathbf{d}_I^A : disp. of atom I

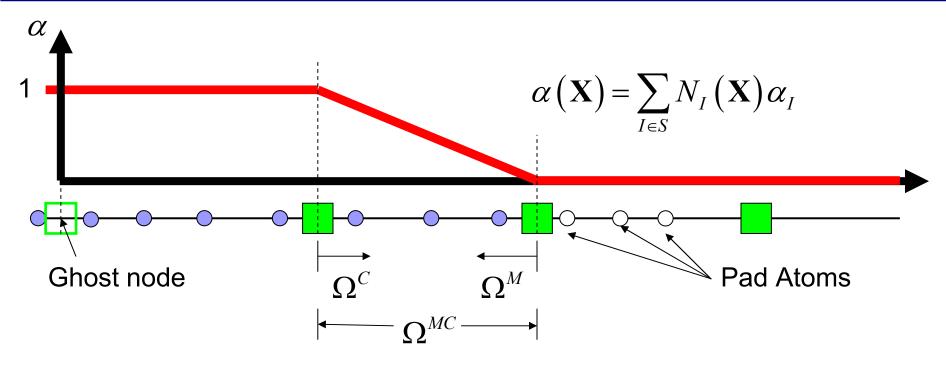
λ : Lagrange Multipliers

 w^C : Strain energy density

 V_{\parallel} : Atomic Potential

lpha : weight

BDM – weight function



$$\mathbf{u}(\mathbf{X}) = \sum_{I \in S} N_I(\mathbf{X}) \mathbf{u}_I, \, \forall \mathbf{X} \in \Omega^C$$

$$\lambda(\mathbf{X}) = \sum_{I \in S^{\lambda}} N_{I}(\mathbf{X})\lambda_{I}, \forall \mathbf{X} \in \Omega^{MC}, S \cup S^{\lambda} = \emptyset$$

BDM for dislocations

R. Gracie – Northwestern University

Extended BDM by using dislocation enrichment from XFEM

$$\mathbf{u}(\mathbf{X}) = \sum_{I \in S} N_I(\mathbf{X}) \mathbf{u}_I + \mathbf{b}H(f(x)) \sum_{J \in S^D} N_J(\mathbf{x}), \forall \mathbf{X} \in \Omega^C, S^D \subseteq S$$

Equilibrium equations found by minimize Energy

$$\frac{\partial E(\mathbf{u}, \mathbf{s}, \lambda)}{\partial \mathbf{u}_{I}} = 0, \forall I \in S$$

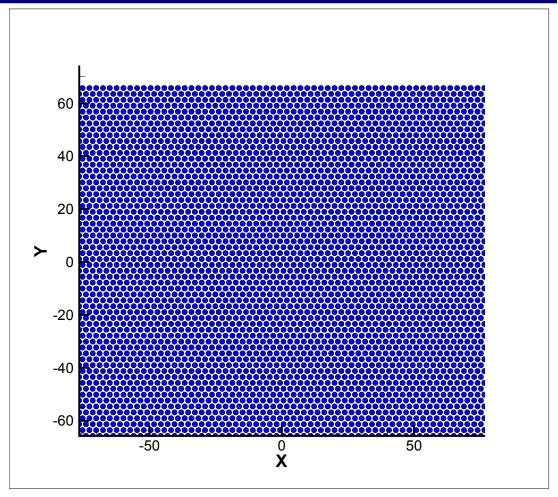
$$\frac{\partial E(\mathbf{u}, \mathbf{s}, \lambda)}{\partial \mathbf{s}_{J}} = 0, J \in [1, n^{A}]$$

$$\frac{\partial E(\mathbf{u}, \mathbf{s}, \lambda)}{\partial \lambda_{K}} = 0, \forall K \in S^{\lambda}$$

