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Preface

Background

Differential equations have wide applications in various engineering and science
disciplines. In general, modeling of the variation of a physical quantity, such as
temperature, pressure, displacement, velocity, stress, strain, current, voltage, or
concentration of a pollutant, with the change of time or location, or both would
result in differential equations. Similarly, studying the variation of some physical
quantities on other physical quantities would also lead to differential equations.
In fact, many engineering subjects, such as mechanical vibration or structural
dynamics, heat transfer, or theory of electric circuits, are founded on the theory of
differential equations. It is practically important for engineers to be able to model
physical problems using mathematical equations, and then solve these equations so
that the behavior of the systems concerned can be studied.

I have been teaching differential equations to engineering students for the past
two decades. Most, if not all, of the textbooks are written by mathematicians
with little engineering background. Based on my experience and feedback from
students, the following lists some of the gaps frequently seen in current textbooks:

❧ A major focus is put on explaining mathematical concepts

For engineers, the purpose of learning the theory of differential equations is
to be able to solve practical problems where differential equations are used.
For engineering students, it is more important to know the applications and
techniques for solving application problems than to delve into the nuances of
mathematical concepts and theorems. Knowing the appropriate applications can
motivate them to study the mathematical concepts and techniques. However,
it is much more challenging to model an application problem using physical
principles and then solve the resulting differential equations than it is to merely
carry out mathematical exercises.

❧ Insufficient emphasis is placed on the step-by-step problem solving techniques

Engineering students do not usually have the same mathematical background
and interest as students who major in mathematics. Mathematicians are more
interested if: (1) there are solutions to a differential equation or a system of
differential equations; (2) the solutions are unique under a certain set of con-
ditions; and (3) the differential equations can be solved. On the other hand,

xiii
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engineers are more interested in mathematical modeling of a practical problem
and actually solving the equations to find the solutions using the easiest possible
method. Hence, a detailed step-by-step approach, especially applied to practical
engineering problems, helps students to develop problem solving skills.

❧ Presentations are usually formula-driven with little variation in visual design

It is very difficult to attract students to read boring formulas without variation
of presentation. Readers often miss the points of importance.

Objectives

This book addresses the needs of engineering students and aims to achieve the
following objectives:

❧ To motivate students on the relevance of differential equations in engineering
through their applications in various engineering disciplines. Studies of various
types of differential equations are motivated by engineering applications; the-
ory and techniques for solving differential equations are then applied to solve
practical engineering problems.

❧ To have a balance between theory and applications. This book could be used as a
reference after students have completed learning the subject. As a reference, it has
to be reasonably comprehensive and complete. Detailed step-by-step analysis is
presented to model the engineering problems using differential equations and
to solve the differential equations.

❧ To present the mathematical concepts and various techniques in a clear, logical
and concise manner. Various visual features, such as side-notes (preceded by
the symbol), different fonts and shades, are used to highlight focus areas.
Complete illustrative diagrams are used to facilitate mathematical modeling of
application problems. This book is not only suitable as a textbook for classroom
use but also is easy for self-study. As a textbook, it has to be easy to understand.
For self-study, the presentation is detailed with all necessary steps and useful
formulas given as side-notes.

Scope

This book is primarily for engineering students and practitioners as the main
audience. It is suitable as a textbook on ordinary differential equations for under-
graduate students in an engineering program. Such a course is usually offered in
the second year after students have taken calculus and linear algebra in the first
year. Although it is assumed that students have a working knowledge of calculus
and linear algebra, some important concepts and results are reviewed when they are
first used so as to refresh their memory.
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Chapter 1 first presents some motivating examples, which will be studied in
detail later in the book, to illustrate how differential equations arise in engineer-
ing applications. Some basic general concepts of differential equations are then
introduced.

In Chapter 2, various techniques for solving first-order and simple higher-order
ordinary differential equations are presented. These methods are then applied in
Chapter 3 to study various application problems involving first-order and simple
higher-order differential equations.

Chapter 4 studies linear ordinary differential equations. Complementary solu-
tions are obtained through the characteristic equations and characteristic numbers.
Particular solutions are obtained using the method of undetermined coefficients,
the operator method, and the method of variation of parameters. Applications
involving linear ordinary differential equations are presented in Chapter 5.

Solutions of linear ordinary differential equations using the Laplace transform
are studied in Chapter 6, emphasizing functions involving Heaviside step function
and Dirac delta function.

Chapter 7 studies solutions of systems of linear ordinary differential equations.
The method of operator, the method of Laplace transform, and the matrix method
are introduced. Applications involving systems of linear ordinary differential equa-
tions are considered in Chapter 8.

In Chapter 9, solutions of ordinary differential equations in series about an
ordinary point and a regular singular point are presented. Applications of Bessel’s
equation in engineering are considered.

Some classical methods, including forward and backward Euler method, im-
proved Euler method, and Runge-Kutta methods, are presented in Chapter 10 for
numerical solutions of ordinary differential equations.

In Chapter 11, the method of separation of variables is applied to solve partial
differential equations. When the method is applicable, it converts a partial differ-
ential equation into a set of ordinary differential equations. Flexural vibration of
beams and heat conduction are studied as examples of application.

Solutions of ordinary differential equations using Maple are presented in Chapter
12. Symbolic computation software, such as Maple, is very efficient in solving
problems involving ordinary differential equations. However, it cannot replace
learning and thinking, especially mathematical modeling. It is important to develop
analytical skills and proficiency through “hand” calculations, as has been done in
previous chapters. This will also help the development of insight into the problems
and appreciation of the solution process. For this reason, solutions of ordinary
differential equations using Maple is presented in the last chapter of the book
instead of a scattering throughout the book.
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The book covers a wide range of materials on ordinary differential equations
and their engineering applications. There are more than enough materials for a
one-term (semester) undergraduate course. Instructors can select the materials
according to the curriculum. Drafts of this book were used as the textbook in a
one-term undergraduate course at the University of Waterloo.

Acknowledgments

First and foremost, my sincere appreciation goes to my students. It is the students
who give me a stage where I can cultivate my talent and passion for teaching. It is
for the students that this book is written, as my small contribution to their success
in academic and professional careers. My undergraduate students who have used
the draft of this book as a textbook have made many encouraging comments and
constructive suggestions.

I am very grateful to many people who have reviewed and commented on the
book, including Professor Hong-Jian Lai of West Virginia University, Professors S.T.
Ariaratnam, Xin-Zhi Liu, Stanislav Potapenko, and Edward Vrscay of the University
of Waterloo.

My graduate students Mohamad Alwan, Qinghua Huang, Jun Liu, Shunhao Ni,
and Richard Wiebe have carefully read the book and made many helpful and critical
suggestions.

My sincere appreciation goes to Mr. Peter Gordon, Senior Editor, Engineering,
Cambridge University Press, for his encouragement, trust, and hard work to publish
this book.

Special thanks are due to Mr. John Bennett, my mentor, teacher, and friend, for
his advice and guidance. He has also painstakingly proofread and copyedited this
book.

Without the unfailing love and support of my mother, who has always believed in
me, this work would not have been possible. In addition, the care, love, patience, and
understanding of my wife Cong-Rong and lovely daughters Victoria and Tiffany
have been of inestimable encouragement and help. I love them very much and
appreciate all that they have contributed to my work.

I appreciate hearing your comments through email (xie@uwaterloo.ca) or regu-
lar correspondence.

