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Abstract

A high or very high consequence dam is a large dam whose failure would have large
consequences to life and/or property downstream. Knowledge of the magnitudes of extreme
floods and their associated annual exceedence probabilities (AEP) are needed to determine
the risk that such a dam might fail.

Traditionaly, the largest “ physically possible’ precipitation event (the Probable
Maximum Precipitation, PMP) and its associated flood event (the Probable Maximum Flood,
PMF) have been calculated with a combination of statistical and meteorological techniques
developed by the World Meteorological Organization (WMO). These techniques work
reasonably well in flatter terrain, but may occasionally produce unrealistic resultsin
mountainous terrain. This research focuses on improving safety studies for hydrologic
structures such as dams, by using physically-based techniques to estimate the PMP and PMF
and to calculate the associated AEP. This research contributes in three areas. Thefirst area
isin using an atmospheric model to estimate maximum precipitation. Secondly, the research
demonstrated that simulated streamflow may be used to generate frequency curves and their
associated confidence limits. The final contribution was in demonstrating that the frequency
statistics indicated that the traditional PM P overestimates the PMF, while the atmospheric
model estimates were more in line with accepted AEPs for a PMF.

This research was performed on the upper Columbia River Basin in southwestern
British Columbia. The basin is an apine basin, with annual precipitation varying from 2500
mm on the west to 500 mm on the east. Severe precipitation events generally begin over the
Pacific Ocean, but are somewhat moderated by the intervening mountain ranges. There are
several hydroelectric and flood-control dams operated by BCHydro on the Canadian portion
of theriver. One of these, Mica Dam, was used as the focus of this research.

The Mesoscale Compressible Community (MC2) model (Recherche en Prévision

Numeérique) is an atmospheric model designed to forecast weather at afine resolution. The
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MC2 model was used to calculate a physically-based estimate of the maximum,
atmospherically possible, precipitation (referred to as the Probable Maximum Storm, PMS).
The numerical experiments with this model suggested that an atmospheric maximum
precipitation does in fact exist, and it can be calculated with the model. The method isless
subj ective than the traditional WM O method and not subject to the same issues of data
quality. Also, the model accountsimplicitly for topography in its calculation of precipitation.
The model determined a maximum 24-hour precipitation of 73.4 mm as an average over the
Mica Dam basin (this number is preliminary, further research into the atmospheric model
may result in alarger number). This PM S produced by the atmospheric model was larger
than any previously observed precipitation event, but lower than the PMP produced with the
WMO method, indicating that the WM O method may overestimate the PMP in mountainous
terrain. The MC2 model is recommended for devel oping the maximum atmospherically
possible precipitation, but further meteorological research is recommended to ensure that all
of the assumptions used in MC2 and the PM S module are suitable for this purpose. The PMS
and the PM P were both used as input to the physically-based hydrological model
WATFLOOD/SPL.

A flood frequency curve was devel oped to assess the AEP to the floods generated by
the PMS and the PMP. The AEP were used to compare the relative magnitudes of the floods
caused by the PM S and PMP, and determine if they were within the presumed probability
range of the PMF (10 to 10°®).

The derivation of afrequency curve is dependent upon the time series length of the
data, which is often too short for meaningful extrapolation to the return intervals for a PMF.
In this research, historical meteorological data were available and used in a hydrological
model to develop along, deterministically ssimulated streamflow time series of 95 years. The

use of the simulated data decreased the sampling uncertainty due to a short time series. The



simulated data generated frequency curves that were similar to frequency curves derived with
observed data.

However, the simulated streamflow data are based on uncertain atmospheric variables
that are transformed by an atmospheric model and by WATFLOOD/SPL. Thisthesis
addresses the consequence of the parameter uncertainty in WATFLOOD/SPL. The 95%
confidence limits for the frequency curves were derived through a Monte Carlo analysis of
the parameter variation. Aninvestigation into the behavior of the model showed that the
parameter set within WATFLOOD/SPL was robust and there was only one optimum
parameter set within the limits of the parameter space. Due to time constraints, a method to
use the variation in afive-year time series as an analogue for the variation in the full time
series was developed. The confidence limits grew wider as the return period increased,
although further research into the behavior of the parameters may help reduce the width of
the confidence limits.

