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Preface

Background and Scope of the Book

Investigation of the dynamic stability of elastic systems frequently leads to the study

of the dynamic behaviour of the solutions derived from a parametrized family of

differential equations. Examples of such systems include slender columns and thin

plates under axial loading, or buildings, bridges, and aircraft structures under wind

loading.

When the loadings are dynamic (either deterministic functions or random pro-

cesses), the structures are then called parametrically excited. Parametric instability or

resonance is characterized by exponential growth of the response amplitudes even in

the presence of damping.

As a result, parametric resonance is more dangerous than ordinary resonance, in

which the loading appears as the forcing term, rather than as a parameter, in the

governing equations of motion.

The nature of the problems to be solved is characterized, in general, by the nature

of the loading. When the loadings are deterministic periodic functions, the result-

ing governing equations of motion are of the Mathieu–Hill types; whereas when the

excitations are random forces, the dynamics of structures is governed by stochastic

differential equations. Hence, this book is divided into two parts, i.e. Part I: dynamic

stability of structures under deterministic loadings (Chapters 2–4) and Part II: dynamic

stability of structures under stochastic loadings (Chapters 5–9).

It is the purpose of this book to present a systematic introduction to the theory of

parametric stability of structures under both deterministic and stochastic loadings.

Chapter 1 presents a general introduction to the concept of stability, conservative

systems, nonconservative systems, and gyroscopic systems. Equations of motion of

several structural systems are derived. The dynamic stability of these systems is studied

throughout the book.

The dynamic stability of linear differential equations with periodic coefficients, i.e.

Mathieu–Hill equations and Mathieu equations, is studied in Chapter 2.

The method of averaging, developed by Bogoliubov and Mitropolski, is applied in

Chapter 3 to obtain the stability regions of Mathieu equations, linear multiple degrees-

of-freedom non-gyroscopic and gyroscopic systems. Subharmonic and combination

resonances of these systems are investigated.

In Chapter 4, nonlinear systems under periodic excitations are studied. The effect

of nonlinearity on the stability of steady-state solutions is determined. Examples of

a column under axial harmonic load and snap-through of a shallow arch are used to

illustrate the procedures of analysis.

xiii



xiv preface

The theory of random processes, stochastic calculus, stochastic differential equa-

tions, and various techniques for solving these equations, such as the method of

stochastic averaging and Monte Carlo simulation schemes, are presented in Chapter

5. This Chapter lays the necessary theoretical foundation for the study of stochastic

dynamic stability.

Almost-sure stability of systems under the excitation of non-white ergodic random

processes is investigated in Chapter 6.

Moment stability of stochastic dynamical systems is presented in Chapter 7. Both

first and second moment stability conditions of a second-order system under combined

harmonic and stochastic excitation, and a coupled multiple degrees-of-freedom linear

system under stochastic excitation, are determined to illustrate the approaches.

The modern theory of stochastic dynamic stability is founded on Lyapunov ex-

ponents and moment Lyapunov exponents, which are presented in Chapters 8 and 9,

respectively. The concepts of both exponents are introduced and a variety of application

problems are studied through the determination of these characteristic numbers using

various methods and techniques. The almost-sure asymptotic stability of a stochastic

dynamical system is characterized by the largest Lyapunov exponent; whereas the pth

moment stability is determined by the pth moment Lyapunov exponent. Furthermore,

the Lyapunov exponent and the moment Lyapunov exponent characterize how rapidly

the response grows or decays sample-wise and moment-wise, respectively.

Since the largest Lyapunov exponent is equal to the derivative of the pth moment

Lyapunov exponent at p=0, the moment Lyapunov exponent is the ideal avenue and the

ultimate characteristic number for the study of the dynamic stability of stochastic dy-

namical systems. Knowledge of the moment Lyapunov exponent gives the almost-sure

asymptotic stability of a stochastic dynamical system through the Lyapunov exponent.

If the system is almost-surely stable, the pth moment becomes unstable when p is

greater than the stability index, which is the non-trivial zero of the moment Lyapunov

exponent.

The book is primarily for engineering students and practitioners as the main audi-

ence. Readers with a good knowledge of advanced calculus, linear algebra, probability,

differential equations, engineering mechanics, and structural dynamics, which can be

acquired in a relevant undergraduate program, should be able to follow the book. Of

course, a certain degree of mathematical sophistication is helpful. The book is presented

in a style that can be studied by an engineer with suitable background without sacrific-

ing mathematical rigour. For Chapters 2–4 and 6–9, the basic theory is first presented.

Application problems are then formulated and solved, sometimes using more than one

approach. The emphasis is on applications and various methods and techniques, both

analytical and numerical, for solving engineering problems. Theory and application

problems are presented as self-contained as possible. All important steps of analysis

are provided to make the book suitable as a textbook and especially for self-study. This

book is not intended to be a complete research monograph; a comprehensive survey of

the research publications is therefore not provided.



preface xv

Computer software packages for symbolic computations, such as Maple, are very

useful in mathematical analysis. However, they cannot replace learning and thinking.

It is important to develop analytical skills and proficiency through “hand” calculations,

which will also help the development of insight into the problems and appreciation of

the solution process. By providing Maple programs for some typical problems that

can be solved efficiently using Maple, a balanced presentation is attempted so that the

readers can not only run the Maple programs to solve the problems on hand but also

learn the frequently used commands and techniques. It is advisable to use Maple mainly

as a tool for verification and checking rather than relying on it to solve every problem

and being lost often in pages of Maple output.

Part I of the book presents the classic theory of dynamic stability of structures under

deterministic loadings. These materials are suitable for a one term (semester) graduate

course. In fact, a large part of the materials of Part I and some sections of Chapters

1 and 5 are based on the lecture notes of a graduate course taught by Professor S. T.

Ariaratnam at the University of Waterloo. A draft of this book was used in a one term

graduate course at Waterloo, in which materials in Chapters 1 to 5, and many sections

of Chapters 8 and 9 were covered.
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stochastic averaging, 305

system exhibiting pitchfork bifurcation, 293
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simulation, 299
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plate

under dynamic axial load, 292–293
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wide-band, 156, 209, 220, 233, 248, 252, 260–261,

276, 283, 291, 301, 330, 387

Wiener, 156, 165

Lévy Oscillation Property, 167–168, 190, 205

Monte Carlo simulation, 224

properties of, 165

random variable, 156, 164

Box–Muller transformation, 223
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sufficient almost-sure asymptotic boundary,

240, 245, 254

optimization, 257

Schwarz’s inequality, 256

viscoelastic system, 308

with probability 1, 234, 238, 280, 286, 292,

339–340, 342

stationary probability density function, 252–253,
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steady-state solution, 1, 3, 113, 116–118, 123,

130–131, 133–135, 137–140, 146–147, 149,

151–152

stochastic averaging method, 212–213, 217, 220,

264, 271, 305, 309, 319, 331, 333, 412, 414
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stochastic Duffing–van der Pol equation, 229

stochastic dynamical system, 156, 234, 260, 276,

283, 289, 337

stochastic integral, 187

generalized, 189
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Stratonovich, 156, 192, 204, 207, 226
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Gaussian white noise, 173, 353

Ornstein–Uhlenbeck process, 374
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