Wei-Chau   Xie

Waterloo, Ontario, Canada



1C H A P T E R

Introduction

1.1 Motivating Examples

Differential equations have wide applications in various engineering and science
disciplines. In general, modeling variations of a physical quantity, such as tempera-
ture, pressure, displacement, velocity, stress, strain, or concentration of a pollutant,
with the change of time t or location, such as the coordinates (x, y, z), or both
would require differential equations. Similarly, studying the variation of a physi-
cal quantity on other physical quantities would lead to differential equations. For
example, the change of strain on stress for some viscoelastic materials follows a
differential equation.

It is important for engineers to be able to model physical problems using mathe-
matical equations, and then solve these equations so that the behavior of the systems
concerned can be studied.

In this section, a few examples are presented to illustrate how practical problems
are modeled mathematically and how differential equations arise in them.

Motivating Example 1

First consider the projectile of a mass m launched with initial velocity v0 at angle
θ0 at time t = 0, as shown.

O A

y

θ0 x

v0 θ
θ x

v(t)v(t)

βv mg

y

1
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The atmosphere exerts a resistance force on the mass, which is proportional
to the instantaneous velocity of the mass, i.e., R =βv, where β is a constant,
and is opposite to the direction of the velocity of the mass. Set up the Cartesian
coordinate system as shown by placing the origin at the point from where the mass
m is launched.

At time t, the mass is at location
(
x(t), y(t)

)
. The instantaneous velocity of the

mass in the x- and y-directions are ẋ(t) and ẏ(t), respectively. Hence the velocity
of the mass is v(t)=√

ẋ2(t)+ ẏ2(t) at the angle θ(t)= tan−1
[

ẏ(t)/ẋ(t)
]
.

The mass is subjected to two forces: the vertical downward gravity mg and the
resistance force R(t)=βv(t).

The equations of motion of the mass can be established using Newton’s Second
Law: F =∑

ma. The x-component of the resistance force is −R(t) cos θ(t). In
the y-direction, the component of the resistance force is −R(t) sin θ(t). Hence,
applying Newton’s Second Law yields

x-direction: max=
∑

Fx =⇒ mẍ(t) = −R(t) cos θ(t),

y-direction: may = ∑
Fy =⇒ m ÿ(t) = −mg − R(t) sin θ(t).

Since

θ(t) = tan−1 ẏ(t)

ẋ(t)
=⇒ cos θ = ẋ(t)√

ẋ2(t)+ ẏ2(t)
, sin θ = ẏ(t)√

ẋ2(t)+ ẏ2(t)
,

the equations of motion become

mẍ(t) = −βv(t) · ẋ(t)√
ẋ2(t)+ ẏ2(t)

=⇒ mẍ(t)+ β ẋ(t) = 0,

m ÿ(t) = −mg − βv(t) · ẏ(t)√
ẋ2(t)+ ẏ2(t)

=⇒ m ÿ(t)+ β ẏ(t) = −mg ,

in which the initial conditions are at time t = 0: x(0)= 0, y(0)= 0, ẋ(0)= v0 cos θ0,
ẏ(0)= v0 sin θ0. The equations of motion are two equations involving the first- and
second-order derivatives ẋ(t), ẏ(t), ẍ(t), and ÿ(t). These equations are called, as
will be defined later, a system of two second-order ordinary differential equations.

Because of the complexity of the problems, in the following examples, the prob-
lems are described and the governing equations are presented without detailed
derivation. These problems will be investigated in details in later chapters when
applications of various types of differential equations are studied.

Motivating Example 2

A tank contains a liquid of volume V(t), which is polluted with a pollutant concen-
tration in percentage of c(t) at time t. To reduce the pollutant concentration, an
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inflow of rate Qin is injected to the tank. Unfortunately, the inflow is also polluted
but to a lesser degree with a pollutant concentration cin. It is assumed that the
inflow is perfectly mixed with the liquid in the tank instantaneously. An outflow
of rate Qout is removed from the tank as shown. Suppose that, at time t = 0, the
volume of the liquid is V0 with a pollutant concentration of c0.

Inflow

Outflow
Volume V(t)

Concentration  c(t)
Qout,  c(t)

Qin,  cin

The equation governing the pollutant concentration c(t) is given by

[
V0 + (Qin −Qout)t

] dc(t)

dt
+ Qinc(t) = Qincin,

with initial condition c(0)= c0. This is a first-order ordinary differential equation.

Motivating Example 3

Hanger

Deck

Cable

w(x)

O

y

x

Consider the suspension bridge as shown, which consists of the main cable, the
hangers, and the deck. The self-weight of the deck and the loads applied on the
deck are transferred to the cable through the hangers.
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Set up the Cartesian coordinate system by placing the origin O at the lowest point
of the cable. The cable can be modeled as subjected to a distributed load w(x). The
equation governing the shape of the cable is given by

d2y

dx2 = w(x)

H
,

where H is the tension in the cable at the lowest point O. This is a second-order
ordinary differential equation.

Motivating Example 4

k

Reference position m

c

x(t)

x0(t) y(t)

Consider the vibration of a single-story shear building under the excitation of
earthquake. The shear building consists of a rigid girder of mass m supported by
columns of combined stiffness k. The vibration of the girder can be described by
the horizontal displacement x(t). The earthquake is modeled by the displacement
of the ground x0(t) as shown. When the girder vibrates, there is a damping force
due to the internal friction between various components of the building, given by
c
[
ẋ(t)− ẋ0(t)

]
, where c is the damping coefficient.

The relative displacement y(t)= x(t)−x0(t) between the girder and the ground
is governed by the equation

mÿ(t)+ c ẏ(t)+ k y(t) = −mẍ0(t),

which is a second-order linear ordinary differential equation.

Motivating Example 5

In many engineering applications, an equipment of mass m is usually mounted on
a supporting structure that can be modeled as a spring of stiffness k and a damper
of damping coefficient c as shown in the following figure. Due to unbalanced mass
in rotating components or other excitation mechanisms, the equipment is subjected
to a harmonic force F0 sin�t. The vibration of the mass is described by the vertical
displacement x(t). When the excitation frequency � is close toω0 =√

k/m, which
is the natural circular frequency of the equipment and its support, vibration of large
amplitudes occurs.
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In order to reduce the vibration of the equipment, a vibration absorber is
mounted on the equipment. The vibration absorber can be modeled as a mass
ma, a spring of stiffness ka, and a damper of damping coefficient ca. The vibration
of the absorber is described by the vertical displacement xa(t).

x(t)

Vibration

Absorber

Supporting

Structure

Equipment

xa(t)

F0 sin�t

c

m

k

ca

ma

ka

The equations of motion governing the vibration of the equipment and the
absorber are given by

mẍ + (c +ca) ẋ + (k+ka)x − caẋa − kaxa = F0 sin�t,

maẍa + caẋa + kaxa − caẋ − kax = 0,

which comprises a system of two coupled second-order linear ordinary differential
equations.

Motivating Example 6

L

v

PP

EI, ρA

Ut
t=0

x

A bridge may be modeled as a simply supported beam of length L, mass density
per unit length ρA, and flexural rigidity EI as shown. A vehicle of weight P crosses
the bridge at a constant speed U . Suppose at time t = 0, the vehicle is at the left end
of the bridge and the bridge is at rest. The deflection of the bridge is v(x, t), which
is a function of both location x and time t. The equation governing v(x, t) is the
partial differential equation

ρA
∂2v(x, t)

∂t2 + EI
∂4v(x, t)

∂x4 = P δ(x−U t),
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Example 2.19 2.19

Solve y (cos3x + y sin x)dx + cos x (sin x cos x + 2 y)dy = 0.

The differential equation is of the standard form M dx+N dy = 0, where

M(x, y) = y cos3x + y2 sin x, N(x, y) = sin x cos2x + 2 y cos x.