The frequency curve and its confidence limits were used to estimate the range of
return interval of the floods produced by the PM S and the PMP. These return intervals of the
floods were used to determine if the floods were consistent with the PMF. The 100-year
snowpack, the 100-year melting temperature sequence and the PMP together generated a
flood with an AEP that was much smaller than the probability range for aPMF (<<10°7).

The 100-year snowpack, the 100-year melting temperature sequence and the PM S together
generated a flood with an AEP that was aso smaller than the probability range for aPMF
(<107, however, it was closer to the presumed probability range than the combination with
the PMP. This suggests that the PMS may be amore realistic estimate of maximum
precipitation for PMF estimation, and is still somewhat conservative.

This research has improved the current methods for safety analysis of hydrological

structures, and recommends the use of physically-based methods to derive PMPs and PMFs.
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Comparing the PMF estimates with frequency curves should help validate results and provide

ahigher level of confidence in extreme rain produced flooding.
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1. Introduction

A high-consequence dam is a large dam whose failure would have large
consequences to life and/or property downstream. The magnitudes of extreme floods and
their associated annual exceedance probabilities (AEP) are necessary to ensure that such a
damissafe. Traditionaly, the largest “physically possible’ precipitation event (the Probable
Maximum Precipitation, PMP) and its associated flood event (the Probable Maximum Flood,
PMF) have been calculated with a combination of statistical and meteorological techniques.
These techniques have occasionally produced unredlistic results (Jarrett and Tomlinson,
2000). Recently, however, numerical weather prediction (NWP) models and hydrological
model s have become more robust and can now be used together to compute these eventsin a
physically-based manner. The probability of exceedance of this flood, which can be
estimated by various means, can be used to help evaluate the assumptions and the magnitude
of the PMP and PMF. The length of the time series of the observed data limits these
methods. NWP and hydrological models can be used in conjunction to increase the time
series, and so improve the frequency curve. This research focuses on improving safety
analysis for hydrologic structures by using physically-based techniques to estimate the PMP
and PMF and calcul ate the associated AEP.

Many dams are built for flood control purposes, and they must be able to store
extraordinary floods (usually the PMF). For instance, should a dam fail above alarge city,
there would be extreme damage to property, and potentially substantial loss of life. Such
high-risk dams are designed to withstand the Probable Maximum Flood (PMF). The PMF, as

defined by the U.S. Federal Energy Regulatory Commission (1993), is "the flood that may be



expected from the most severe combination of critical meteorological and hydrologic
conditions that are reasonably possible in the drainage basin under study."

The largest theoretical flood varies with season, watershed size and location, and
watershed topography. Typically, the PMF has not included climate change factors, although
these may become significant in the future. In Canada, a spring flood is often associated with
snowmelt. A thunderstorm or afrontal passage may cause a summer or fall flood. Inthe
Canadian Rocky Mountains, snow remains well into the summer and the largest flood may
result from a combination of snowmelt and a summer storm occurring together. When
multiple flood scenarios exist, they al must be ssimulated. The PMF is defined as the largest
of al of these flood events. The dam istested to ensure that the PMF may be passed safely
in all seasons.

The estimation of the probable maximum flood involves several tasks. Thefirst task
involves identifying the possible risk scenarios for the dam. For instance, one risk scenario
may include alarge amount of snowmelt runoff and a large precipitation event occurring as
the reservoir fills. Therefore, a“maximum” snow accumulation, a“fastest” melting
temperature sequence, and a“maximum” precipitation are al required for thisdam. The
second task involves estimation of each of these quantities. The maximum precipitation,
referred to as the Probable Maximum Precipitation (PMP), isthe most difficult of these three
guantities to estimate. The estimation techniques are partly statistical and partly
meteorological. It isdifficult to ensure that the estimated PMP is physically possible (i.e.
that the true atmospheric limit has been found, but not surpassed). The third task involves

hydrological simulation of each risk scenario. The hydrologica conditions that generate the



largest possible flood are used. Finally, simulations are used to pass the floods through the
dam to test the safety of the dam.

The estimation of the PMF uses historical data. Therefore, it isre-estimated
periodically, as more data are collected. Occasionally, the revised PMF will be significantly
higher. For example, Jarrett and Tomlinson (2000) described a situation where the revised
PMF for Olympus Dam in Colorado was almost four times larger than the original estimate.
When this occurs, the dams may fail the safety check, leading to expensive spillway re-
design and re-construction. Thereis, therefore, a considerable amount of concern about the
techniques for PMF estimation. According to the National Research Council (NRC, 1988),
there is continuing interest in extreme or rare floods (probability of exceedance of 107 to
10°) in the hydrologic and engineering communities for the purposes of planning and design
of structures such asdam. The concerns are often focused on the uncertainty of the PMP
(Jarrett and Tomlinson, 2000).

