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Seismic Risk Analysis of Nuclear Power Plants addresses the needs of graduate students 
in engineering, practicing engineers in industry, and regulators in government agencies, 
presenting the entire process of seismic risk analysis in a clear, logical, and concise 
manner. It offers a systematic and comprehensive introduction to seismic risk analysis 
of critical engineering structures focusing on nuclear power plants, with a balance 
between theory and applications, and includes the latest advances in research. It is 
suitable as a graduate-level textbook, for self-study, or as a reference book. Various 
aspects of seismic risk analysis, from seismic hazard, demand, and fragility analyses to 
seismic risk quantification, are discussed, with detailed step-by-step analysis of specific 
engi-neering examples. It presents a wide range of topics essential for understanding 
and performing seismic risk analysis, including engineering seismology, probability 
theory and random processes, digital signal processing, structural dynamics, random 
vibration, and engineering risk and reliability.
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Preface

Background

Earthquakes are among the most destructive natural disasters. The Great East Japan

earthquake, measuring 9.0 on the moment magnitude scale, hit Japan on March 11,

2011; the earthquake and the subsequent tsunami caused severe damage to a large

number of critical engineering structures. For example, twenty-six Shinkansen bridges

were damaged in the earthquake, resulting in major transportation system disruption

in Japan for weeks. A total of eleven nuclear reactors shut down automatically following

the earthquake. Although seismic forces did not cause any structural failure at the

Fukushima Nuclear Power Plant (NPP), the flood caused by the ensuing tsunami led to

a series of equipment failures, nuclear meltdowns, and releases of radioactive materials

at the Fukushima Daiichi NPP. It was the largest nuclear disaster since the Chernobyl

disaster of 1986 and only the second disaster to measure Level 7 on the International

Nuclear Event Scale. On the other hand, the Onagawa NPP, which is the closest NPP

to the epicentre, rode out the monster earthquake unscathed, demonstrating that the

existing seismic design approaches have been tested by a real case of beyond design

basis earthquake.

In response to the several destructive earthquakes that have occurred in recent

decades, seismic risk analysis for critical engineering structures has become one of

the most important and popular topics in earthquake engineering. Nuclear energy

industries worldwide have launched an unprecedented and extensive re-evaluation of

seismic hazards and risk to NPP systems. Furthermore, nuclear energy regulators and

utilities are taking a critical look at the existing methods of estimating the seismic risk of

NPPs. A number of deficiencies have been recognized in the existing methodologies of

seismic risk analysis and design, which need improvements to enhance their reliability

and effectiveness.

Seismic risk analysis involves a wide range of disciplines and topics, including

engineering seismology, probability theory, seismic hazard analysis, seismic design

earthquakes, random processes and digital signal processing, structural dynamics and

random vibration, seismic fragility analysis, system reliability analysis, and seismic

risk assessment. However, there is currently no book that presents a systematic intro-

duction to and discussion on various aspects of seismic risk analysis for engineering

structures, in particular NPPs, to graduate students and practicing engineers.

xiii
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Objectives

This book addresses the needs of graduate students in engineering, practicing en-

gineers in industry, and regulators in government agencies and aims to achieve the

following objectives:

❧ To present the entire process of seismic risk analysis in a clear, logical, and

concise manner

Seismic risk analysis is an integral and systematic framework, in which all individual

components (e.g., seismic hazard analysis, seismic demand analysis, and seismic

fragility analysis) not only play their own roles but also interrelate with each other.

This book is suitable not only as a textbook for graduate students in civil engineering,

mechanical engineering, and other relevant programs but also as a reference book

for practicing engineers and government regulators.

❧ To have a balance between theory and applications

The book can be used as a reference for engineering graduate students, practicing

engineers, and government regulators. As a reference, it has to be reasonably com-

prehensive and complete. Detailed step-by-step analysis for each topic of seismic

risk analysis is presented with engineering examples.

❧ To include the latest research advances and applications

Significant progress has been made on most of the topics in seismic risk analysis

in the past decades. The latest research advances in improving the existing seismic

risk analysis methods, including many contributions from our research team, are

presented in the book.

Scope and Organization

In Chapter 1, various types of NPPs, important structures, systems, and components

(SSCs) in NPPs, general seismic design philosophy, and seismic requirements for NPPs

are briefly introduced. In Section 1.4, the procedure of seismic risk analysis of an NPP

is outlined, which includes seismic hazard analysis, seismic demand analysis, seismic

fragility analysis, system analysis, and seismic risk quantification.

In Chapter 2, fundamental principles, definitions, and terminologies in engineering

seismology that are essential to the seismic risk analysis of NPPs are presented.

In Chapter 3, basic theory of random processes, structural dynamics, and ran-

dom vibration is presented, which is essential background knowledge to engineering

analysts in earthquake engineering.