Test for exactness:

∂M

∂y
= cos3x + 2 y sin x,

∂N

∂x
= cos3x − 2 sin2x cos x − 2 y sin x,

∴ ∂M

∂y
�= ∂N

∂x
=⇒ The differential equation is not exact.

Since

1

N

(∂M

∂y
− ∂N

∂x

)
= (cos3x + 2 y sin x)− (cos3x − 2 sin2x cos x − 2 y sin x)

sin x cos2x + 2 y cos x

= 2 sin x (2 y + sin x cos x)

cos x (2 y + sin x cos x)
= 2 sin x

cos x
, A function of x only

∴ μ(x) = exp

[∫
1

N

(∂M

∂y
− ∂N

∂x

)
dx

]
= exp

[ ∫ 2 sin x

cos x
dx

]

= exp
[
−2

∫
1

cos x
d(cos x)

]
= exp

[−2 ln
∣∣cos x

∣∣] = 1

cos2x
.

Multiplying the differential equation by the integrating factor μ(x)= 1

cos2x
yields

(
y cos x + y2 sin x

cos2x

)
dx +

(
sin x + 2 y

cos x

)
dy = 0.

The general solution is determined using the method of grouping terms

(
y cos x dx

∫
dx

��

+ sin x dy
)

y sin x ∂
∂y

��
+

( 2 y

cos x
dy

∫
dy ��

+ y2 sin x

cos2x
dx

)

y2

cos x

∂
∂x

��

= 0,

which gives

y sin x + y2

cos x
= C. General solution
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Procedure for Solving an Application Problem

1. Establish the governing differential equations based on physical principles

and geometrical properties underlying the problem.

2. Identify the type of these differential equations and then solve them.

3. Determine the arbitrary constants in the general solutions using the initial

or boundary conditions.

3.6 Various Application Problems

Example 3.10 — Ferry Boat 3.10

A ferry boat is crossing a river of width a from point A to point O as shown in the
following figure. The boat is always aiming toward the destination O. The speed of
the river flow is constant vR and the speed of the boat is constant vB. Determine
the equation of the path traced by the boat.

vR

vB

vB cosθ

θ

vB sinθ

xx

y
River Flow

y

P(x,y)

A
H aO

Suppose that, at time t, the boat is at point P with coordinates (x, y). The velocity
of the boat has two components: the velocity of the boat vB relative to the river flow
(as if the river is not flowing), which is pointing toward the origin O or along line
PO, and the velocity of the river vR in the y direction.

Decompose the velocity components vB and vR in the x- and y-directions

vx = −vB cos θ , vy = vR − vB sin θ.

From �OHP, it is easy to see

cos θ = OH

OP
= x√

x2 +y2
, sin θ = PH

OP
= y√

x2 +y2
.

Hence, the equations of motion are given by

vx = dx

dt
= −vB

x√
x2 +y2

, vy = dy

dt
= vR − vB

y√
x2 +y2

.
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Example 3.11 — Bar with Variable Cross-Section 3.11

A bar with circular cross-sections is supported at the top end and is subjected to a
load of P as shown in Figure 3.14(a). The length of the bar is L. The weight density
of the materials is ρ per unit volume. It is required that the stress at every point is
constant σa. Determine the equation for the cross-section of the bar.

x

y

P P

L

x

x

dx

y

y

P+W(x)

(a) (b) (c)

x

x

y

Figure 3.14 A bar under axial load.

Consider a cross-section at level x as shown in Figure 3.14(b). The corresponding
radius is y. The volume of a circular disk of thickness dx is dV =πy2 dx. The
volume of the segment of bar between 0 and x is

V(x) =
∫ x

0
πy2dx,

and the weight of this segment is

W(x) = ρV(x) = ρ

∫ x

0
πy2dx.

The load applied on cross-section at level x is equal to the sum of the externally
applied load P and the weight of the segment between 0 and x, i.e.,

F(x) = W(x)+ P = ρ

∫ x

0
πy2dx + P.

The normal stress is

σ(x) = F(x)

A(x)
= 1

πy2

(
ρ

∫ x

0
πy2dx + P

)
= σa =⇒ ρ

∫ x

0
πy2dx + P = σaπy2.

Differentiating with respect to x yields

ρπy2 = σaπ ·2 y
dy

dx
. Variable separable
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Example 4.25 4.25

Evaluate yP = 1

(D −2)3 e2x.

Use Theorem 4: φ(D) = (D −2)3, φ(2) = 0,

φ′(D) = 3(D −2)2, φ′(2) = 0,

φ′′(D) = 6(D −2), φ′′(2) = 0,

φ′′′(D) = 6, φ′′′(2) = 6 �= 0.

∴ yP = 1

φ′′′(2)
x3 e2x = 1

6 x3 e2x.

Example 4.26 4.26

Solve (D2 + 4 D + 13)y = e−2x sin 3x.

The characteristic equation is λ2 +4λ+13 = 0, which gives

λ = −4 ± √
42 − 4×13

2
= −2 ± i 3.

Hence the complementary solution is yC = e−2x(A cos 3x + B sin 3x).

Remarks: Note that the right-hand side of the differential equation is contained
in the complementary solution. Using the method of undetermined coefficient,
the assumed form of a particular solution is x ·e−2x (a cos 3x+b sin 3x).

A particular solution is given by

yP = 1

D2 +4D +13

(
e−2x sin 3x

) = e−2x 1

(D −2)2 +4(D −2)+13
sin 3x

Theorem 2: take e−2x out of the operator, shift D by −2.

= e−2x 1

D2 +9
sin 3x = e−2x Im

[ 1

D2 +9
ei3x

]
.

This can be evaluated using Theorem 4:

φ(D) = D2 +9, φ(i 3) = (i 3)2 +9 = 0,

φ′(D) = 2 D, φ′(i 3) = 2(i 3) = i 6 �= 0.

Hence,

yP = e−2x Im
[ 1

φ′(i 3)
x ei3x

]
Theorem 4

= e−2x Im
[ 1

i 6
x (cos 3x + i sin 3x)

]
= e−2x Im

[
− i

6
x (cos 3x + i sin 3x)

]
= − 1

6 x e−2x cos 3x.
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5.2 Electric Circuits

Series RLC Circuit

A circuit consisting of a resistor R, an inductor L, a capacitor C, and a voltage
source V(t) connected in series, shown in Figure 5.18, is called the series RLC
circuit. Applying Kirchhoff ’s Voltage Law, one has

−V(t)+ Ri + L
di

dt
+ 1

C

∫ t

−∞
i dt = 0.

V(t)

R

C

L

i

m=L

x(t)= i(t)

F(t)=

k= 1
C

c=R

dV(t)
dt

Figure 5.18 Series RLC circuit.

Differentiating with respect to t yields

L
d2i

dt2 + R
di

dt
+ 1

C
i = dV(t)

dt
,

or, in the standard form,

d2i

dt2 + 2ζω0
di

dt
+ ω2

0 i = 1

L

dV(t)

dt
, ω2

0 = 1

LC
, ζω0 = R

2L
.

The series RLC circuit is equivalent to a mass-damper-spring system as shown.

Parallel RLC Circuit

A circuit consisting of a resistor R, an inductor L, a capacitor C, and a current
source I(t) connected in parallel, as shown in Figure 5.19, is called the parallel
RLC circuit. Applying Kirchhoff ’s Current Law at node 1, one has

I(t) = C
dv

dt
+ 1

L

∫ t

−∞
v dt + v

R
.

Differentiating with respect to t yields

C
d2v

dt2 + 1

R

dv

dt
+ 1

L
v = dI(t)

dt
,

or, in the standard form,

d2v

dt2 + 2ζω0
dv

dt
+ ω2

0 v = 1

C

dI(t)

dt
, ω2

0 = 1

LC
, ζω0 = 1

2RC
.

