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SUMMARY

A method for the modeling dislocations and cracks by atomistic/continuum models is described. The
methodology combines the extended finite element method with the bridging domain method (BDM).
The former is used to model crack surfaces and slip planes in the continuum, whereas the BDM is used
to link the atomistic models with the continuum. The BDM is an overlapping domain decomposition
method in which the atomistic and continuum energies are blended so that their contributions decay
to their boundaries on the overlapping subdomain. Compatibility between the continua and atomistic
domains is enforced by a continuous Lagrange multiplier field. The methodology allows for simulations
with atomistic resolution near crack fronts and dislocation cores while retaining a continuum model in the
remaining part of the domain and so a large reduction in the number of atoms is possible. It is applied
to the modeling of cracks and dislocations in graphene sheets. Energies and energy distributions compare
very well with direct numerical simulations by strictly atomistic models. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Simulations with atomistic resolution of dislocation cores and crack fronts are critical to a more
fundamental understanding of the physics of plasticity and failure. However, even the treatment
of submicron cracks and dislocation loops by atomistic methods is generally not feasible today
because of the large number of atoms required. While concurrent models such as those of Abraham
et al. [1] and Khare et al. [2] can deal with defects of moderate size, on the order of hundreds of
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Angstroms, this does not suffice for many dislocation and crack problems of interest. A key need
is for methods that can apply atomistic models where needed and apply continuum models to the
remainder of the domain with the capability to model the discontinuities associated with cracks
and dislocations.

In this paper, a method is proposed that couples discontinuous continuum models for cracks
and dislocations with atomistic models. The objective is to model crack fronts and dislocation
cores by atomistics, and in the rest of the domain use a continuum model. This is accomplished by
adding discontinuities to the continuum model, which are coincident with the discontinuities that
result from cracks or dislocations. The discontinuities can be arbitrarily oriented with respect to the
discretization of the continuum. The capability of this method to model arbitrary discontinuities
with ease enables the atomistic domain to be limited to the small region where bond breaking and
formation takes place.

Ultimately, the objective is to extend the method so that propagating crack tips and dislocation
cores can be modeled with the atomistics employed only where needed—in the spirit of model
adaptivity proposed by Oden et al. [3]. Thus, in modeling a moving dislocation, the core would be
modeled by an atomistic model and the remainder of the domain would be modeled by a continuum.
As the dislocation core moves, atomistic models would be activated in certain subdomains and
deactivated by reverting to a continuum model in other subdomains.

Reviews of previous work on coupled atomistic/continuummodels can be found in [4–6]. In the
following, we will only review methods aimed at similar problems and some of the issues involved.

One of the most popular coupled continuum/atomistic methods is the quasicontinuum method
of Tadmor et al. [7]. This method has been applied to a variety of defect problems, including
dislocations [8, 9]. The method seamlessly blends atomics with continuum finite elements (FE) by
switching from a continuum potential to a force-field potential. However, the method requires the
nodes in the atomistic region to coincide with the atoms, which can lead to meshing difficulties
since the mesh must be severely gradated to take advantage of the smaller resolution requirements
away from a defect. Since dislocations that are nucleated in the atomistic domain tend to propagate
toward the continuum domain, large portions of the initial continuum domain must be converted to
atomistics. This can lead to situations where the number of atomistic degrees of freedom increases
prohibitively.

To circumvent this difficulty, the Continuum Atomistic Dislocation Dynamics (CADD) method
has been developed [10, 11]. This method couples an atomistic model to a continuum model in the
same way as the quasicontinuum method; in addition, the continuum model is augmented by the
dislocation dynamics model of van der Giessen and Needleman [12]. A dislocation core is treated
in the continuum by superposing the analytic solution of an edge dislocation in an infinite domain
with an FE solution via traction boundary conditions. The method has many interesting features
and has been used to solve some important problems, such as nanoindentation. Though the CADD
method is able to drastically reduce the number of atomistic degrees of freedom, it does so at the
expense of introducing a singularity at the dislocation cores in the continuum and rules are needed
to model short-range interactions of dislocations in the continuum domain. It also depends on
a phenomenological equation of motion to govern the motion of dislocations in the continuum.
Furthermore, it seems that the CADD method cannot be easily extended to three-dimensional
analysis.

The proposed method is similar to the CADDmethod in that slip away from the cores is modeled
by the continuum displacement field and so a large number of atomistic degrees of freedom
are removed from the simulation. However, in the proposed method discontinuities are directly
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introduced into the displacement field and all dislocation cores are handled by atomistics and so
it does not require an analytical solution. Furthermore, anisotropic continua can be treated, the
energy at dislocation cores is finite and short-range interactions and propagation can be naturally
handled by the atomistic model.

The coupled atomistic/continuum method with arbitrary discontinuities is constructed by
combining the bridging domain method (BDM) [13–16] with the extended finite element method
(XFEM) [17, 18]. The method was first presented by the authors in [19]. A similar method for
combining XFEM with atomistics for dynamic crack propagation was presented at the same time
by Aubertin et al. [20].

The XFEM is able to model arbitrary discontinuities by introducing discontinuous functions
into the approximation space through the Partition of Unity framework [21]. It allows disconti-
nuities such as cracks [17, 18] and dislocations [22–24] to be represented independently of the
discretization. XFEM is closely related to the generalized finite element method [25].

The BDM is an overlapping domain decomposition scheme where compatibility between the
atomistic and continuum domains is enforced using Lagrange multipliers. It has been used to study
defects and cracks in graphene and carbon nanotubes [13–16] and dislocation nucleation about
a void [26]. The BDM is similar to the earlier Arlequin method [27], which couples continuum
models, although the BDM uses a linear weighting of the energies in the coupling domain. The
atomistic-to-continuum force-based blending method described in [26, 28] is similar to the BDM
described in [15], but Badia et al. [28] point out for the first time that proper weighting of the
energy of the atomic bonds in needed to satisfy the patch test.

Overlapping domain decomposition schemes offer some distinct advantages over interface
coupling methods such as the quasicontinuum method. Methods in which the FE mesh needs to
be refined to the atomistic lattice dimensions near a defect are cumbersome, especially for compli-
cated crystals such as graphene or almost any crystal in three dimensions. In addition, overlapping
domain decomposition schemes allow hot spots to be easily activated and deactivated during the
course of an analysis.

