
  
Abstract-- The ability to estimate the status of current traffic
congestion of a road network is of significant importance for
many Intelligent Transportation Systems (ITS) applications
such as in-vehicle route guidance systems (RGS) and advanced
traffic management systems (ATMS).  Substantial research
effort has been dedicated to developing accurate and reliable
techniques for estimation of various congestion measures such
as link travel time and average travel speed. Few reliable
models have however been reported, especially for congested
arterials.  This paper presents a model that can be used to
estimate one of the congestion measures, namely real-time
overflow queue at signalized arterial approaches.   The model
is developed on the basis of the principle of flow conservation,
assuming that time-varying traffic arrivals can be obtained
from loop detectors located at signalized approaches and
signal control information is available on-line.  A conventional
microscopic simulation model is used to generate data for
evaluation of the proposed model. A variety of scenarios
representing variation in traffic control, level of traffic
congestion and data availability are simulated and analyzed.
The evaluation results indicate that the proposed model is
promising in terms of the accuracy it can provide and
advantages it has over existing models.

Index terms-- traffic, queue, travel time

I. INTRODUCTION

Quick and reliable estimation of traffic conditions is of
critical importance for advanced traveler information and
traffic management systems (ATIS/ATMS), of which the
common objectives are to provide road users with timely
and reliable traffic information and to improve traffic
through adaptive tuning of control strategies based on
current/predicted congestion. Substantial research effort has
been dedicated to developing accurate and reliable
techniques for estimation of various congestion measures
such as link travel time and average travel speed.  Few
reliable models have however been developed for
signalized arterials, especially under congested traffic
conditions.  The objective of this research is to develop a
real-time model that can be used to estimate one of the
congestion measures, namely real-time overflow queue
length at signalized arterial approaches. 
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The problems of estimating queue lengths at signalized
intersections have been extensively studied in the literature
with the primary objective of developing models for
estimating average queue lengths for off-line operational
analysis (1-5).  Queue estimation has also become a critical
component in many traffic signal optimization models such
as TRANSYT (6), SCOOT (7) and SCATS (8).  In both
SCOOT and SCATS, traffic behavior, represented as cyclic
flow profiles, are obtained from inductive loop detectors
that are located on the approaches of signalized
intersections.  The flow profiles at individual approaches
are then projected to the stoplines of themselves and/or of
neighboring intersections and used as arrival flow profiles
for estimating and predicting queue lengths.   The major
disadvantage associated with the SCOOT queuing model is
that a saturation flow rate needs to be calibrated carefully
otherwise serious errors may result. The SCATS queuing
model does not require the knowledge of saturation flow
rate as the discharge flow profile is directly available from
the loop detector located at the stopline.  However, the
model requires that the turning ratios at individual
intersection approaches be obtained in advance and made
available for arrival flow estimation.  

Cremer and Henninger (9) presented a model for estimating
queue lengths at a signalized intersection approach using
information from a loop detector located at an appropriate
distance from the intersection. In their model, the approach
is divided into small sections and assumed interrelated
traffic stream models are established for all sections. Based
on the flow conservation law and traffic data at the
boundary sections, speed at each section can then be
estimated.  The estimated speeds are corrected using an
Extended Kalman Filter and subsequently used as an
indicator of queue status.  Although not shown in the paper,
their model has the potential advantage of capturing the
traffic flow originating inside the link and alleviating the
problem that may caused by the queue spilling back to the
detector. However, the major disadvantage of their model is
that it requires extensive calibration to determine the
appropriate underlying traffic model for each specific
location.  Chang and Su (10) tackled the problem of
predicting queue lengths at a signalized approach over a
short time horizon.   They applied an artificial neural
network (ANN) based framework to capture the variation
of queue length as related to traffic flow and control
variables.  After careful training, their ANN models were
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able to provide accurate prediction of the queue lengths for
3 seconds into the future.  Similar to the traffic flow model-
based approach, this model also requires extensive off-line
calibration (or ANN training) for each specific location,
and thus has limitation for on-line applications.  In this
paper, we present a model that aims to overcome this
limitation.
This paper is organized as follows.  Section 2 outlines the
methodologies applied to the development of the model.
Section 3 discusses the evaluation of the proposed model
under a variety of operating conditions. Finally,
conclusions and recommendations are highlighted.