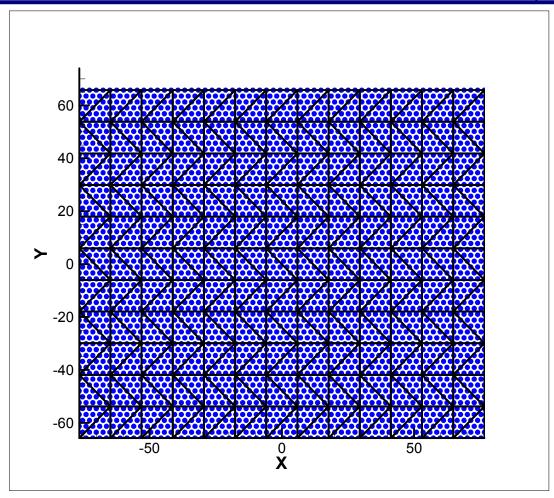


R. Gracie – Northwestern University

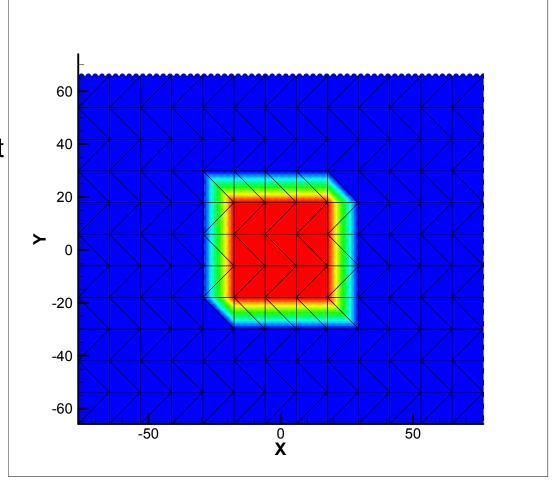
1. Create Lattice



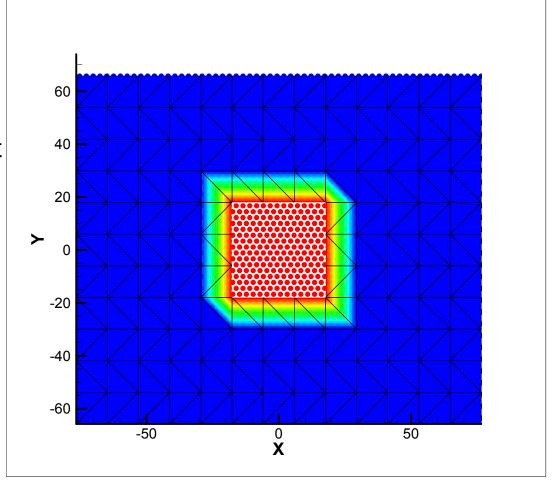
- 1. Create Lattice
- 2. Create Mesh



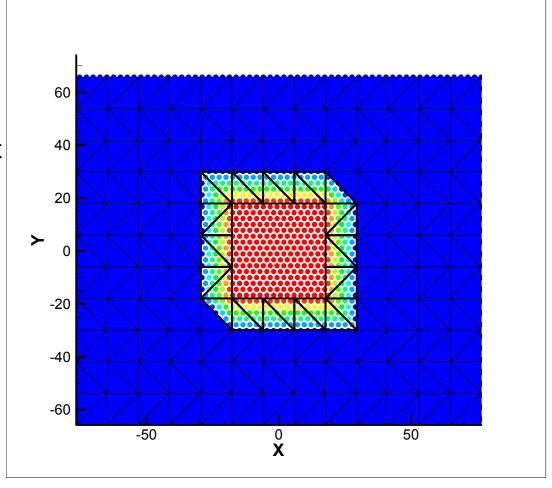
- 1. Create Lattice
- 2. Create Mesh
- Identify MM elements. Set weights at nodes to 1.