We will consider numerical examples involving defects in graphene sheets. The model described
here should be an attractive alternative to mesoscale continuum models of defected graphene
[29, 30] because it models the core of the dislocation more accurately.

We end this introduction with a few words about the use of a concurrent scheme versus an hier-
archical multiscale scheme. In this paper a concurrent multiscale method is described. A concurrent
scheme is adopted because in general hierarchical multiscale models become inapplicable once
the atomistic model loses stability, i.e. at the onset of failure. Recently, Belytschko et al. [31] have
developed two scale methods that allow for loss of stability (failure) in the micro-scale model;
however, further development of these ideas is required.

This paper is organized as follows: in the following section we introduce the governing equations;
in Sections 3, 4 and 5 the field variable approximations, the discrete equations and some implemen-
tation guidelines are given, respectively. In Section 6 three problems are solved to demonstrate the
accuracy and the application of the described coupling scheme; Section 7 gives our conclusions.

2. MODEL AND GOVERNING EQUATIONS

A typical model for this method is shown in Figure 1, which illustrates a crack with an edge
dislocation emanating from the crack tip. The crack tip and dislocation cores are modeled by
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Dislocation Model
(displacement discontuity)

Continuum XFEM

(displacement discontuity)
Crack Model

ContinuumXFEM

Atom in fully atomistics domain

Atom in atomistic/ continuum bridging domain

Atomistic/ continuum bridging domain

Continuum
Domain

Continuum XFEM Dislocation Model

Figure 1. Schematic of a coupled extended finite element method and bridging domain method
continuum/atomistic model of an edge dislocation emanating from a crack tip.

atomistics. The portion of the crack behind the crack tip and the slip between the crack tip
and the dislocation core are modeled by XFEM. Around each fully atomistic subdomain is a
bridging domainwhere both an atomistic and a continuummodel exist. In the bridging subdomains,
compatibility between the atomistic and continuum models is enforced and the energies of the
atomistic and continuum models are scaled so that energy is not counted twice. Note that the crack
and the glide plane are completely independent of the FE mesh; the elements are larger than the
lattice spacing and the FE mesh does not conform to the lattice.

The domain of the model is denoted by � with boundary ��, as shown in Figure 2. The
domain is decomposed into overlapping subdomains �C, where a continuum approximation is
used, and �A, where a molecular mechanics model of the material structure and behavior is used.
Continuity between the atomistic and the continuum models is enforced in the bridging domain,
�B=�C∩�A, by Lagrange multipliers. For simplicity, we will assume that the boundary ��A of
�A does not intersect the boundary of the domain, i.e. ��∩��A=0. On ��u ⊆�� displacements
ū are prescribed and on ��t ⊆��,��t ∩��u =0, tractions t= t̄ are applied. Furthermore, the
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ΩA

ΩB

ΩC

Γc

Γd

Figure 2. Schematic of a multiscale problem in which the domain contains a crack �c and a
dislocation; the dislocation glide plane is denoted by �d. In the regions near the crack tip and the
dislocation core, denoted by �A, atomistic models are adopted, while in the rest of the domain,
�C, a continuum is used. The continuum �C and atomistic �A domains overlap on �B, where

compatibility between the different models is enforced.

subdomain �C contains nd dislocations and nc cracks. The portion of the glide plane of dislocation

i where slip has occurred is denoted by �i
d and �d=⋃nd

i=1�i
d. The Burgers vector for dislocation

i is denoted as bi . The j th crack is denoted by � j
c and �c=⋃nc

j=1� j
c . In this paper, we have

considered linear continua, since for the phenomena of interest the material in the continuum
domain is well represented by linear elasticity; however, the method can easily be extended to the
fully non-linear case. The material in the atomistic domain is governed by a non-linear interatomic
potential and so it is fully non-linear.

Let the continuum displacement field be denoted by u(x),x∈�C; we will assume small displace-
ment behavior of the continuum and so we will not differentiate between material and reference
coordinates. Let SA, SB andSAB be the sets of all atoms in �A, all atoms in �B and all atoms in
�A\�B, respectively. The position vector of atom � is denoted by xA� and its displacement is denoted

by uA� . We group the atomistic displacements into a column matrix dA� ={uA1 ,uA2 , . . .,uAnA}, where
nA is the number of atoms in SA. The Lagrange multiplier field is denoted by k(x),x∈�B.

The energies of the continuum and atomistic models are, respectively, weighted by wC(x) and
wA(x), which must satisfy the conditions:

wA(x)+wC(x) = 1 ∀x∈� (1a)

0�wC(x) � 1 ∀x∈� (1b)

0�wA(x) � 1 ∀x∈� (1c)

wC(x) = 1 ∀x∈�C\�B (1d)

wA(x) = 1 ∀x∈�A\�B (1e)

Conditions (1a)–(1c) ensure that the energy at a point x is only counted once, while conditions
(1d)–(1e) ensure that only the continuum approximation contributes to the total energy in the
subdomain �C\�B and that only the atomistic approximation contributes to the total energy in the
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subdomain �A\�B. The weight functions wC(x) and wA(x) vary monotonically between 0 and 1
in the bridging domain �B. The specific form of wC(x) and wA(x) will be given later.

Using the definitions of the weight functions (1), we can also define the continuum, atomistic
and bridging domains as:

�C = {x∈�|0<wC(x)�1} (2a)

�A = {x∈�|0<wA(x)�1} (2b)

�B = {x∈�|0<wA(x)<1} (2c)

Definitions (2) allow hot spots to be activated and deactivated by modifying the definitions of
wC(x) and wA(x) during the course of a simulation.