The parallel RLC circuit is equivalent to a mass-damper-spring system as shown.
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R L

I(t)

v

1

m=C

x(t)=v(t)

F(t)=

k= 1
L

dI(t)
dtC c= 1

R

Figure 5.19 Parallel RLC circuit.

Example 5.1 — Automobile Ignition Circuit 5.1

An automobile ignition system is modeled by the circuit shown in the following
figure. The voltage source V0 represents the battery and alternator. The resistor R
models the resistance of the wiring, and the ignition coil is modeled by the inductor
L. The capacitor C, known as the condenser, is in parallel with the switch, which is
known as the electronic ignition. The switch has been closed for a long time prior
to t<0−. Determine the inductor voltage vL for t>0.

V0

t=0

R C

L

Spark PlugIgnition Coil

vC
i

vL

For V0 = 12 V, R = 4�, C = 1μF, L = 8 mH, determine the maximal inductor
voltage and the time when it is reached.

❧ For t<0, the switch is closed, the capacitor behaves as an open circuit and the
inductor behaves as a short circuit as shown. Hence i(0−)= V0/R, vC(0

−)= 0.

V0

R

vC(0−) i(0−)

vL(0−)

t    0– t    0+

V0

R C

L

Ignition Coil

Mesh

vC
i

vL

❧ At t = 0, the switch is opened. Since the current in an inductor and the voltage
across a capacitor cannot change abruptly, one has i(0+)= i(0−)= V0/R, vC(0

+)=
vC(0

−)= 0. The derivative i ′(0+) is obtained from vL(0
+), which is determined by
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5.5 Various Application Problems

Example 5.5 — Jet Engine Vibration 5.5

As shown in Figure 5.8, jet engines are supported by the wings of the airplane. To
study the horizontal motion of a jet engine, it is modeled as a rigid body supported
by an elastic beam. The mass of the engine is m and the moment of inertia about its
centroidal axis C is J . The elastic beam is further modeled as a massless bar hinged
at A, with the rotational spring κ providing restoring moment equal to κθ , where
θ is the angle between the bar and the vertical line as shown in Figure 5.25.

For small rotations, i.e.,
∣∣θ ∣∣�1, set up the equation of motion for the jet engine

in term of θ . Find the natural frequency of oscillation.

A
A

mg

m, J

RAx

RAy

κθκ

C

θ

JAθL

Figure 5.25 Horizontal vibration of a jet engine.

The system rotates about hinge A. The moment of inertia of the jet engine about its
centroidal axis C is J . Using the Parallel Axis Theorem, the moment of inertia of
the jet engine about axis A is

JA = J + mL2.

Draw the free-body diagram of the jet engine and the supporting bar as shown.
The jet engine is subjected to gravity mg . Remove the hinge at A and replace it
by two reaction force components RAx and RAy . Since the bar rotates an angle θ
counterclockwise, the rotational spring provides a clockwise restoring moment κθ .

Since the angular acceleration of the system is θ̈ counterclockwise, the inertia

moment is JA θ̈ clockwise.

Applying D’Alembert’s Principle, the free-body as shown in Figure 5.25 is in
dynamic equilibrium. Hence,

�

∑
MA = 0 : JA θ̈ + κθ + mg ·L sin θ = 0.
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Example 5.7 — Single Degree-of-Freedom System 5.7

The single degree-of-freedom system described by x(t), as shown in Figure 5.26(a),
is subjected to a sinusoidal load F(t)= F0 sin�t. Assume that the mass m, the
spring stiffnesses k1 and k2, the damping coefficient c, and F0 and � are known.
Determine the steady-state amplitude of the response of xP(t).

m

c

c

A
k1

k2

k2

F0 sin�t

k1

(a)

(b)

yk1y

k2(y−x) k2(x−y)
cy

x(t)

A

m
F0 sin�t

x, x, x

Figure 5.26 A vibrating system.

Introduce a displacement y(t) at A as shown in Figure 5.26(b). Consider the free-
body of A . The extension of spring k1 is y and the compression of spring k2 is
y−x. Body A is subjected to three forces: spring force k1 y, damping force c ẏ, and

spring force k2(y−x). Newton’s Second Law requires

→ mA ÿ = ∑
F : mA ÿ = −k1 y − c ẏ − k2(y−x).

Since the mass of A is zero, i.e., mA = 0, one has

x = (k1 +k2)y + c ẏ

k2
. (1)

Consider the free-body of mass m. The extension of spring k2 is x−y. The mass
is subjected to two forces: spring force k2(x−y) and the externally applied load
F0 sin�t. Applying Newton’s Second Law gives

→ mẍ = ∑
F : mẍ = F0 sin�t − k2(x−y).

Substituting equation (1) yields the equation of motion

m
(k1 +k2) ÿ + c

...
y

k2
= F0 sin�t − k2

[(k1 +k2)y + c ẏ

k2
− y

]
,
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Example 6.18 6.18

Solve y ′′′−y ′′+4 y ′−4 y = 40(t2 +t +1)H(t −2), y(0)= 5, y ′(0)= 0, y ′′(0)= 10.

Let Y(s)=L {
y(t)

}
. Taking the Laplace transform of both sides of the differential

equation yields

[
s3 Y(s)− s2 y(0)− s y ′(0)− y ′′(0)

] − [
s2 Y(s)− s y(0)− y ′(0)

]
+ 4

[
sY(s)− y(0)

] − 4Y(s) = L {
40(t2 +t +1)H(t −2)

}
,

where, using L {
f(t −a)H(t −a)

}= e−asL {
f(t)

}
,

L {
40(t2 +t +1)H(t −2)

} = 40L {[
(t2 −4t +4)+5t −3

]
H(t −2)

}
= 40L {[

(t −2)2 +5(t −2)+7
]

H(t −2)
}

= 40e−2sL {
t2 +5t +7

} = 40e−2s
(2!

s3 + 5 · 1!
s2 + 7 · 1

s

)
L {

tn}= n!
sn+1

= e−2s 40(7s2 +5s+2)

s3 .

Solving for Y(s) gives

Y(s) = 5s2 −5s+30

s3 −s2 +4s−4
+ e−2s 40(7s2 +5s+2)

s3(s3 −s2 +4s−4)
.

Using partial fractions, one has

5s2 −5s+30

(s−1)(s2 +4)
= A

s−1
+ Bs+C

s2 +4
= (A+B)s2 +(−B+C)s+(4A−C)

(s−1)(s2 +4)

To find A, cover-up (s−1) and set s = 1

A = 5s2 −5s+30

(s2 +4)

∣∣∣∣
s=1

= 5−5+30

1+4
= 6.

Comparing the coefficients of the numerators leads to

s2 : A + B = 5 =⇒ B = 5 − A = 5 − 6 = −1,

s : −B + C = −5 =⇒ C = B − 5 = −1 − 5 = −6,

1 : 4A − C = 30. Use this equation as a check: 4 ·6−(−6)= 30.

Hence,

L −1
{

5s2 −5s+30

(s−1)(s2 +4)

}
= L −1

{
6

s−1
+ −s−6

s2 +4

}

= L −1
{

6 · 1

s−1
− s

s2 +22 − 3 · 2

s2 +22

}
= 6et − cos 2t − 3 sin 2t.
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Example 6.23 — Beam-Column 6.23

Consider the beam-column shown in the following figure. Determine the lateral
deflection y(x).

a

EI, L
w

b

y

x

W

P P

Using the Heaviside step function and the Dirac delta function, the lateral load can
be expresses as

w(x) = w
[
1−H(x−a)

] + W δ(x−b).