II. THE ESTIMATION MODEL AND ALGORITHM

Consider an intersection approach consisting of a single
through lane controlled by a traffic signal.  A loop detector
is installed at a known distance (D) upstream from the
approach stopline to provide point measurements on the
traffic flows and speeds at the approach.  Due to the cyclic
signal interruptions, time-varying queues may form in front
of the stopline.  In this research, we are interested in
estimating the queue length at the time instances when the
effective green interval ends and the subsequent red
interval starts.  This queue length is referred to as overflow
queue as it is caused by temporary cyclic overflow resulting
from the random fluctuation of arrivals and/or by
continuous overflow when the arrival rate exceeds the
capacity.  The estimation model is intended to provide real-
time estimates based on data from the loop detector and the
signal control system.

The proposed model is based on the assumption that
cumulative arrivals and departures of vehicles at the
stopline can be constructed over the time horizon, as
illustrated in Figure 1.  These cumulative arrival and
departure curves are then used to derive the equation for the
queue length and delay. Suppose that the estimation process
has started at time 0 (the starting time of the first cycle),
and is current at cycle i.  The overflow queue of the current
cycle i, denoted as Qi, can be obtained through an iterative
process on the basis of the conservation of flow, as shown
Equation 1.
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Figure 1.  Queuing diagram illustrating the evolution of queue length
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where:   qi  = arrival flow during the cycle i at the stopline
(pcu) and ca

i = lane capacity as determined as the number
of vehicles discharged from the stopline during the cycle i
under fully saturated conditions (pcu)

For the above model to be operational, the cyclic vehicle
arrivals (qi) and lane capacity at the stopline (ca

i) must first
be obtained. The cyclic flow rate arriving at the stopline
can be derived from detector data.  We propose a scheme to
accomplish this, whereby the time-series of vehicle arrivals
at the loop detector location are forwarded by an amount of
time equal to the free-flow travel time from the detector
location to the stopline. The projection is performed using
an algorithmic process including the following three steps
(see Figure 2):

1. The time series of arrivals at upstream loop detector
location (A1), which is aggregated by the detector
polling interval (R, e.g. R = 20 seconds), is parsed into
a series of arrivals with an interval size of one second
(A2), assuming that vehicles arrive uniformly within
each polling interval.

2. The parsed series A2 is projected forward in time by an
amount equal to the travel time from the detector
location to the stop-line. The travel time can be
estimated based on the distance D and a projection
speed (V). The result is a new time-series of arrivals at
the stop-line (A3).

3. Lastly, the projected arrival series (A3) is aggregated
into a series of arrivals according to signal cycles.  The
estimate for the average arrivals within each cycle (qi)
can then be determined.

In order to estimate the lane capacity, it is assumed that
information on the saturation flow rate, or maximum
discharge rate as it is referred to in this paper, and signal
timing is available in real time for the given approach.  The
lane capacity can be estimated using Equation 2.

ca
i  = s ge

i  (2)

where ge
i is the effective green interval duration of the

cycle i (seconds) and s is the maximum discharge rate
(pcu/second) 

The maximum discharge rate is expected to have a critical
impact on the performance of this model as any error in this
parameter would have a cumulative effect on the final
estimates.  Consequently, estimation error may accumulate
as the process continues moving away from the start point.
We therefore introduce an adaptive self-adjustment
procedure (SAP) to improve the estimate of the maximum



discharge rate.  The SAP is based on the assumption that
additional information on whether or not there is a queue
present over the detector can be derived from the loop
detector data such as speed and occupancy.  This
information is then used as a basis for increasing or
decreasing the maximum discharge rate.  For example, if
the detector system indicates that the overflow queue has
reached the detector, but the queuing model estimates a
queue that does not spill back over the detector, then the
model has underestimated the queue length, implying a
lower maximum flow rate should be used in the model.
The structure of the SAP involves the following steps: 

1. Estimate the “true” queue reach index (QI) for the
current cycle (i) based on the loop detector data (speed
and occupancy).  If there is a queue over the loop,
QI=1; otherwise, QI=0.

2. Estimate the “model” queue reach index (QI*) based
on the queue estimate for the current cycle (i) from the
queuing model.  If the estimate indicates that a queue
has reached the loop detector, then QI*=1; otherwise,
QI*=0.

3. Compare QI to QI*:
if QI  ≠ QI*,  then

if QI > QI* then
ca

j = ca
j + ∆  for j=1,2…i and go to Step 4

else
ca

j = ca
j - ∆ for j=1,2…i and go to Step 4

else  go to Step 5.
4. Starting from the first cycle, sequentially re-estimate

the overflow queue length for cycles j (j=1,2,…,i) with
the updated capacity. Go to Step 2.

5. Stop

We note that instead of adjusting the maximum discharge
rate (s), the proposed SAP directly adjusts the cyclic lane
capacity (ci

a) with an increment of ∆, where ∆ is a model
parameter representing the step size of adjustment. 