The total energy of the system is given by

�(u,dA,k)=�C(u)+�A(dA)+�B(u,dA,k) (3)

where �C is the energy from the continuum model in �C, �A is the potential energy from the
atomistic model in �A and �B is the Lagrange multiplier constraint that enforces compatibility
between the atomistic and continuum models in �B. Equation (3) is subject to the boundary and
interior conditions

u(x) = ū ∀x∈��u (4a)

r(x)·n= t̄ ∀x∈��t (4b)

r(x)·n= 0 ∀x∈�c (4c)

[|u(x)|] = b ∀x∈ �d (4d)

where r is the Cauchy stress, n is the outward facing normal to ��t and [|u(x)|] represents the jump
in the displacements. Condition (4c) imposes traction-free boundary conditions on all crack faces
in the continuum; this condition can be replaced by a cohesive crack model. Here, for simplicity
we assume that all cohesive behavior occurs in �A\�B and so no cohesive force conditions are
necessary. Condition (4d) ensures that the slip along the glide plane in the continuum is equal to
the Burgers vector.

The energy of the continuum model is given by

�C(u)=
∫
�C

wC(x)WC(u(x))d�−W ext (5)

where WC(x) is the strain energy density and W ext is the work of external loads. The linearized
strain is denoted by e and is defined as �i j = 1

2 (ui, j +u j,i), where a comma denotes differentiation.
The stain energy density is given by

WC(x)= 1
2 �i j (x)�i j (x) (6)

In this paper we will assume a linear elastic constitutive law; however, the framework can easily
consider a non-linear hyperelastic continuum where the stress is determined by the Cauchy–Born
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rule [7, 32]. Similarly, the effects of free surfaces can be incorporated through a surface Cauchy–
Born rule [33] and the cohesive tractions across continuum crack surfaces can be modeled by a
cohesive Cauchy–Born rule [34].

The contribution to the total energy from the atomistic model is

�A(dA)= 1

2

nA∑
�=1

nA+nG∑
��=�

wA
��V (xA� ,xA� ) (7)

where nG is the number of ghost or pad atoms, V is the functional governing two-body interactions
(this assumption is not necessary, but simplifies the remaining development) and wA

�� is defined as

wA
�� = 1

2 (w
A(xA� )+wA(xA� )) (8)

An atom � is a ghost atom if wA(xA� )=0 and there exists an atom � such that wA
�� �=0 and

V (xA� ,xA� ) �=0; i.e. ghost atoms reside in the fully continuum domain �C\�B, but are sufficiently

close to the atomistic domain �A that they interact with atoms in �A. The positions of the
ghost atoms are not free degrees of freedom; their positions are interpolated using the continuum
displacement field (10).

The coupling constraint is given by

�B(u,dA,k) = ∑
�∈SB

∫
�B
k(x)·[u(x)−uA� ]�(x−xA� )d� (9a)

= ∑
�∈SB

k(xA� )·[u(xA� )−uA� ] (9b)

3. DISCRETE APPROXIMATIONS

In this section we describe the discretization for a domain containing a single dislocation and a
single crack, as shown in Figure 2, to facilitate the presentation of the equations. The generalization
to many cracks or dislocations is straight forward. Let the zero contour of the function �(x) define
the location of the crack, i.e. �c={x∈�C |�(x)=0}. Similarly, let the zero contour of the function
�(x) define the location of the portion of the dislocation glide plane where slip has occurred, i.e.
�d={x∈�C|�(x)=0}. We assume that cracks and dislocations begin and end either at the domain
boundary or in the fully atomistic domain �A\�B.

3.1. Continuum displacement approximation

The subdomain �C is discretized by the set of elements E with nodes N. Let xI be the position
of node I . The continuum displacement approximation is additively decomposed into continuous
and discontinuous parts; therefore,

u(x)=uC(x)+uD(x) ∀x∈�C (10)

The continuous part, uC(x), is given by the standard FE approximation

uC(x)= ∑
I∈N

NI (x)uI ∀x∈�C (11)
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where NI are the nodal shape functions and uI are the standard nodal degrees of freedom.
Approximations of the form (10) were first considered by Fish [35] for cracks and also constitute
an important element of the XFEM [18].

The discontinuous part of the displacement approximation is further decomposed into two parts

uD(x)=uDd(x)+uDc(x) ∀x∈�C (12)

where uDd is the enrichment for the dislocation in the continuum

uD1(x)=b
∑

J∈N�

NJ (x)[H(�(x))−H�
J ] ∀x∈�C (13)

and uDc is the enrichment for the crack in the continuum

uD2(x)= ∑
K∈N�

NK (x)[H(�(x))−H�
K ]aK ∀x∈�C (14)

where N� ⊆N and N� ⊆N are the sets of nodes with supports cut by �d and �c, respectively.

H(·) is the Heaviside step function, H�
J =H(�(xJ )) and H�

J =H(�(xJ )). Equation (13) intro-
duces a displacement discontinuity with magnitude and direction of the Burgers vector across the
glide plane. This part of the approximation is the XFEM dislocation model introduced in [23].
Equation (14) introduces a displacement discontinuity along the crack using the XFEM approxima-
tion as introduced in [18]. The additional nodal degrees of freedom aK are related to the magnitude
of the crack opening displacement. The shifting of the enrichment, seen in the square brackets in
Equations (13) and (14), is done so that (13) and (14) are only non-zero in those elements that are
cut by either �d or �c, respectively. Shifting has the additional benefit of making u(xJ )=uJ and
so essential boundary conditions can be approximated by constraining the standard nodal degrees
of freedom uJ . A key feature of the XFEM approximation is that the discontinuities due to cracks
and dislocations are independent of the FE mesh.

3.2. Lagrange multiplier approximation

Compatibility, in the blending domain �B, between the discrete atomistic displacements and that
of the continuum can be enforced exactly by associating one Lagrange multiplier with each degree
of freedom of each atom in �B. This constraint may be too strict [36, 37]. In this paper, we enforce
compatibility weakly by approximating the Lagrange multipliers by fields similar to [13]. Based
on work conjugacy, the Lagrange multipliers can be physically identified as forces that act to
reduce the incompatibility between the atomistic and continuum displacements. To approximate
the Lagrange multiplier field, we discretized �B by a set of elements E	 with nodes M.