Following the formulation in Section 5.4, the differential equation becomes

d4y
dx4 + α2 d2y

dx2 = ŵ
[
1−H(x−a)

] + Ŵ δ(x−b), α2 = P
EI

, ŵ = w
EI

, Ŵ = W
EI

.

Since the left end is a hinge support and the right end is a sliding support, the
boundary conditions are

at x = 0 : deflection = 0 =⇒ y(0) = 0,

bending moment = 0 =⇒ y ′′(0) = 0,

at x = L : slope = 0 =⇒ y ′(L) = 0,

shear force = 0 =⇒ V(L) = −EI y ′′′(L)−P y ′(L) = 0

=⇒ y ′′′(L) = 0.

Applying the Laplace transform Y(s)=L
{

y(x)
}

, one has

[
s4 Y(s) − s3 y(0) − s2 y ′(0) − s y ′′(0) − y ′′′(0)

] + α2 [s2 Y(s) − s y(0) − y ′(0)
]

= ŵ
s

(1−e−as) + Ŵ e−bs.

Since y(0)= y ′′(0)= 0, solving for Y(s) leads to

Y(s) = y ′(0)

s2 + α2 +
[

y ′′′(0)+α2y ′(0)
]+Ŵ e−bs

s2(s2 +α2)
+ ŵ

s3(s2 +α2)
(1−e−as).

Applying partial fractions

1
s3(s2 +α2)

= A
s3 + B

s2 + C
s

+ D s+E
s2 +α2 .
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The general solution is

x(t) = X(t)
{

C +
∫

X−1(t) f(t)dt
}

=
[

cos t sin t

sin t + cos t sin t − cos t

]{
C1 +t + ln

∣∣cos t
∣∣

C2 +t − ln
∣∣cos t

∣∣
}

,

∴ x1(t) = (t +C1) cos t + (t +C2) sin t + (cos t − sin t) ln
∣∣cos t

∣∣,
x2(t) = (C1−C2) cos t + (2t +C1 +C2) sin t + 2 cos t ln

∣∣cos t
∣∣.

Example 7.20 7.20

Solve

x′(t)= A x(t)+f(t), x(t)=
⎧⎨
⎩

x1
x2
x3

⎫⎬
⎭, A =

⎡
⎣ 2 −1 −1

2 −1 −2
−1 1 2

⎤
⎦, f(t)=

⎧⎨
⎩

2et

4e−t

0

⎫⎬
⎭.

The characteristic equation is

det(A−λI) =
∣∣∣∣∣∣
2−λ −1 −1

2 −1−λ −2
−1 1 2−λ

∣∣∣∣∣∣ = −(λ3 −3λ2 +3λ−1) = −(λ−1)3 = 0.

Hence, λ= 1 is an eigenvector of multiplicity 3. The eigenvector equation is

(A−λI)v =
⎡
⎢⎣

1 −1 −1

2 −2 −2

−1 1 1

⎤
⎥⎦
⎧⎪⎨
⎪⎩

v1

v2

v3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

v1 −v2 −v3

2(v1 −v2 −v3)

−(v1 −v2 −v3)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0

0

0

⎫⎪⎬
⎪⎭,

which leads to v1 = v2 +v3. As a result, there are two linearly independent eigen-
vectors. Taking v21 = 1 and v31 = −1, then v11 = v21 +v31 = 0,

∴ v1 =

⎧⎪⎨
⎪⎩

v11

v21

v31

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0

1

−1

⎫⎪⎬
⎪⎭.

However, v2 cannot be chosen arbitrarily; it has to satisfy a condition imposed by
v3, which will be clear in a moment.

A third linearly independent eigenvector does not exist. Hence, matrix A is de-
fective and a complete basis of eigenvectors is obtained by including one generalized
eigenvector:

(A−λI)v3 = v2 =⇒

⎡
⎢⎣

1 −1 −1

2 −2 −2

−1 1 1

⎤
⎥⎦
⎧⎪⎨
⎪⎩

v13

v23

v33

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

v13 −v23 −v33

2(v13 −v23 −v33)

−(v13 −v23 −v33)

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

v12

v22

v32

⎫⎪⎬
⎪⎭.
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8.2 Vibration Absorbers or Tuned Mass Dampers

In engineering applications, many systems can be modeled as single degree-of-
freedom systems. For example, a machine mounted on a structure can be modeled
using a mass-spring-damper system, in which the machine is considered to be rigid
with mass m and the supporting structure is equivalent to a spring k and a damper
c, as shown in Figure 8.2. The machine is subjected to a sinusoidal force F0 sin�t,
which can be an externally applied load or due to imbalance in the machine.

x(t)

Supporting

Structure

F0 sin�t

c

m

k

Machine

Supporting Structure

Mathematical
Modeling

Figure 8.2 A machine mounted on a structure.

From Chapter 5 on the response of a single degree-of-freedom system, it is well
known that when the excitation frequency � is close to the natural frequency of
the system ω0 =√

k/m, vibration of large amplitude occurs. In particular, when
the system is undamped, i.e., c = 0, resonance occurs when �=ω0, in which the
amplitude of the response grows linearly with time.

To reduce the vibration of the system, a vibration absorber or a tuned mass
damper (TMD), which is an auxiliary mass-spring-damper system, is mounted
on the main system as shown in Figure 8.3(a). The mass, spring stiffness, and
damping coefficient of the viscous damper are ma, ka, and ca, respectively, where
the subscript “a” stands for “auxiliary.”

To derive the equation of motion of the main mass m, consider its free-body
diagram as shown in Figure 8.3(b). Since mass m moves upward, spring k is
extended and spring ka is compressed.

❧ Because of the displacement x of mass m, the extension of spring k is x. Hence
the spring k exerts a downward force kx and the damper c exerts a downward
force cẋ on mass m.

❧ Because the mass ma also moves upward a distance xa, the net compression in
spring ka is x−xa. Hence the spring ka and damper ca exert downward forces
ka(x−xa) and ca(ẋ− ẋa), respectively, on mass m.

Newton’s Second Law requires

↑ mẍ = ∑
F : mẍ = −kx − cẋ − ka(x−xa)− ca(ẋ− ẋa)+ F0 sin�t,
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x(t)

(a) (b)

Vibration
Absorber

xa(t)

ka(xa−x)

ka(x−xa)

kx cx

F0 sin�t

c

m

k

ca

ma

ka x(t)

xa(t)

F0 sin�t

c

m

k

ca

ma

ka

ca(xa−x)

ca(x−xa)

Figure 8.3 A vibration absorber mounted on the main system.

or
mẍ + (c +ca) ẋ + (k+ka)x − caẋa − kaxa = F0 sin�t.

Similarly, consider the free-body diagram of mass ma. Since mass ma moves
upward a distance xa(t), spring ka is extended. The net extension of spring ka is
xa −x. Hence, the spring ka and damper ca exert downward forces ka(xa −x) and
ca(ẋa − ẋ), respectively. Applying Newton’s Second Law gives

↑ ma ẍa = ∑
F : ma ẍa = −ka(xa −x)− ca(ẋa − ẋ),

∴ maẍa + caẋa + kaxa − caẋ − kax = 0.

The equations of motion can be written using the D-operator as[
mD2 + (c +ca)D + (k+ka)

]
x − (ca D +ka)xa = F0 sin�t,

−(ca D +ka)x + (ma D2 +ca D +ka)xa = 0.