The above model and the associated algorithm includes
three categories of parameters: a) signal timing {cy, ge}; b)
detector location and polling interval {D,R}; and c)
maximum discharge rate, projection speed and adjustment
increment {s,V, ∆}. The first two categories of parameters
represent the estimation conditions and can be considered
as exogenous factors.  The maximum discharge rate and the
projection speed are model parameters that need to be
selected or calibrated when applied to a given condition.
Nevertheless, it can be expected that each of these seven
parameters should have certain degree of impact on the
performance of the model. The following section attempts
to evaluate the sensitivity of the proposed model to some of
those parameters, aiming to establish the validity and
robustness of the model and the conditions under which the
proposed model would be applicable.

   

III. MODEL EVALUATION

The proposed model has been established on the basis of
several important assumptions and includes a number of
parameters that need to be provided either in advance (e.g.
projection speed, maximum discharge rate) or in real time
(e.g. vehicle arrivals, signal timing). The objective of this
section is to gauge the estimation quality of the proposed
model and its performance sensitivity to the model
parameters and variables.  The INTEGRATION simulation
system (11), which has been extensively validated, was
used to generate data under a wide range of operating
settings.  The simulation exercise includes two networks:
one with a single fixed-timed signalized intersection and
the other representing an arterial network with three
intersections. A sensitivity analysis was conducted using
data from the single intersection case to identify critical
model parameters, while the three intersection network was
used to evaluate the general performance of the model
under a realistic traffic environment.

During each simulation run, the following data are recorded
for subsequent analysis: time-series of vehicle arrivals at
the loop detector location, vehicles passing the stopline and
cycle-by-cycle overflow queues representing the observed
'true' queue lengths.  The vehicle arrival series produced by
the simulation system is then projected downstream to the
stopline using the algorithm described in the preceding
section.  The queuing model is subsequently used to
provide the estimates of overflow queue lengths.  The
quality of the model is evaluated by comparing the time-
series of estimated and observed values as well as an
aggregated measure, namely the root mean square error
(RMS), as defined in Equation 3.
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Where Qi
estimated  is the estimated overflow queue length at

cycle i (pcu),  Qi
observed is the observed overflow queue

length at cycle i (pcu) and N is the number of cycles

A. Sensitivity Analysis

The simulated network includes a single intersection
controlled by a fixed-time signal (cy =  60 seconds; ge = 34
seconds).  A detector with an assumed reliability and
accuracy of 100% is modeled on the approach. The vehicle
trips are generated with negative exponentially distributed
headways at the upstream intersections and no traffic enters
or exits at midblock.  For each modeling scenario, the
network is simulated for 30 minutes starting with zero
initial queue.  Note that in order to isolate the influencing
factors, we used the queuing model without the adaptive
adjustment component to estimate the overflow queue. 
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Figure 3.  Structure of the Adaptive Self-adjustment Procedure (SAP)

Figure 2 Scheme of the data projection from loop detector to stop line



1) Sensitivity to Detector Location

The proposed model relies on information from a loop
detector to estimate the expected traffic arrivals at the
stopline. Therefore, it can be expected that the location of
the detector has an impact on the performance of the model.
The objective of this section is to analyze the sensitivity of
the performance of the model to the detector location. In
the simulation, a free-flow speed of 60 km/h and a
saturation flow rate of 1800 vehicles per hour are used.
Simulation runs were performed for five detector locations
(D = 50m, 100, 150m, 250 and 500m) under three levels of
congestion (degree of saturation, x= 0.95, 1.0 and 1.05).
The analysis assumes that the detector has a polling interval
of two seconds. 

The simulated arrival series and the signal times were then
used to estimate the queue length.  The projection speed
was set to 60 km/h and the maximum flow rates were 1810,
1884 and 1910 vehicles per hour for the degrees of
saturation of 0.95, 1.0 and 1.05 respectively. Different
saturation flow rates were considered to reflect the fact that
the actual saturation flow rate used in the Integration model
(or equivalent to the maximum discharge rate) is adjusted
based on the congestion level with the intention to model
the condition-varied discharging rate that are often
observed at actual signalized intersection approaches.  