When the strains in the bridging subdomain �B are continuous, the Lagrange multipliers can be
approximated by a continuously varying force field. This is true even when �d passes through �B

(as long as no dislocation cores are in�B). One can explain this by recalling that the strain and stress
fields due to dislocations are continuous everywhere except at the dislocation cores. When a crack
�c passes through �B both the displacements and strains on either side of the crack will evolve
independently and so one may be tempted to use a Lagrange multiplier field approximation that
is discontinuous (similar to the XFEM crack approximation). However, a discontinuous Lagrange
multiplier approximation actually decreases the accuracy for the examples considered here because
a discontinuous approximation more stringently enforces compatibility between the continuum and

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2008)
DOI: 10.1002/nme



un
co

rre
cte

d p
roo

f

COUPLED ATOMISTIC AND XFEM MODELS

the atomistic model. Often this would be preferable, but the atomistic model relaxes along the crack
surfaces, whereas the continuum model does not; therefore, stringently enforcing compatibility
results in the continuum model resisting the relaxation of the atomistic model, thereby increasing
the energy stored in the system.

Therefore, we use a continuous approximation for the Lagrange multiplier field of the form

k(x)= ∑
I∈M

N	
I (x)kI ∀x∈�B (15)

where N	
I are the Lagrange multiplier nodal shape functions and kI are the Lagrange multiplier

nodal degrees of freedom.

3.3. Energy weight functions

The energy weighting functionswC(x) andwA(x) are defined with FE shape functions. We consider
a discretization of the total domain � by a set of elements E� with nodes N�:

wC(x)= ∑
I∈N�

NI (x)wC
I ∀x∈� (16)

where wA(x) is defined by (16) and (1)—wA(x)=1−wC(x). Furthermore, we define N⊆N�

and E⊆E�. The fully atomistic domain is then defined by the set of elements e where wC
I =0

for each node of element e. The definition of wC(x) by (16) implies that wC(x) and wA(x) are
piecewise linear since we will adopt linear shape functions NI . The elements E	 and nodes M of
the Lagrange multiplier mesh are chosen to coincide with the displacement field elements E where
0<wC(x)<1. In the examples presented here, the bridging domain is one element wide; therefore,
wC

I is defined by (1) and (16). For wider blending domains, orthogonal projection techniques such
as those given in [38] can be used.

4. DISCRETE EQUATIONS

The solution is obtained by finding the stationary point of the total energy functional (3) given
the field approximations (10)–(12), (15) and the boundary conditions (4). Since (3) is a Lagrange
multiplier problem, the solution is a saddle point, and so cannot be obtained using conjugate
gradient-based solvers. To circumvent this difficulty, we adopt the staggered solution scheme
described in [16]. Alternatively, Equation (3) may be recast in an augmented Lagrangian form as
in [14].

We begin by defining two subproblems, which we associate with two energy functionals �1 and
�2. �1 and �2 are the same energy functionals as (3) except that in the case of �1 all atomistic
degrees of freedom are fixed and in the case of �2 all continuum degrees of freedom and all
Lagrange multiplier degrees of freedom are fixed, i.e.

�1(u,k) = �(u,dA,k) (17a)

�2(dA) = �(u,dA,k) (17b)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2008)
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4.1. Subproblem 1

The governing equations for �1(u,k) are obtained by substituting (10)–(12) and (15) into (17a)
and setting the derivatives of �1 (u,k) with respect to uI , aI and kL equal to zero:

��1(dC,dD,q)

�uI
= 0 ∀I ∈N (18a)

��1(dC,dD,q)

�aI
= 0 ∀I ∈N� (18b)

��1(dC,dD,q)

�kL
= 0 ∀L ∈M (18c)

where

dC
� = {uC1 ,uC2 , . . .,uCn } (19a)

dD
� = {a1,a2, . . .,an2} (19b)

q� = {k1,k2, . . .,km} (19c)

and n, n2 and m are the number of nodes in the sets N, N� andM, respectively. We note that no
equations in (18) are associated with the partial derivative of �1(u,k) with respect to the Burgers
vector b, which appears in (12). In continuum dislocation models, b is obtained from the lattice
slip due to the dislocation.

Problem 1 yields a linear system of equations; in matrix form these equations are⎡⎢⎢⎢⎢⎣
KCC KCD GC

KCD�
KDD GD

GC�
GD�

0

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
dC

dD

q

⎫⎪⎪⎪⎬⎪⎪⎪⎭+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

0

f	

⎫⎪⎪⎪⎬⎪⎪⎪⎭+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fC,d

fD,d

gd

⎫⎪⎪⎪⎬⎪⎪⎪⎭=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fC,ext

fD,ext

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (20)

The stiffness matrices are given by

KCC
I J =

∫
�C

wCB�
I CBJ d�, I, J ∈N (21)

KCD
I J =

∫
�C

wCB�
I CB̃J d�, I ∈N, J ∈N� (22)

KDD
I J =

∫
�C

wCB̃�
I CB̃J d�, I, J ∈N� (23)
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where C is the Hookean matrix and in two dimensions

BI =
⎡⎢⎣
NI,x 0

0 NI,y

NI,y NI,x

⎤⎥⎦ (24)

B̃I =

⎡⎢⎢⎢⎣
(NI [H(�(x))−H�

I ]),x 0

0 (NI [H(�(x))−H�
I ]),y

(NI [H(�(x))−H�
I ]),y (NI [H(�(x))−H�

I ]),x

⎤⎥⎥⎥⎦ (25)

and a comma denotes differentiation.
The continuum–atomistic coupling stiffness matrices are

GC
I L = ∑

�∈SB
N	
L (xA� )NI (xA� ), I ∈N, L ∈M (26)

GD
I L = ∑

�∈SB
N	
L (xA� )NI (xA� )[H(�(xA� ))−H�

I ], I ∈N�, L ∈M (27)

The external nodal forces are

fC,ext =
∫

��t

wCN�
I t̄d�, I ∈N (28)

fD,ext =
∫

��t

wCN�
I [H(�(x))−H�

I ]t̄d�, I ∈N� (29)

and the nodal forces due to the atoms acting on the continuum through the Lagrange multipliers are

f	L =− ∑
�∈SB

N	
L (xA� )uA� , L ∈M (30)