Because of the existence of damping, the responses of free vibration (com-
plementary solutions) decay exponentially and approach zero as time increases.
Hence, it is practically more important and useful to study responses of forced
vibration (particular solutions). The determinant of the coefficient matrix is

φ(D) =
∣∣∣∣∣
mD2 + (c +ca)D + (k+ka) −(ca D +ka)

−(ca D +ka) ma D2 +ca D +ka

∣∣∣∣∣
= [

mD2 + (c +ca)D + (k+ka)
]
(ma D2 +ca D +ka)− (ca D +ka)

2

= [
(mD2 +k)(ma D2 +ka)+ kama D2 + cac D2]

+ [
ca(mD2 +k)+ c(ma D2 +ka)+ cama D2]D,
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Example 9.8 9.8

Obtain series solution about x = 0 of the equation

2x2 y ′′ + x (2x + 1)y ′ − y = 0.

The differential equation is of the form

y ′′ + P(x)y ′ + Q(x)y = 0, P(x)= 2x+1

2x
, Q(x)= − 1

2x2 .

Obviously, x = 0 is a singular point. Note that

x P(x) = 2x+1

2
= 1

2 + x + 0 ·x2 + 0 ·x3 + · · · =⇒ P0 = 1
2 ,

x2Q(x) = − 1
2 = − 1

2 + 0 ·x + 0 ·x2 + 0 ·x3 + · · · =⇒ Q0 = − 1
2 .

Both x P(x) and x2Q(x) are analytic at x = 0 and can be expanded as power series
that are convergent for |x|<∞. Hence, x = 0 is a regular singular point.

The indicial equation is α(α−1)+αP0 +Q0 = 0:

α(α−1)+ α · 1
2 − 1

2 = 0 =⇒ (α+ 1
2 )(α−1) = 0 =⇒ α1 = 1, α2 = − 1

2 .

Thus the equation has a Frobenius series solution of the form

y1(x) = xα1

∞∑
n=0

an xn =
∞∑

n=0
an xn+1, a0 �= 0, 0<x<∞,

where an, n = 0, 1, . . . , are constants to be determined. Differentiating with respect
to x yields

y′
1(x) =

∞∑
n=0

(n+1)an xn, y′′
1(x) =

∞∑
n=1

(n+1)nan xn−1.

Substituting y1, y′
1, and y′′

1 into the differential equation results in

∞∑
n=1

2(n+1)nan xn+1 +
∞∑

n=0
2(n+1)an xn+2 +

∞∑
n=0

(n+1)an xn+1 −
∞∑

n=0
an xn+1 = 0.

Changing the indices of the summations

∞∑
n=1

2(n+1)nan xn+1 n+1 = m==⇒
∞∑

m=2
2m(m−1)am−1 xm,

∞∑
n=0

2(n+1)an xn+2 n+2 = m==⇒
∞∑

m=2
2(m−1)am−2 xm,

∞∑
n=0

nan xn+1 n+1 = m==⇒
∞∑

m=1
(m−1)am−1 xm,
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one obtains

∞∑
n=2

[
2n(n−1)an−1 + 2(n−1)an−2

]
xn +

∞∑
n=1

(n−1)an−1 xn = 0.

For this equation to be true, the coefficient of xn, n = 1, 2, . . . , must be zero. For
n = 1, one has

0 ·a0 = 0 =⇒ a0 �= 0 is arbitrary; take a0 = 1.

For n � 2, one has

2n(n−1)an−1 + 2(n−1)an−2 + (n−1)an−1 = 0 =⇒ an−1 = − 2an−2

2n+1
.

Hence,

n = 2 : a1 = − 2a0

2 ·2+1
= − 2

5
,

n = 3 : a2 = − 2a1

2 ·3+1
= (−1)2 22

7 ·5
,

...

n+1 : an = − 2an−1

2(n+1)+1
= (−1)n 2n

(2n+3)(2n+1) · · · 5
= (−1)n 3 ·2n

(2n+3)!! ,

where (2n+3)!!= (2n+3)(2n+1) · · · 5 ·3 ·1 is the double factorial. The first
Frobenius series solution is

y1(x) =
∞∑

n=0
an xn+1 =

∞∑
n=0

(−1)n 3 ·2n

(2n+3)!! xn+1, 0<x<∞.

Since α1−α2 = 3
2 , according to Fuchs’ Theorem, a second linearly independent

solution is also a Frobenius series given by

y2(x) = xα2

∞∑
n=0

bn xn =
∞∑

n=0
bn xn− 1

2 , b0 �= 0, 0<x<∞,

y′
2(x) =

∞∑
n=0

(
n− 1

2
)

bn xn− 3
2 , y′′

2(x) =
∞∑

n=0

(
n− 1

2
)(

n− 3
2
)

bn xn− 5
2 .

Substituting y2, y′
2, and y′′

2 into the differential equation leads to

2x2
∞∑

n=0

(
n− 1

2
)(

n− 3
2
)

bn xn− 5
2 + (2x2 +x)

∞∑
n=0

(
n− 1

2
)

bn xn− 3
2 −

∞∑
n=0

bn xn− 1
2 = 0,

∞∑
n=0

{[
2
(
n− 1

2
)(

n− 3
2
) + (

n− 1
2
) − 1

]
bn xn− 1

2 + 2
(
n− 1

2
)

bn xn+ 1
2

}
= 0.
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A schematic diagram is shown in Figure 10.3 to illustrate the procedure of the
improved Euler predictor-corrector method.

Improved Euler Predictor-Corrector Method

At the (i+1)th step, i = 0, 1, 2, . . . ,

(1) k1 = f(xi, yi) Slope at the left end point xi

(2) Predictor yP
i+1 = yi + hk1 Predict y at xi+1 using the Euler method

(3) k2 = f(xi+1, yP
i+1) Predicted slope at the right end point xi+1

(4) k = k1 + k2

2
The averaged slope is used on [xi, xi+1]

(5) Corrector yi+1 = yi + hk Improved Euler point

y

xi+1 xi+2xi

yi

Slope k1= f(xi , yi)

 Average slope k=  

x

Exact value
y(xi+1)

2

3

4

1

Improved Euler point 
yi+1=yi +hk

Slope k2= f(xi+1, yi+1)

k1+k2
2

5

Exact solution

h h

Euler point yi+1=yi +hk1
P

P

Figure 10.3 Improved Euler predictor-corrector method.

Example 10.3 10.3

For the initial value problem y ′ = x y2 −y, y(0)= 0.5, determine y(1.0) using the
improved Euler method and the improved Euler predictor-corrector method with
h = 0.5.

(1) The improved Euler method is, with f(x, y)= x y2 − y and h = 0.5,

yi+1 = yi + 1
2 h

[
f(xi, yi)+ f(xi+1, yi+1)

]
.

The results are as follows

i = 0 : x0 = 0, y0 = 0.5,
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11.4.3 One-Dimensional Transient Heat Conduction

Consider a wall or plate of infinite size and of thickness L, as shown in Figure
11.7, which is suddenly exposed to fluids in motion on both of its surfaces. The
coefficient of thermal conductivity of the wall or plate is k. Suppose the wall has an
initial temperature distribution T(x, 0)= f(x). The temperatures of the fluids and
the heat transfer coefficients on the left-hand and right-hand sides of the wall are
Tf 1, h1 and Tf 2, h2, respectively.

∞

∞

h1, Tf1 h2, Tf2

T(x,0)= f(x)

x=Lx=0 x

L

k, α

Figure 11.7 An infinite wall.

Because the wall or plate is infinitely large, the heat transfer process is simplified
as one-dimensional (in the x-dimension).