- 1. Create Lattice
- 2. Create Mesh
- Identify MM elements. Set weights at nodes to 1.
- 4. Remove elements where MM will be performed



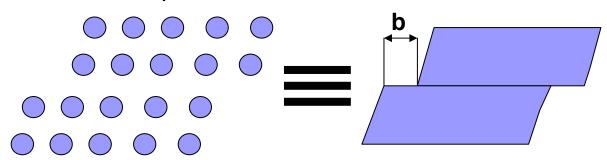
- 1. Create Lattice
- 2. Create Mesh
- Identify MM elements. Set weights at nodes to 1.
- 4. Remove elements where MM will be performed
- 5. Create Lagrange Multiplier Mesh.
- 6. Solve



Homogenization of Slip

R. Gracie – Northwestern University

 Homogenization of Atomistic Displacements within an element by minimization of L2 displacement norm.



$$\Pi = \frac{1}{2} \sum_{\beta \in \Omega_e} \left(u_i \left(\mathbf{X}_{\beta} \right) - d_{i\beta}^A \right)^2$$

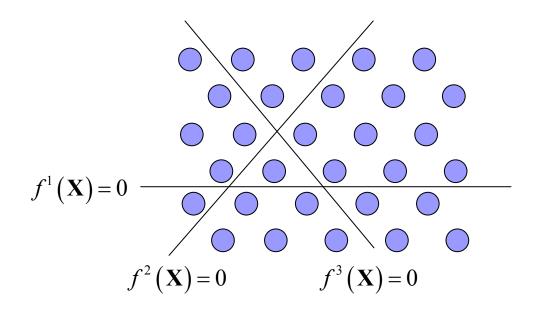
$$\Pi = \frac{1}{2} \sum_{\beta \in \Omega_e} \left(\sum_{I \in S_e} N_I \left(\mathbf{X}_{\beta} \right) u_{iI} + \sum_{\eta=1}^{n_S} \left[b_i^{\eta} H \left(f^{\eta} \left(\mathbf{X}_{\beta} \right) \right) \right] - d_{i\beta}^{A} \right)^2$$

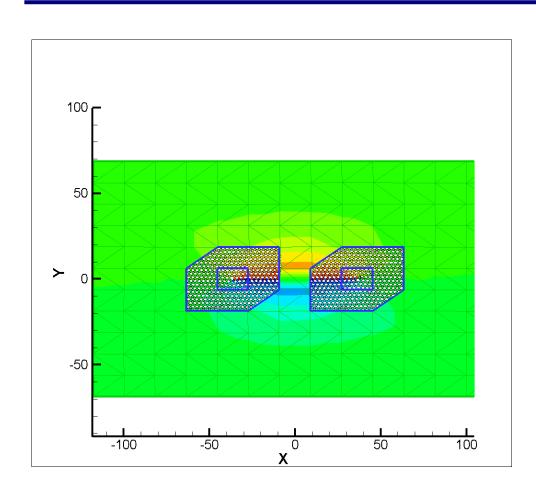
Homogenization of Slip

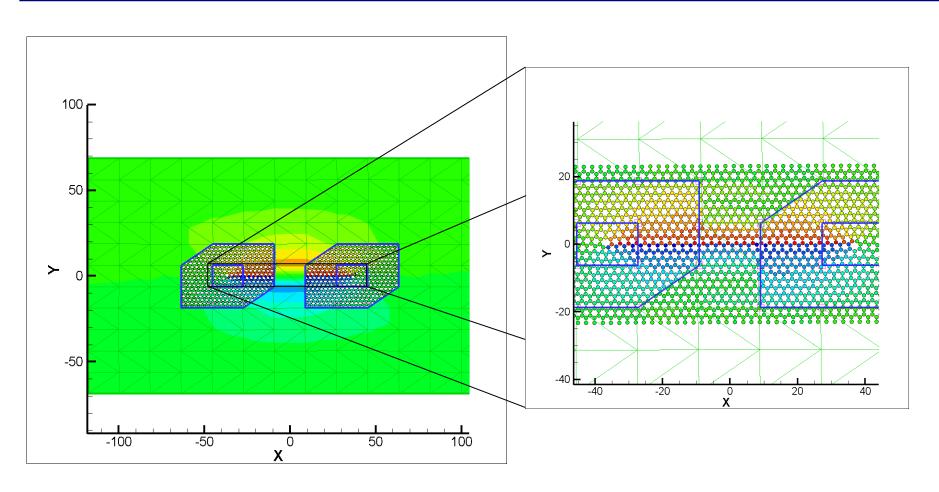
$$\Pi = \frac{1}{2} \sum_{\beta \in \Omega_{e}} \left(\sum_{I \in S_{e}} N_{I} \left(\mathbf{X}_{\beta} \right) u_{iI} + \sum_{\eta=1}^{n_{S}} \left[b_{i}^{\eta} H \left(f^{\eta} \left(\mathbf{X}_{\beta} \right) \right) \right] - d_{i\beta}^{A} \right)^{2}$$