A World Meteorological Organization manua (WMO, 1986) describes the techniques
to estimate the PMP. The manual explains that the method for estimating the PMP cannot be
standardized and may need to be modified for a particular region (WMO, 1986, p. 4). The
techniques depend on the size and location of the basin of interest, the amount and quality of
data available at the site, and meteorological conditions that produce severe precipitation
events. These problems are particularly severe in orographic regions, such as the Rocky
Mountains. As such, the manual states that the PMP must be considered an estimate and that
its accuracy cannot be assessed in an objective manner (WMO, 1986, p. 3).

Due to these concerns, BCHydro invited the University of Waterloo and severa other

groups to work in a collaborative project to develop physically-based estimation techniques



for the PMF. The use of physically-based estimation techniques alleviates these problems by
using realistic atmospheric and hydrologic models to estimate severe storms and floods. The
Columbia River basin was used as the research basin. There are four large dams operated by
BCHydro on thisriver. Thisresearch focused on Mica Dam in particular, which has a
drainage area of approximately 20,000 km?. It is the most upstream dam, and the river is
unregulated above Mica. The basin isdescribed in greater detail in Chapter 2.

The Meso-scale Compressible Community (MC2) model (Benoit, et al., 1997a) was
used in conjunction with the Probable Maximum Storm (PMS) module (Benoit, et al., 1997b)
to develop a physically-based estimate of the largest physically possible storm. The models
were developed at Recherche en Prévision Numérique (RPN) in Montreal, Quebec. The
PM S module was developed for the Columbia River basin as part of the collaborative
agreement with BCHydro. (Herein, the MC2-PMS estimate of the largest possible stormis
termed the Probable Maximum Storm, PMS, to avoid confusion with the PMP estimate
calculated with the WMO (1986) method.) The storms are calculated by creating a
theoretical perturbation (pressure and temperature waves in the atmosphere) in the Pacific
Ocean. The perturbations are controlled by parameters that can assume arange of realistic
values. To derivethe largest atmospherically possible storm, the parameters were varied to
change the characteristics of the pressure and temperature waves. The atmospheric physics
as calculated by the MC2 model require that the storm be physically possible. Thisanalysis
was a preliminary investigation of the PMS module, and so the analysis was limited to the
characteristics of the pressure and temperature waves. Further analysisisrequired to

determine the effect of changesin other parameters.



The WATFLOOD/SPL distributed, physically-based hydrological model (Kouwen, et
al., 2000a) was used to generate the flood that resulted from the PMS. WATFLOOD/SPL
computes streamflow on a catchment basis but calculates runoff on agrid basis, allowing it to
use NWP model data asinput. The model simulates the hydrological budget, and so reduces
the uncertainty associated with storm to flood transformation. The flood that resulted from
the PM S was compared to the flood that resulted from the PMP (at Mica Dam). Inthisway,
a physically-based estimate of the PMF was derived.

Risk analysis also requires an estimate of the frequency of aflood. Smith (1998)
argued that the PMF has a frequency, which can be used to make informed policy decisions.
The estimation of flood frequency curves, especially where measurements are limited, has
been a subject of extensive research. The accuracy of flood frequency curvesis generally
low when time series are short and observation networks are sparse. Regionalization
methods (e.g. Hosking and Wallis, 1997) have been devel oped to improve the estimation of
frequency curves when time series are short. These methods are of limited use when the
observation network is sparse, and therefore regional frequency analysisis not a solution for
many regions in Canada and the world. The problem of sparse observation networks can be
solved with the use of ssimulated streamflow data. Data from atmospheric models and
distributed hydrological models could be used to augment and/or replace the observed data.
The data may be replaced when there is reason to doubt the accuracy of the observed data.

Thisisthe approach taken in thisthesis. This concept is not a new concept (see, for
example, Lamb, 1999), however, this application uses an atmospheric model applied for an
unusually long period, longer than the observed streamflow record. When along time series

of simulated streamflow data are used in regional frequency analysistheresultisa



potentially more accurate frequency curve in spite of uncertainty in the modeling steps. This
research explored this possibility.