 Figure 4 shows the relationship between the RMS of the
model estimates and detector location under the three levels
of demand represented by the degree of saturation.  As it
can be observed, while the detector location has a
noticeable impact on the accuracy of the proposed model,
there is a critical point beyond which the impact becomes
negligible.  For example, when the degree of saturation is
less than 1.0, very little additional estimation accuracy was
obtained by locating the detector more than 150 meters
upstream from the stopline. 
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Figure 4. Relationship between the RMS of the model estimates

and detector location

When the detector is located too close to the stopline,
significant errors may result under highly congested
situation.  For example, when x = 1.05, the estimation error
corresponding to the detector location of 150 meters is
almost twice as high as the estimation error based on the
detector location of 300 meters.  This is expected as the
higher the traffic demand is and the closer the detector is
located to the stopline, the more likely the overflow queue
would spill back to the detector.  Under this condition, the
time series of vehicles passing the loop detector no longer
represents the true arrivals at the approach, but rather
reflects the capacity of the signalized approach.  The
implication of this empirical result is that for the purpose of
queue estimation, the detector should be located upstream
of the farthest reach of the overflow queue.  It should be
pointed out that, in practice when the detector is located far
upstream from the stopline, significant midblock flows may
exist between the detector and the signal, resulting in
inaccurate estimation of traffic arrivals. The optimal
placement of the detector likely involves a trade-off
between errors resulting from midblock flows and errors
resulting from queue spilling over the detector.

2) Sensitivity to Detector Polling Interval

In this section, we analyze the effect of detector polling
interval on the performance of the proposed model.  The
detector is located 500 meters upstream of the stopline.
Simulation runs were performed for the combinations of
three polling intervals (R = 2s, 10s and 20s) and three levels
of congestion (x= 0.95, 1.0 and 1.05). Estimated queue
lengths were determined on the basis of the recorded arrival
series, a maximum flow rate of 1800 pcu/h and a projection
speed of 60 km/h.

Figure 5 illustrates the RMS as a function of the detector
polling interval under three degrees of saturation. As it can
be observed, there is an expected trend that a shorter
polling interval would result in better performance.
However, the difference in performance within the range of
polling rates from 2 to 20 seconds is practically negligible.  
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3) Sensitivity to Projection Speed

The proposed model uses the parameter projection speed in
estimating the time-series of arrivals at the stopline.  It has
been proposed that the freeflow speed or posted speed be
used when the model is applied to a specific location.
However, it is not clear what the magnitude of errors would
be when the assumed speed doesn't represent the actual
conditions.  Similar to the preceding analysis, cases were
simulated using Integration under three levels of congestion
using a free-flow speed of 60 km/h.  Queue lengths were
then estimated using projection speed of 50, 60 and 70
km/h with a maximum discharge rate of 1800 pcu/h.

Figure 6 shows the RMS as functions of the projection
speed under three degrees of saturation.  It can be observed
that, although the performance is insensitive to the
projection speed, the free-flow speed of 60 km/h seems to
be the optimal choice as it corresponds to the lowest RMS.
However, by examining the estimation results at cycle-by-
cycle level (Figure 7), the use of freeflow speed did not
provide the best estimates in all cycles.  This seems to
indicate that the actual time taken for vehicles to travel
from the loop detector to the stopline varies in response to
the size of overflow queue.  However, this variation
appears to be quite small.  It can be concluded that the
model is quite robust with respect to the choice of value for
the projection speed.
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4) Sensitivity to Maximum Discharge Rate

The maximum discharge rate represents the maximum rate
at which vehicles can possibly be discharged from the
stopline.  Because of the sequential nature of the estimation
model, use of a maximum discharge rate lower or higher
than the actual value may have a compounding effect on the
performance of the model.  That is, the estimation error
may increase as the process moves further away from the
starting point.   The major objective of this section is to
identify the magnitude of such effect.  Cases were
simulated using a saturation flow rate of 1800 pcu/h.  The
proposed model is then applied to estimate the overflow
queue length using maximum discharge rates ranging from
1600 to 2100 pcu/h. 

Figure 8 gives the RMS of the model estimates as a
function of the maximum discharge rate.  Before drawing
any conclusion, it should be pointed out that, the use of a
maximum discharge rate of 1800 pcu/h did not yield the
lowest RMS under high demand levels (x>1). This can be
explained as the actual maximum discharge rate used in the
Integration simulation model appears to vary somewhat
with the level of congestion, thus a maximum discharge
rate greater than 1800 pcu/h corresponds to the lowest
RMS.   It can also be observed that, when the maximum
discharge rate used in the queue estimation model is
carefully selected, the estimation error can be minimized to
an acceptable range.  However, the more important
evidence shown in Figure 8 is the strikingly high sensitivity
of the model performance to the maximum discharge rate.
This implies that the model is less robust with respect to
this parameter and requires obtaining an accurate estimate
of the maximum discharge rate before being applied to each
specification.  This certainly makes the model less desirable
for on-line applications, and also indicates the need for the
adaptive, self-correcting scheme described earlier.