The nodal forces due to the dislocations in the continuum are

fC,d
I =

∫
�C

wCB�
I r(u

Dd)d�, I ∈N (31)

fD,d
I =

∫
�C

wCB̃�
I r(u

Dd)d�, I ∈N� (32)

where r(uDd) is the stress in the continuum due to the dislocation enrichment uDd, Equation (13).
The nodal forces on the Lagrange multiplier nodes due to the continuum dislocations in the bridging
domain are

gdL = ∑
�∈SB

N	
L (xA� )uDd(xA� ), L ∈M (33)
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The Lagrange multipliers in (20) are obtained by static condensation. Let

K=
⎡⎣ KCC KCD

KCD�
KDD

⎤⎦ , G=
[
GC

GD

]
, fd=

{
fC,d

fD,d

}
, fext=

{
fC,ext

fD,ext

}
(34)

The nodal Lagrange multipliers q are determined by

Aq= fq (35)

where

A=G�K−1G (36)

and

fq = f	+gd+GK−1(fext−fd) (37)

The FEM nodal degrees of freedom, d� ={dC,dD}, are determined by substituting the solution
of q obtained by solving the linear system (35) into (20), which gives

d=K−1(fext−fd−Gq) (38)

We use the same discretization for the Lagrange multiplier approximation, (15), as for the
displacement approximation, (10)–(12), i.e. N	

I (x)≡NI (x) ∀x∈�B. Following the analysis in
Zhang et al. [16], A is invertible if the number of atoms in an unenriched element is greater than
or equal to the number of nodes and if the number of atoms in an enriched element (i.e. one cut
by a crack or a dislocation) is greater than or equal to twice the number of nodes.

4.2. Subproblem 2

The equilibrium equations of �2(dA) are derived by substituting approximations (10)–(12) and
(15) into (17) and setting the derivatives of �2 (

dA
)
with respect to xA� to zero:

��2(dA)

�xA�
= f̄A� =gA� −k(xA� )=0, �∈SA (39)

where the atomistic forces acting on atoms � are

gA� =
nA+nG∑

�=1,��=�
wA

��
�V
�xA�

(xA� ,xA� ), �∈SA (40)

The iterative solution of subproblems 1 and 2 follows the procedure described in [16]; it is
accomplished using Algorithm 1 with the BFGS solver [39].
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Algorithm 1 (Discontinuous BDM)
foreach Load Step n do
i = 1
while NOT CONVERGED do

compute q(i)
n from (35) given dA(i−1)

n

compute d(i)
n from (38) given dA(i−1)

n and q(i)
n

compute fA(i)
n from (39) given q(i)

n

compute �2(i)
n from (17b) given d(i)

n , q(i)
n and dA(i−1)

n

compute dA(i)
n by taking one BFGS step given �2(i)

n , fA(i)
n and dA(i−1)

n
i = i+1

end
end

5. IMPLEMENTATION ISSUES

There are four critical components in an implementation of the BDM:

1. The size of the coupling domain impacts the accuracy and the computational cost. It is
desirable to limit the domain where atomistic models are used—larger bridging domains
require more atomistic degrees of freedom.

2. The discretization of the Lagrange multiplier field is also known to significantly affect the
results of the BDM. Two schemes are commonly studied: either the Lagrange multiplier
field is discretized by the same mesh as the continuum displacement field or the Lagrange
multiplier discretization is refined to the atomistic spacing.

3. The constraint condition dictates how compatibility between the continuum and the atomistic
models is enforced. In the Arlequin method, an H1 coupling (which involves derivatives of
the Lagrange multiplier field) is generally used, while in the BDM we have found that the
L2 coupling is advantageous [36, 40] and so it is used here.

4. The weight function blends the energy from the continuum with that of the atomistics so that
the energy in the coupling domain is not counted twice. Piecewise constant, linear and cubic
weight functions have been adopted in the BDM.

With regard to items 1 and 2, in [37, 41] it is shown that for quasi-static problems the Lagrange
multiplier discretization should at least correspond to the size of the representative volume element
(RVE) of the atomistic model or the atomistic model becomes overconstrained in the bridging
domain; therefore, the coupling domain should also be at least equal to the size of the RVE.
Numerical studies in [41] show that increasing the size of the coupling zone only has a modest
effect on the accuracy of a quantity of interest inside the atomistic domain. Therefore, one can
safely reduce the size of the atomistic domain (and the number of atomistic degrees of freedom)
by using a small coupling domain, about the size of an RVE. In practice, slightly larger coupling
zones are more convenient when superimposing an atomistic model on an existing FE mesh.

The last two items are intricately linked. Several mathematical and numerical studies
of the performance of the Arlequin and bridging domain methods have been published
[27, 28, 36, 37, 40, 41]. One issue addressed by these studies is the stability of the mixed method.
In [37], the continuous problems with H1 coupling and H1 semi-norm coupling were shown to
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satisfy the inf–sup condition; they were not able to demonstrate the inf–sup condition for the
continuous problem with L2 coupling. However, in [37] it is shown that the inf–sup condition
is satisfied for the discrete problem with L2 coupling, though the inf–sup constants are mesh
dependent and tend to zero as the continuum mesh size tends to zero. This is manifested by
the erratic behavior of the Lagrange multipliers field once the FE size is less than the particle
spacing (see Section 5.5 of [37]). In practice this does not restrict the use of L2 coupling, since
elements smaller than the atomistic spacing are not useful. In addition, the displacement field
solutions to numerical examples in [37] are identical for H1 and L2 coupling with linear and
cubic weight functions. It is shown in [36] that the Arlequin method with L2 coupling with a
piecewise continuous weight function is unstable; however, L2 coupling with a piecewise linear
weight function such as that used here has been found by numerical studies to be stable. This
conclusion is also applicable to the BDM [40, 41].

6. EXAMPLES

In this section we consider three problems that demonstrate the accuracy and usefulness of the
described framework. For simplicity, our first problem involves a crack but no dislocations, while
our last two problems involve only dislocations and no cracks. The study of problems involving
both dislocations and cracks and evolving dislocations and cracks will be the topic of future papers.

We will study two-dimensional problems involving graphene. Multiscale simulations of graphene
sheets are well suited to demonstrate the usefulness of the overlapping domain decomposition
scheme since the generation of meshes that conform to the lattice is difficult. Furthermore, the
simulation of defected graphene with the coupled BDM and XFEM framework will demonstrate
its robustness for complex lattice structures.