The differential equation (Fourier’s equation in one-dimension), the initial con-
dition, and the boundary conditions of this one-dimensional transient heat con-
duction problem are

∂T

∂t
= α

∂2T

∂x2 , 0 � x � L, t � 0,

Initial Condition (IC) : T = f(x), at t = 0,

Boundary Conditions (BCs) : k
∂T

∂x
= h1 (T −Tf 1), at x = 0,

−k
∂T

∂x
= h2 (T −Tf 2), at x = L.

This mathematical model has many engineering applications.

❧ The infinite wall is a model of a flat wall of a heat exchanger, which is initially
isothermal at T = T0. The operation of the heat exchanger is initiated at t = 0;
two different fluids of temperatures Tf 1 and Tf 2, respectively, are flowing
along the sides of the wall.

❧ The infinite wall is a model of a wall in a building or a furnace. One side of the
wall is suddenly exposed to a higher temperature Tf 1 due to fire occurring in
a room or the ignition of flames in the furnace.
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Example 12.23 — Dynamical Response of Parametrically Excited System 12.23

Consider the parametrically excited nonlinear system given by

ẍ + β ẋ − (1+μ cos�t)x + αx3 = 0.

Examples of this equation are found in many applications of mechanics, especially
in problems of dynamic stability of elastic systems. In particular, the transverse
vibration of a buckled column under the excitation of a periodic end displacement
is described by this equation. The system is called parametrically excited because
the forcing term μ cos�t appears in the coefficient (parameter) of the equation.

It is a good practice to put restart at the beginning of each program so that
Maple can start fresh if the program has to be rerun.
>restart:

>with(plots): Load the plots package.

>ODE:=diff(x(t),t$2)+beta*diff(x(t),t)-(1+mu*cos(Omega*t))*x(t)

+alpha*x(t)^3=0: Define the ODE.

>ICs:=x(0)=0,D(x)(0)=0.1: Define the ICs: x(0)= 0, ẋ(0)= 0.1.

Periodic Motion (μ= 0.3)
>alpha:=1.0: beta:=0.2: Omega:=1.0: mu:=0.3: Assign the parameters.

Solve the system numerically using dsolvewith option numeric.
>sol:=dsolve({ODE,ICs},x(t),numeric,maxfun=1000000):

Plot the time series x(t) versus t , (x1 = x). Figure 12.1(a)
>odeplot(sol,[t,x(t)],t=0..500,numpoints=10000,labels=["t","x1"],

tickmarks=[[0,100,200,300,400,500],[-1.5,-1,-0.5,0,0.5,1,1.5]]);

Plot the time series ẋ(t) versus t , (x2 = ẋ). Figure 12.1(b)
>odeplot(sol,[t,D(x)(t)],t=0..500,numpoints=10000,labels=["t","x2"],

tickmarks=[[0,100,200,300,400,500],[-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,

0.6,0.8]]);

Plot the phase portrait ẋ(t) versus x(t). Figure 12.1(c)
>odeplot(sol,[x(t),D(x)(t)],t=0..500,numpoints=10000,view=[-1.8..1.8,

-1.0..1.0], tickmarks=[[-1.8,-1.2,-0.6,0.6,1.2,1.8],[-1,-0.75,-0.5,

-0.25,0.25,0.5,0.75,1]],axes=normal,labels=["x1","x2"]);

When μ= 0.3, after some transient part, the response of the systemwill settle
down to periodic motion.

Chaotic Motion (μ= 0.4)
>alpha:=1.0: beta:=0.2: Omega:=1.0: mu:=0.4: Assign the parameters.
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Figure 12.2 Chaotic motion.

Plot the time series ẋ(t) versus t . Figure 12.2(b)
>odeplot(sol,[t,D(x)(t)],t=0..500,numpoints=10000,labels=["t","x2"],

tickmarks=[[0,100,200,300,400,500],[-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,

0.6,0.8]]);

Plot the phase portrait ẋ(t) versus x(t). Figure 12.2(c)
>odeplot(sol,[x(t),D(x)(t)],t=0..500,numpoints=10000,view=[-1.8..1.8,

-1.0..1.0], tickmarks=[[-1.8,-1.2,-0.6,0.6,1.2,1.8],[-1,-0.75,-0.5,

-0.25,0.25,0.5,0.75,1]],axes=normal,labels=["x1","x2"]);
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Maple, 517
Dirac delta function, 254–256
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Laplace transform, 256
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Maple, 510
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generalized, 331, 349
Maple, 510

Error analysis, 434
Euler’s formula, 147, 149
Euler constant, 413
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Euler method, 432–433, 445, 449, 452
Exact differential equation, 31–33, 76
Example

ascending motion of a rocket, 421
automobile ignition circuit, 209
bar with variable cross-section, 121
beam-column

Laplace transform, 280
beams on elastic foundation, 284, 288
body cooling in air, 87
buckling of a tapered column, 418

Maple, 513
bullet through a plate, 94
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chain moving, 123, 125
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dynamical response of parametrically excited

system, 518
ferry boat, 120
float and cable, 107
flywheel vibration, 227
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Lorenz system, 522
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particular moving in a plane, 300
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second-order circuit

Laplace transform, 275
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single degree-of-freedom system under
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two degrees-of-freedom system, 357
vehicle passing a speed bump, 213

Laplace transform, 272
vibration of an automobile, 362
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Excitation frequency, 202, 204, 208
Existence and uniqueness theorem, 12
Explicit method, 452
Externally applied force, 189, 191

F
Ferry boat problem, 120
Finned surface, 476–477, 488
First-order circuit, 113

problem, 111–112
First-order differential equation

Bernoulli, 58, 75
Clairaut, 67
exact, 31–33, 76
homogeneous, 20, 75
inspection, 45, 76
integrating factor, 31, 39–40, 76
integrating factor by groups, 48, 77
linear, 55, 75
Maple, 499
separation of variables, 16, 20, 75
solvable for dependent variable, 61, 77
solvable for independent variable, 61–62, 77
special transformation, 25, 77

Flexural motion of beam, 465
equation of motion, 465
forced vibration, 471

separation of variables, 471
free vibration, 466

infinitely many degrees-of-freedom system,
468

separation of variables, 466
Float and cable problem, 107
Flywheel vibration problem, 227
Forced vibration, 193

multiple degrees-of-freedom system, 346
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Laplace transform, 270, 278
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Fourier’s Law of Heat Conduction, 473
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Free vibration, 193
multiple degrees-of-freedom system, 344
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two-story shear building, 378
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G
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linear differential equation, 142
matrix method, 335, 350
method of operator, 312, 348
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GNU Scientific Library, 453
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Laplace transform, 249, 252
Maple, 507

Higher-order differential equation
dependent variable absent, 70, 77
immediately integrable, 68, 77
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I
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Improved Euler predictor-corrector method,

439, 446, 452
Impulse-Momentum Principle, 91, 125, 254, 422
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Inductance, 109
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Initial value problem, 10

numerical solution, 431
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J
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linear differential equation, 263
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second-order circuit, 275
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general solution, 142
Laplace transform, 263
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method of variation of parameters, 173,
181–182
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M
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517
cos, 506, 508, 510
exp, 506, 508–510
Heaviside, 508–509
ln, 504, 517
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parfrac, 507
polynom, 512, 514–517

cos, 499, 502, 509, 519
D, 506
(D@@n)(y)(a), 506
D(y)(a), 506

diff, 499–504, 506, 508–509, 514–516, 518–519,
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’formal_solution’, 515,–516
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Method of grouping terms, 34
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Method of operator
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polynomial, 166, 181
Shift Theorem, 164, 182
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first-order differential equation, 16, 20, 75
partial differential equation, 458, 492

Method of undetermined coefficients, 153, 181
exception, 159

Method of variation of parameters
linear differential equations, 173, 181–182
system of linear differential equations, 314, 334