5) Effectiveness of the Adaptive Self-Adjustment
Procedure

The objective of this section is to gauge the effectiveness of
the SAP. Cases were simulated under three levels of traffic
congestion (x = 0.95,1.0, 1.05) with a saturation flow rate
of 1800 pcu/h. The proposed model with SAP is then
applied to estimate the overflow queue length using an
initial maximum discharge rate of 1600 pcu/h. The detector
was located 250 meters upstream from the stopline, and the
capacity adjustment step size (∆) was 0.5 vehicles per
cycle.

Figure 9 shows the effectiveness of this adjustment method
under a degree of saturation of 1.05.  It is clearly shown
that the adjustment scheme has effectively mitigated the
problem of error accumulation.  Figures 10 and 11 provide
the RMS of the model estimates for different traffic
demands. It can be observed that, when the SAP is applied,
the maximum discharge rate used in the model is
automatically adjusted, and the estimation error can be



reduced to an acceptable range. These results indicate that
when the SAP is built into the model, obtaining the
accurate knowledge of the site specific discharge rate may
not be required.

B. Model Performance in a Multiple Intersection
Network

The purpose of this section is to examine the performance
of the proposed model on a more realistic urban arterial
network with multiple signalized intersections.  The
network consists of three signalized intersections and one
un-signalized intersection (stop sign), as shown in Figure
12. Two links were selected for analysis. The first link
(Link 1) is the westbound section of Main Street from
intersection B to intersection A. It consists of an exclusive
left turn lane, an exclusive through lane, and a shared
through and right turn lane. A loop detector in the left lane
is located at 100 meters from the stop-line. Loop detectors
in the through lane and right-through lane are located at
200 meters from the stop line. The traffic signal at
intersection A has a cycle length of 90 seconds and a green
time interval of 20 seconds for the phase in which WB
traffic discharges. The second link (Link 2) is the
westbound approach to the intersection of Main Street and
Highland Street. The left turn lane loop detector is located
100 meters from the stop-line and loop detectors on the
through lane and right-through lane are located at 400
meters from the stop-line. The traffic signal at intersection
B has a cycle length of 90 seconds and a green time interval
of 40 seconds for the phase in which WB traffic discharges.
The simulation is carried out under a set of time-varying
traffic demand over a period of 30 minutes. The saturation
flow rate and free-flow speed used in simulation are 1800
pcu/h and 60 km/h respectively. 

The real-time overflow queue lengths were estimated with
and without SAP on the basis of the recorded arrival series,
a detector polling rate of 2 seconds, and a projection speed
of 60 km/h.  The maximum flow rate applied in the queue
estimation model were deliberately set very low (1600) for
Link 1 and very high (2000) for Link 2.
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Figure 12. A Multiple Intersection Network

Figures 13 and 14 compare the estimated and observed
queue lengths at the two intersection approaches, namely
Link 1 and Link2 respectively.  It was found that the SAP
was invoked at 19th cycle for Link 1, and that one iteration
with a capacity increment of 0.5 vehicles/cycle was needed
to correct the overestimation problem.  Conversely, the
underestimation problem for Link 2 was corrected after
three iterations of adjustment with a total capacity
decrement of 1.5 vehicles/cycle.  The average RMS for
Link 1 and 2 were 1.8 and 3.9 respectively.  Note that this
magnitude of estimation errors is expected to be acceptable
for the purpose of traffic information provision. The results
have further indicated that the SAP is effective in
correcting the potential problem caused by the maximum
discharge rate and the overflow queue model could be
applicable in realistic traffic networks.
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Figure 14. Comparison of estimated and observed queue lengths at

Link 2 (V = 60 km/h; R = 2 s)

IV. CONCLUDING REMARKS

This paper has described the development and validation of
a queuing model proposed for on-line estimation of queue
lengths at signalized intersection approaches. The model
was constructed on the basis of the principle of flow
conservation, requiring fewer parameters and less
calibration effort as compared to some existing models. A
self-correcting, adaptive scheme was developed to
automatically adjust the maximum flow rate during the
estimation process.  Simulation experiments were
conducted to generate data needed for evaluating the
proposed models. The sensitivity analysis has shown that
the model is relatively accurate under a wide range of
operating environments, and is robust with respect to the
polling rate and projection speed.  With the integration of
the self-correcting scheme, the proposed model was able to
accurately track the evolution of real-time overflow queue
lengths in realistic traffic environments with any rough
estimate of the maximum flow rate.  Future research will
focus on validating the proposed model using field data and
exploring its application in estimating real-time link travel
times.
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