We will compare the accuracy of the coupled bridging domain method and extended finite
element method (XFEM-BDM) with fully atomistic direct numerical simulations (DNS). For this
purpose, the change in the energy of the atoms in the fully atomistic domain due to applied loads
relative to pristine unloaded sheets is considered. Let the relative error in the change in the energy
per atom be defined as

eU� = (UA
� −UDNS

� )

max�(|UDNS
� |) (41)

and the relative error in the change in the energy in the subdomain �A/�B be defined as

eU = 1

nAB

√ ∑
�∈SAB

(eU� )2 (42)

where nAB is the number of atoms in the set SAB and UA
� is the change in the energy of the

atom � computed by the coupled model. UDNS
� is the change in the energy of the atom � in the

DNS, and max�(|UDNS
� |) is the maximum change in the energy of an atom in the DNS.

We also examine the error in the displacements using the relative error in the displacement per
atom

eL
2

� = ‖uA� −uDNS� ‖
b

(43)
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and the relative error in the displacements of the atoms in the subdomain �A\�B:

eL
2 = 1

nAB

√ ∑
�∈SAB

(eL2
� )2 (44)

where uDNS� is the displacement of the atom � in the DNS.
The second-generation Tersoff–Brenner REBO potential [42] is used to model the graphene at

the atomic scale. Under a small displacement assumption, graphene is isotropic and the elasticity
tensor C is given by

Ci jkl =
(�ik� j l+�il� jk)+	�i j�kl (45)

where 
=5.428eV and 	=7.148eV are Lamé constants. These constants have been derived for
graphene modeled by the Tersoff–Brenner potential [43] by Arroyo and Belytschko [44, 45] and
are used in all examples. As discussed in [44], graphene is a crystalline layer; therefore, it is a
true two-dimensional material and indices i , j , k and l range over 1 and 2.

6.1. Edge crack in a graphene sheet

Consider a 247.18Å×208.03Å graphene sheet as shown in Figure 3; the origin of the domain is
located at the center of the sheet. The sheet is oriented such that the zig-zag direction corresponds
to the x-axis. A crack is created by deleting the bonds from the atomistic model, which are cut
by the line y=9.5Å for x ∈ (−123.59,10Å). The bottom edge of the domain is fully constrained.
Displacement boundary conditions are applied to the top edge: ūx =0.01Lx and ū y =0.01Ly,
where Lx =247.18Å and Ly =208.03Å.

The domain is discretized by a 21×21 triangular element mesh. We will compare the solution
of the combined XFEM-BDM model with that obtained by DNS using a fully atomistic model.
Figure 4 shows the domain decompositions and discretization of the combined model; the purely
atomistic subdomain, �A\�B, consists only of the domain of the 18 elements surrounding the
crack tip. We set the nodal weights, wC

I , of the nodes of these elements to zero and all other nodal
weights to 1. Therefore, the bridging domain consists of the elements immediately surrounding

x

y

ū

207.03Å

247.18Å

(10Å, 9.5Å)

Figure 3. Schematic of the problem of a graphene sheet with an edge crack.
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Figure 4. Domain decomposition and discretization of the problem of a graphene sheet with an
edge crack for the combined bridging domain method and extended finite element method model.
Green and blue lines denote the FEM and the Lagrange multiplier meshes, respectively. Black

disks represent the Heaviside-enriched nodes.

the purely atomistic domain and the weight varies linearly from 0 to 1 within one element of the
continuum.

In this example the zero contour of the function �(x), which defines the location of the crack
in the continuum, is given by the problem description: �(x)=0={x|x∈ (−123.59,10Å) and
y=9.5Å}. In general, �(x) must be determined from the atomistic displacements, i.e. from the
location of the crack in the atomistic model, but in this problem it is straightforward. From �(x)
the set of Heaviside step function-enriched nodes (those in set N�) is determined. These are
illustrated by black disks in Figure 4.

We note that most concurrent multiscale models, such as the standard BDM and the quasicon-
tinuum method, require atoms along the entire crack surface. In the combined XFEM-BDM model,
we can significantly reduce the number of atoms in the model by modeling a long portion of the
crack by a discontinuity in the continuum model. This is accomplished by only 44 continuum-
enriched degrees of freedom. The enrichment of the continuum elements in the bridging domain
allows cracks to pass from the atomistic model to the continuum model.

Figure 5 shows the relative errors per atom from the combined XFEM-BDM model with respect
to the DNS for atoms in �A\�B. The maximum relative error in the change in the energy per atom
is 5.5×10−2 and occurs at the crack tip, while the maximum relative error in the displacement of
an atom is 7.8×10−2 and occurs at the bridging domain boundary. The error in the energy is highly
localized, while that in the displacements is more diffusive. The relative errors in the change in the
energy and in the displacements of atoms in �A\�B are 3.6×10−4 and 4.2×10−3, respectively.
The displacement errors tend to localize at the coupling domain boundary likely because of ghost
forces from the coupling constraint and because the strains in the continuum model are highest in
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Figure 5. Relative errors per atom of atoms in �A\�B of the combined extended finite element
method and bridging domain method model: (a) relative error in the change in the energy per

atom and (b) relative error in the displacement per atom.

the coupling domain and so the errors induced by assuming that the continuum is linear elastic and
isotropic are largest there. Other sources of error in the model come from free surface effects not
captured by the continuum model. These occur along the vertical edges of the domain and along
the crack surfaces. The loss in accuracy from the homogenization of the crack is not significant
given the reduction in the number of degrees of freedom—the combined XFEM-BDM model uses
only 1254 free atoms compared with the 19 788 atoms used in the DNS.

It is important to use a field approximation of the Lagrange multipliers (a weak constraint)
instead of pointwise Lagrange multipliers (a strong constraint). We observed significant surface
effects in the simulation results. The bonds near the surface behave very differently from the bulk
graphene lattice and tend to significantly relax. A stronger constraint forces the strain in the bonds
of the surface atoms to exactly match that in the continuum. Since the correct behavior cannot be
captured by the continuum model without a surface model such as that in [33], strong constraints
overpredict the energies. This observation was previously reported in the one-dimensional studies
in [36, 40] and is related to the conclusion in [41] that the Lagrange multiplier mesh should be at
least the size of an RVE.