Midpoint method, 441
Modal damping coefficient, 347
Modal frequency, 344, 378
Modal matrix, 345, 380
Mode shape, 344, 379–380, 468

orthogonality, 345, 380
Moment-curvature relationship, 219, 419, 465
Moment of inertia, 223, 228, 358, 362, 419, 465

Parallel Axis Theorem, 223, 228
Motion, 91
Multiple degrees-of-freedom system, 301, 344

damped forced vibration, 346
equations of motion, 303
orthogonality of mode shapes, 345
undamped forced vibration, 346
undamped free vibration, 344

N
NAG Library, 453
Natural circular frequency, 193, 195

damped, 194
undamped, 193

Natural frequency, 195, 204, 208
Natural purification in a stream, 114
Newton’s Law of Cooling, 87
Newton’s Second Law, 2, 91, 93, 95–96, 123, 190,

214, 224, 226, 301–302, 366–367, 465
Numerical Recipes, 453
Numerical solution, 431

average slope method, 437, 446, 453
backward Euler method, 436, 446, 449, 453
conditionally stable, 449
constant slope method, 432–433, 445
cumulative error, 435, 452–453
error analysis, 434
Euler method, 432–433, 445, 449, 452
explicit method, 452
forward Euler method, 432–433, 445, 452
GNU Scientific Library, 453
implicit method, 437–438, 453
improved Euler method, 437, 446, 449, 453
improved Euler predictor-corrector method,

439, 446, 452

IMSL Library, 453
local error, 434–435, 453
Maple, 453, 517
Mathematica, 453
Matlab, 453
midpoint method, 441
NAG Library, 453
Numerical Recipes, 453
predictor-corrector technique, 438
roundoff error, 434
Runge-Kutta-Fehlberg method, 517–518
Runge-Kutta method, 440

fourth-order, 443–444, 446, 452
second-order, 441–442, 446, 452

stability, 449, 451, 453
stepsize, 431, 453
system of differential equations, 445
trapezoidal rule method, 438
truncation error, 434–435, 453
unconditionally stable, 449
unstable, 449

O
Object falling in air problem, 95
Ohm’s Law, 108
Operator

D, 140, 162
inverse, 162
properties, 141

method, 162, 304
linear differential equations, 162, 181
polynomial, 166, 181
Shift Theorem, 164, 182
system of linear differential equations,

304–305, 307–308, 347–348
Theorem 1, 163, 182
Theorem 2, 164, 182
Theorem 3, 169, 182
Theorem 4, 171, 182

Ordinary differential equation, 6
Ordinary point, 396, 424
Orthogonality

mode shape, 380
sine and cosine functions, 470, 472, 482

Overdamped system, 199
Laplace transform, 279

P
Parallel Axis Theorem, 223, 228
Parallel circuit

RC, 110
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RL, 111
RLC, 209

Partial differential equation, 8, 457
separation of variables, 458, 492
simple, 457

Partial fractions, 259
cover-up method, 260
Maple, 507

Particular moving in a plane problem, 300
polar coordinates, 301
rectangular coordinates, 300

Particular solution, 8, 193, 200
linear differential equation, 142, 153, 181
matrix method, 334, 350

method of variation of parameters, 334
method of operator

linear differential equations, 162, 181
polynomial, 166, 181
Shift Theorem, 164, 182
system of linear differential equations,

307–308, 348
Theorem 1, 163, 182
Theorem 2, 164, 182
Theorem 3, 169, 182
Theorem 4, 171, 182

method of undetermined coefficients, 153, 181
exception, 159

method of variation of parameters
linear differential equations, 173, 181–182
system of linear differential equations, 314,

334
Period, 195
Phase angle, 195, 201
Piston vibration problem, 224
Power series, 391

convergence, 391
Maple, 512
operation, 392
radius of convergence, 391

Predictor-corrector technique, 438

R
RC circuit, 109
Reservoir pollution problem, 127
Resisting medium, 91
Resonance, 203–204, 208, 382–383
RL circuit, 109
RLC circuit, 209
Roundoff error, 434
Runge-Kutta-Fehlberg method, 517–518
Runge-Kutta method, 440

fourth-order, 443–444, 446, 452
second-order, 441–442, 446, 452

S
Second-order circuit, 213

Laplace transform, 275, 278
problem, 211, 275

Separation of variables method
first-order differential equation, 16, 20, 75
partial differential equation, 458, 492

Series circuit
RL, 110
RLC, 209
RC, 110

Series solution, 390
Bessel’s differential equation, 408, 418
Frobenius series, 403, 405, 425
Fuchs’ Theorem, 405
indicial equation, 404, 425
Legendre equation, 397
linear differential equation, 403
Maple, 512, 514
ordinary point, 394, 397
regular singular point, 403

Shear building
multiple story, 301
single story, 188–191
two-story, 377

forced vibration, 380
free vibration, 378

Shear force, 189–190, 302
Single degree-of-freedom system, 188, 191, 193

blast force
Laplace transform, 273
problem, 273

critically damped, 199
Laplace transform, 279

Laplace transform, 268, 278
blast force, 273
forced vibration, 270, 278
free vibration, 269, 278
sinusoidal excitation, 270

overdamped, 199
Laplace transform, 279

problem, 226
response, 193
sinusoidal excitation

Laplace transform, 270
problem, 270

undamped, 194, 204, 208
underdamped, 194, 200
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Laplace transform, 278
Singular point, 403

irregular, 403
regular, 403, 425

Singular solution, 19
Sinusoidal excitation, 200, 204
Special function

Maple, 512
Special transformation

first-order differential equation, 25, 77
Steady-state solution, 200
Stepsize, 431, 453
Stiff differential equation, 449–450, 453

Maple, 517
Stiffness, 189
Stream, 114
Suspension bridge, 97
System of differential equations

Maple, 509
numerical solution, 445

average slope method, 446
backward Euler method, 446
constant slope method, 445
Euler method, 445
forward Euler method, 445
fourth-order Runge-Kutta method, 446
improved Euler method, 446
improved Euler predictor-corrector method,

446
second-order Runge-Kutta method, 446

System of linear differential equations
complementary solution

complex eigenvalues, 328–329, 349
distinct eigenvalues, 326–327, 349
matrix method, 326, 350
method of operator, 304–305, 348
multiple eigenvalues, 330–331, 349

general solution
matrix method, 335, 350
method of operator, 312, 348

Laplace transform, 318, 348
matrix method, 325, 349
method of operator, 304, 347

characteristic equation, 305
particular solution

matrix method, 334, 350
method of operator, 307–308, 348
method of variation of parameters, 314, 334

T
Table

derivatives, 533
integrals, 534
inverse Laplace transform, 539
Laplace transform, 537
trigonometric identities, 531

Taipei 101, 371–372
Taylor series, 432, 440
Transient solution, 200
Trapezoidal rule method, 438
Trigonometric identities table, 531
Truncation error, 434–435, 453
Tuned mass damper (TMD), 366–367, 370–372
Two degrees-of-freedom system

problem, 357
shear building, 377

forced vibration, 380
free vibration, 378

U
Undamped system, 194, 204, 208
Underdamped system, 194, 200

Laplace transform, 278
Undetermined coefficients method, 153, 181

V
Variation of parameters method

linear differential equations, 173, 181–182
system of linear differential equations, 314, 334

Vehicle passing a speed bump problem, 213
Laplace transform, 272

Vibration, 188–191, 193, 213, 272, 301, 344, 357, 377,
468

Vibration absorber, 366–367, 370–372
Vibration of an automobile problem, 362
Viscous dashpot damper, 189

W
Water leaking problem, 126
Water tower problem, 220
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