The organization of the remainder of the book follows the general procedure of

seismic risk analysis of NPPs as presented in Section 1.4.

Chapters 4–6 are on seismic hazard analysis to provide response spectra and spectra-

compatible ground-motion time-histories for seismic demand. Chapter 4 introduces

seismic response spectra, including ground response spectra and t-response spectra,
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which are used in the direct method for generating floor response spectra (FRS) in

Chapter 8. Chapter 5 presents seismic hazard analysis, including probabilistic seis-

mic hazard analysis (PSHA), seismic hazard deaggregation (SHD), and site response

analysis. Chapter 6 introduces various methods for generating spectrum-compatible

time-histories, such as Fourier-based, wavelet-based, and Hilbert–Huang transform-

based spectral matching algorithms. A new method using eigenfunctions for generating

consistent, drift-free, and spectrum-compatible time-histories is also presented.

Chapters 7 and 8 are on seismic demand analysis. In Chapter 7, general principles

and approaches for modelling a structure into a dynamic 3D finite element model or

stick model are presented. Chapter 8 presents methods for generating FRS, which

are the seismic input to SSCs in an NPP. The methods presented include time-history

method, direct spectra-to-spectra method for fixed-based models and considering

soil–structure interaction, and the scaling method.

Chapter 9 introduces the general methods for seismic fragility analysis of SSCs,

including the method of fragility analysis, high confidence and low probability of

failure (HCLPF) values, and conservative deterministic failure margin (CDFM) method

for determining HCLPF values. To illustrate the general approach of fragility analysis,

two detailed examples on horizontal heat exchanger and masonry block wall are worked

using both the fragility method and the CDFM method.

In Chapter 10, basic principles and methods of system analysis are introduced first.

Two methods of seismic risk quantification, i.e., seismic margin assessment (SMA)

and seismic probabilistic safety assessment (seismic PSA), are presented.

Appendix A reviews important properties and results of normal distribution and

lognormal distribution.

In Appendix B, some relevant topics in digital signal processing are presented,

including sampling, Fourier transforms, digital filter, and resampling a signal at a dif-

ferent rate, which are important in processing real earthquake records and generating

spectra-compatible artificial ground-motion time-histories.
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Reliability block diagram, 520

Resampling, 586
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Review level earthquake (RLE), 16, 418, 544

Richter local magnitude, 29

S
S-wave, 24

Safe shutdown earthquake (SSE), 418, 538

Safety functions, 8

Safety objectives, 11

Sampling, 568

Scaling method, 365

Screening table, 543, 546

Second-moment method, 440

Secondary control area (SCA), 10

Seismic design spectrum, 176

Seismic energy, 30

Seismic fragility, 15, 410

Seismic fragility analysis, 518

Seismic hazard, 13, 230, 410

Seismic hazard analysis, 518

Seismic hazard curve, 163, 184, 410, 536

Seismic hazard deaggregation (SHD), 167

Seismic levels, 8

Seismic margin assessment (SMA), 16, 328, 418,

538

Seismic probabilistic risk assessment (SPRA), 16,

517

Seismic probabilistic safety assessment (seismic

PSA), 16, 328, 517

Seismic response history analysis (SRHA), 97,

230

Seismic response spectrum analysis (SRSA), 99

Seismic risk, 13, 16

Seismic risk quantification, 518

Seismicity, 8

Seismograph, 37

Shear-wave velocity, 183, 198

Shear area, 317

Shear modulus, 183

Single degree-of-freedom (SDOF), 77

Site condition, 230

Site design earthquake (SDE), 8

Site response analysis, 181

Soil condition, 181

Soil–structure interaction (SSI), 15, 383, 431

Spectral shape, 419

Spectrum-compatible ground motion, 230, 232,

235, 256, 271

Spectrum amplification factor, 125

Spectrum shape, 422

Square root of sum of squares (SRSS), 94

SSC, 8, 15, 328

Standard deviation, 60

Standard deviation of prediction equation, 44

Stationary Gaussian process, 88

Stationary process, 59, 89

Stationary response, 86

Statistical independence of ground motions, 233

Stick model, 317

Strength factor, 420

Strong-motion duration, 233

Strong ground motion, 37

Structure response factor, 421, 438

Substructure method, 386

Surrogate element, 546

System analysis, 518

System identification, 368

T
t-response spectrum (tRS), 137, 346

Time-domain dynamic response analysis, 193

Time-history, 13

Time-history analysis, 15, 332

Transient response, 79

Tripartite, 120

Tsunami, 31

U
Uniform hazard spectrum (UHS), 154, 169, 177,
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V
Vector-valued PSHA, 166

Vector-valued SHD, 172

W
Wavelet, 242
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