6.2. Dislocation pair in a two-dimensional graphene sheet

Consider the 239.80Å×237.14Å graphene sheet shown in Figure 6. The sheet contains a pair
of edge dislocations with the Burgers vector magnitude b=‖b‖=2.46Å along the x-axis. In this
example, the slip plane of the dislocation dipole is parallel to the x-axis and is offset from the
x-axis by 1Å. The cores are separated by a distance of 65b. Pure shear displacement boundary
conditions are applied to all edges of the domain such that ūx =0.01y and ū y =0.01x .

Mechanisms for dislocation creation and motion in graphene have been described in [46]. The
5-7-7-5 Stone–Wales defect shown in Figure 7 can be viewed as a pair of edge dislocations;
Stone–Wales defects can be created in a perfect lattice by bond rotation (the evolution from state
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Figure 6. Schematic of the problem of a graphene sheet with a pair of edge dislocations.

3: Slip By Bond Rotation2: Slip By Bond Rotation

1: Stone-Wales Defect0: Perfect Graphene

Figure 7. Illustration of the mechanism for the formation and propagation of edge dislocations in graphene.
State 0 illustrates pristine graphene and state 1 illustrates a 5-7-7-5 Stone–Wales defect. State 2 shows a
dislocation pair after one bond rotation and state 3 shows a dislocation pair after two bond rotations.

0 to 1). Dislocation motion occurs by bond rotation of the bond of a seven atom ring, which is
adjacent to a five atom ring (the evolution of state 1 to 2 and state 2 to 3).

We explicitly create the dislocation pair by rotating bonds that are cut by the line y=1, for
x ∈ (−32.5b,32.5b). As was the case for modeling cracks, the location of the zero contour of
the function �(x), which defines the portion of the glide plane, is known: �(x)=0={x|y=
1Å and x ∈ (−32.5b,32.5b)}. Since in this example we know which slip system is activated, we
also know the magnitude and direction of the Burgers vector away from the dislocation core. A
method for extracting equivalent continuum discontinuities from atomistic displacements is not
trivial. Extracting these discontinuities for dislocations from the atomistic displacements will not
be straightforward, but knowledge about preferred slip systems limits the number of potential
equivalent continuum discontinuities.

We will compare the solutions of both a standard BDM model and a combined XFEM-BDM
model to further demonstrate the advantage of adopting an XFEM approximation in the continuum.
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Figure 8. Domain decomposition of the problem of a graphene sheet with a pair of edge dislocations: (a)
combined extended finite element and bridging domain method model and (b) standard bridging domain
method model. Green and blue lines denote the FEM and the Lagrange multiplier meshes, respectively.

Black disks represent the nodes enriched by the dislocation enrichment function.

The discretization and domain decomposition of the problem for both methodologies is shown in
Figure 8. In both models, the continuum is discretized by a 21×21 triangular element mesh. The
coupling domain is taken as a single layer of elements and the Lagrange multiplier mesh is chosen
to coincide with the FE mesh. In the standard BDM model, the atomistic domain must consist
of the regions surrounding the dislocation cores and the glide plane between the two cores. In
the combined XFEM-BDM model, the atomistic domain consists only of the regions surrounding
the dislocation cores. Figure 8(a) also illustrates the enriched nodes (those in set N�) required
to introduce the discontinuity due to slip along the glide plane. We note that in contrast to the
crack example, the enrichment for the dislocation does not introduce any additional unknowns.
The effect of the dislocation enrichment appears as a force on the right-hand side of the system
equations, see Equation (38). The fully atomistic DNS, the standard BDM model and the combined
XFEM-BDM model contain 21 534, 3652 and 2308 unconstrained atoms, respectively.

Figure 9 shows the relative error in the change in the energy per atom, with respect to the DNS,
of atoms near the right-hand side dislocation core obtained from the standard BDM model and the
combined XFEM-BDM model. Atoms are shown in the deformed configuration. We observe that
the displacements of the two models are indistinguishable and that the magnitude and distribution
of the relative error is very similar for both models. This is also reflected by the relative errors in the
energy of the fully atomistic domain around the defect, which are 3.7×10−5 and 4.1×10−5 for the
standard BDM and the XFEM-BDM models, respectively. The relative error in the displacements
is 1.0×10−3 for both the standard BDM and the combined XFEM-BDM models. We noticed that
the errors in the combined XFEM-BDM are largely due to shortcomings in the standard BDM
such as the linear constitutive model and ghost forces from the coupling constraint and not from
the XFEM model of slip in the continuum. The relative errors in this example are less than those
in the previous example in part because there are no free surface effects since the entire domain
boundary is constrained.
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Figure 9. Relative error in the change in the energy per atom of atoms near the rightmost dislocation core
in the problem of a graphene sheet with a pair of edge dislocations: (a) combined extended finite element

and bridging domain method model and (b) standard bridging domain method model.

Figure 10. Schematic of the problem of a graphene sheet with a four atom
void and a pair of edge dislocations.

6.3. Dislocation emitted from a void in a graphene sheet

Consider a 239.80Å×237.14Å graphene sheet as shown in Figure 10. In the center of the domain
is a four atom void from which two dislocations have been emitted at angles of 60 and 240◦
with respect to the positive x-axis. Each dislocation travels a distance of 36b from the void. The
problem solved here is to find the final equilibrium configuration and energy under shear. Pure shear
displacement boundary conditions are applied to all edges of the domain such that ūx =0.001y
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Figure 11. Domain decomposition of the problem of two dislocations emitted from a void for the
combined extended finite element method and bridging domain method model. Green and blue
lines denote the FEM and the Lagrange multiplier meshes, respectively. Black disks represent the

nodes enriched by the dislocation enrichment function.

and ū y =0.001x . As in the previous example, the location of the slip plane is known in advance, as
is the magnitude and direction of the Burgers vector: b= (bcos(�/3),b sin(�/3)) and b=2.46Å.