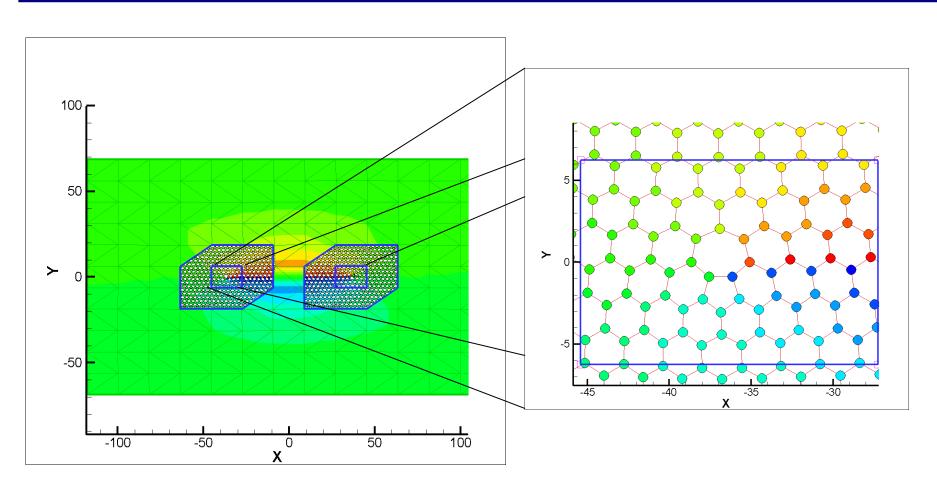
- Know location of slip planes for a given lattice structure
- Minimize L2 norm.

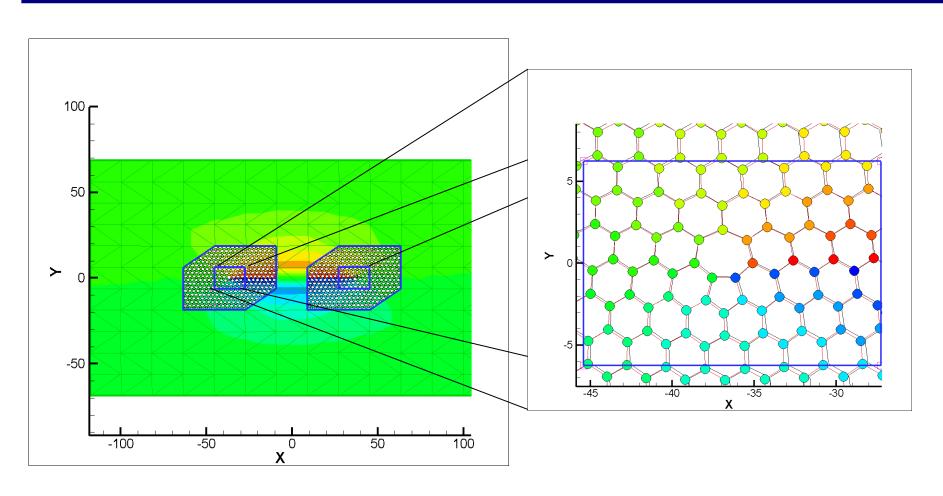
$$\frac{\partial \Pi}{\partial u_{iI}} = 0, \ \forall I \in S_e, i \in [1,3]$$
$$\frac{\partial \Pi}{\partial b_i^{\eta}} = 0, \ \forall \eta \in [1,n_s], i \in [1,3]$$