The discretization and domain decomposition of the problem for the combined XFEM-BDM
model is shown in Figure 11. The continuum is discretized by a 21×21 triangular element mesh.
The coupling domain is taken as a single layer of elements and the Lagrange multiplier mesh
is chosen to coincide with the FE mesh. In the combined model, the atomistic domain consists
only of the region surrounding the void and the dislocation cores. Figure 11 also illustrates the
enriched nodes (those in set N�) required to introduce the discontinuity due to slip along the
glide plane into the continuum model. Note that in this model, the glide plane is not parallel to any
element edges; therefore, modeling the glide plane by releasing nodes would not be possible and
consequently XFEM becomes advantageous. The combined model has only 1188 atoms, while the
full DNS has 21 530 atoms.

Figure 12 shows the relative error in the change in the energy per atom of the combined
XFEM-BDM model with respect to the DNS. The maximum relative error in energy per atom
occurs at the edge of the bridging domain. The maximum displacement error per atom also occurs
near the bridging domain boundary. The relative errors in the change in the energy and in the
displacements are 2.1×10−4 and 8.4×10−4, respectively. This is quite good given the proximity
of the continuum domain to the core and the coarseness of the continuum mesh. This example
clearly shows that the adoption of the XFEM approximation results in a significant reduction
in the number of atoms in the model, without a significant loss of accuracy at the dislocation
core.
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Figure 12. Relative error in the change in the energy per atom of atoms in the fully atomistic domain for
the problem of a pair of dislocations emitted from a void: (a) atoms in the fully atomistic domain near
the lower dislocation core; (b) atoms in the fully atomistic domain near the void; and (c) atoms in the

fully atomistic domain near the upper dislocation core.

Table I. Summary of relative errors of each example for the combined XFEM-BDM model with respect
to fully atomistic direct numerical simulations.

No. atoms No. atoms

Problems max�(eU� ) eU eL
2

XFEM-BDM DNS

Edge crack 5.6×10−2 4.2×10−3 3.6×10−4 1254 19788
Dislocation pair 5.9×10−3 1.0×10−3 4.1×10−5 2308 21534
Dislocation pair and void 1.3×10−2 8.4×10−4 2.1×10−4 1188 21530

The errors in the energy (both local and in the fully atomistic region) and in the displacement
compared to fully atomistic models (DNS) for the three problems are summarized in Table I along
with the number of atoms in the coupled XFEM-BDM and DNS models.

7. CONCLUSIONS

We have developed a concurrent multiscale method for coupling atomistics and continua when the
deformations at the continuum level corresponding to the atomistic phenomena are discontinuous,
i.e. in the presence of dislocations and cracks. The framework is based on the Bridging Domain
Method (BDM), where compatibility between overlapping continuum and atomistic domains is
enforced by Lagrange multipliers. The key contribution of this paper is the coupling of the Extended
Finite Element Method (XFEM) with the atomistic model. This allows for discontinuities in the
atomistic domain to be effectively passed into the continuum domain.

In the examples considered here, atomistic models of the material behavior of graphene were
used in the region near crack tips and dislocation cores, whereas a continuum model is adopted in
the rest of the domain. The discontinuity due to a crack is incorporated into the continuum model
by the enrichment of the standard FEM approximation by the Heaviside step function. Similarly,
slip across the glide plane in the continuum domain is modeled by a tangential step function
enrichment.
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We have studied several examples of defected two-dimensional graphene: an edge crack under
mixed mode loading, a pair of edge dislocations under shear loading and a pair of edge dislocations
emitted from a void under shear loading. Simulations using the combined bridging domain method
and extended finite element method (XFEM-BDM) have been compared with direct numerical
simulations (DNS) by fully atomistic models. The relative errors in the change in the energy in
the region around the defects with respect to the DNS were 3.6×10−4, 4.1×10−5 and 2.1×10−4,
respectively. The relative errors in the displacements with respect to the DNS were 4.2×10−3,
1.0×10−3 and 8.4×10−4, respectively. The local per atom errors in displacements are the largest
near the coupling domain. This suggests that the errors in the combined model are largely due to
the assumption of linear isotropic behavior of the continuum and ghost forces from the coupling
constraint and so are not due to the replacement of the atomistic discontinuity by a discontinuity in
the continuum model. The continuum model in the XFEM-BDM model can be easily extended to a
non-linear hyperelastic constitutive model based on a Cauchy–Born approximation. In the problems
solved, which involve relatively small discontinuities, the combined XFEM-BDM models used
about 15 times fewer atoms than the fully atomistic model and so the accuracy of the combined
XFEM-BDM models is quite acceptable.

The performance of the combined XFEM-BDMmodel of the edge dislocation problem compares
well with a standard BDM model of the same problem. In the standard BDM, all slips had to
be modeled by the atomistic model. The accuracy of the two models is similar even though the
XFEM-BDM model uses about 50% fewer atoms. When compared with DNS, the two models
yield global and local errors in energies and displacements which are very similar. The magnitude
and distribution of the local relative errors in the change in the energy per atom is also similar. This
substantiates the conclusion that the errors in the combined model are largely due to shortcomings
in the standard BDM and are not due to the replacement of the atomistic discontinuity by a
discontinuous continuum model.

In the future we will aim to make this new framework adaptive so that as cracks and dislocations
propagate, the regions ahead of the crack tips and cores will be converted from continuum to
atomistics and the discontinuities in the atomistic domain behind the tips and cores will be
coarsegrained. Determining an equivalent continuum crack from the atomistic displacements was
straightforward in the problem solved here; however, for more complex curved cracks, this could
be an issue that demands significant care. Determining the equivalent continuum dislocation slip
from the atomistic discontinuity will likely be easier since for a given crystal the location of
potential slip systems is known and the Burgers vector is well defined away from the cores. Still,
determining the correct discontinuity from among all possibilities in a computationally efficient
way may not be trivial.

In traditional concurrent multiscale simulations, discontinuities from cracks and dislocation slip
must be represented by the atomistic model. In contrast, the new method described here allows
large portions of these discontinuities to be represented by a continuum. Therefore, a significant
reduction in the number of atomistic degrees of freedom is possible. Furthermore, the numerical
examples presented here show that this can be accomplished without compromising atomistic
resolution and accuracy in the near crack tip or dislocation core regions.
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