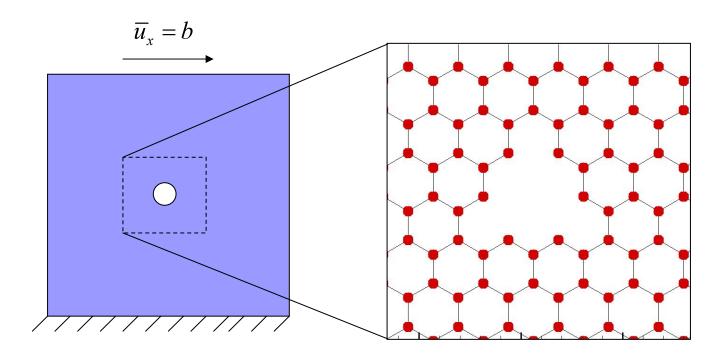


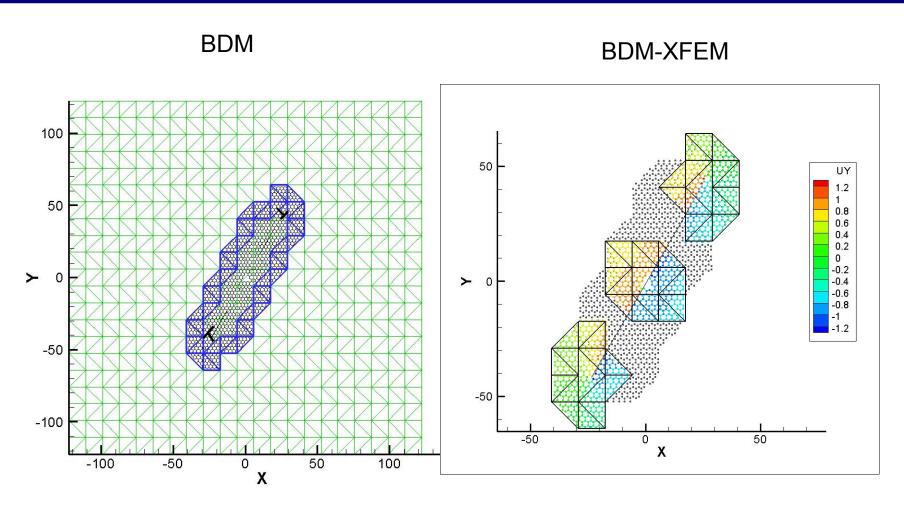


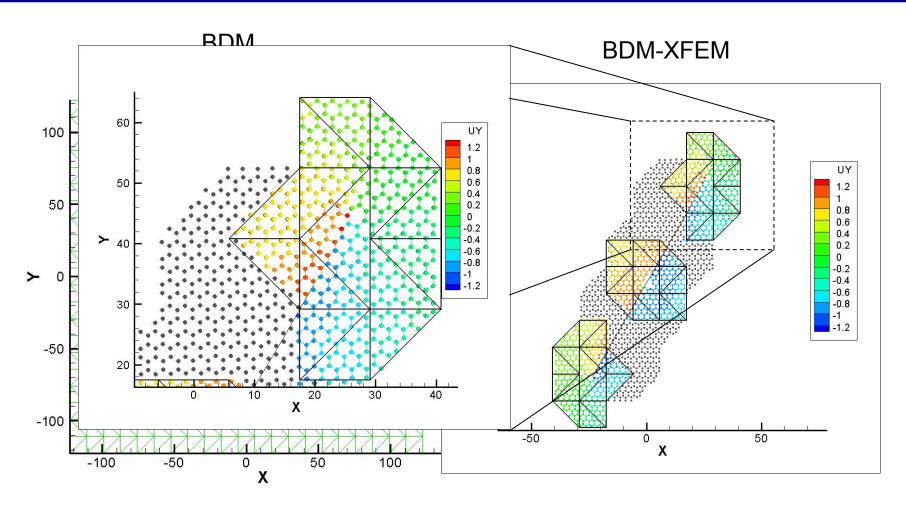




- Tersoff-Brenner Potential
- Linear Elastic Material



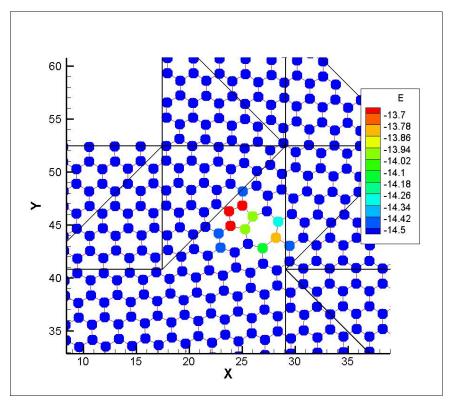




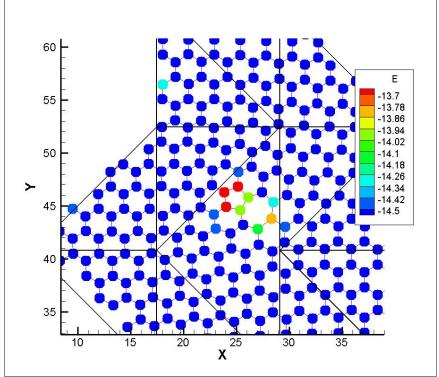
R. Gracie – Northwestern University

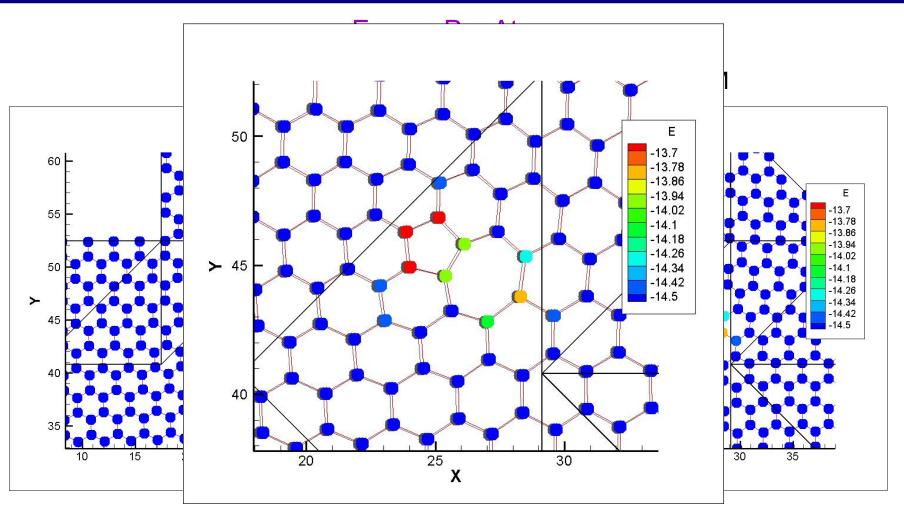
Energy Per Atom

BDM



BDM-XFEM





Conclusions

- 0 K continuum-atomistic multiscale framework.
- Homogenization of discontinuities.
- Significant reduction in the number of atoms
- Applicable to complicated lattice structures (ex. graphene)
- Anisotropic/Nonlinear Continuum
- Clearly extendable to 3D
- Extendable to Dislocation Dynamics without phemenological rules or equations of motion
- Further research to improve adaptivity.
- Extension to Finite Temperature