There are 32 Water Survey of Canada (WSC) streamflow observation stationsin the
Columbia River basin and four dams operated by BCHydro, with an average observed time
series of 34 years (with arange from 5 to 91 years). In contrast, background meteorol ogical
data were available for a period of 96 years. The High-Resolution Boundary Layer (HRBL)
model (Danard, 1996b) used this meteorological datato calculate gridded temperature and
precipitation data over the Columbia River basin for the years 1899 to 1994, inclusive (96
years). These datawere used in the WATFLOOD/SPL model to calculate a 96-year
simulated streamflow time series. These data were used to improve the estimate of the
regional frequency curve for the MicaDam. First, however, the use of the ssmulated data to
estimate frequency curves was validated. Secondly, the regional flood frequency analysis
method (Hosking and Wallis, 1997, as modified by Schaefer, 1990) was used to generate a
flood frequency curve. Thirdly, a method was devel oped to determine the confidence limits
for the frequency curve developed from simulated streamflow. For the second and third
steps, the regiona analysis was performed for the Mica Dam reservoir, so that the PMF flows
for the PMS and PMP precipitation could be compared. In thisway, the use of along time
series of simulated streamflow to derive frequency curves was investigated.

To validate the use of ssimulated streamflow data to estimate frequency curves,
individual frequency curves for each WSC station and BCHydro dam were calculated for
each data set. Therefore, observed and simulated streamflow frequency curves were
available for comparison at 36 locations within the domain. Frequency curves derived from

the ssmulated streamflow were similar to the frequency curves derived from observed



streamflow, and the longer time series improved the frequency curve estimation for high-
flow, low-probability floods.

The flood frequency curve was generated with the regional flood frequency analysis
method (Hosking and Wallis, 1997). The method increases accuracy of frequency curves by
“trading space for time.” That is, data are pooled from a number of locations and used to
calculate the frequency curves. Therefore, the effective time series length increases. The
method involves establishing a set of homogeneous regions, finding a suitable frequency
distribution, and then fitting the frequency distribution and cal cul ating the frequency curve at
the site of interest. This method results in discontinuity between regions, leading to
difficulties with establishing the frequency curves at an ungauged location. Schaefer (1990)
developed a method to remove the discontinuity between regions and improve the L-moment
estimates for precipitation data. Daviau, et al. (2000) used a similar method for streamflow:
relationships between geo-statistical data and the L-moment estimates to derive smooth
gpatialy varying L-moments estimates. This research also developed rel ationships to
describe the spatial variation in L-moments. physiographic data were used to describe the
gpatial variation in L-moment statistics for streamflow. The use of the Schaefer (1990)
method improved the estimate of the simulated frequency curve, as it matched the observed
frequency curve more closely than the Hosking and Wallis simulated frequency curve.

Simulated streamflow data contain modeling uncertainty, and are therefore less
certain than observed streamflow data. The Hosking and Wallis (1997) method includes a
method to develop confidence limits for the frequency curve, however, the method assumes
that the data contain only statistical uncertainty (e.g. due to sample size), and it was therefore

unusable for modeling uncertainty. A method to develop the confidence limits for simulated



streamflow from the WATFLOOD/SPL model was developed. A Monte Carlo analysiswas
performed on the WATFLOOD/SPL model to devel op the modeling uncertainty due to the
model parameters. The Monte Carlo allowed the parameters to vary within their physically-
possible ranges, and the resulting range of the peak flow was developed. The range of peak
flow for each station was used to develop confidence limits for each station, which were then
merged to create regional confidence limits. The regional confidence limits were applied to
the regional frequency curve for Mica Dam.

The regional flood frequency curve based on the simulated streamflow was used to
assign annual exceedance probabilities to the floods generated by the PM S and the PMP.
The confidence limits for the frequency curve were used to compare the rel ative magnitudes
of the PMS and PMP, and determine their suitability for use in calculating the PMF.

In thisway, the techniques for estimating the PMP and PMF were improved through
the use of physically-based atmospheric and hydrologic models, and the flood frequency
curves were improved through the use of along simulated streamflow time series. These
tools allow for improved risk analysis for dams.

7.5 Objectives

In summary, the main objective of this research was to develop physically-based
techniques for estimating the PMP and the PMF, and to improve the flood frequency curves
so that annual exceedance probabilities for the PMF could be defined. The contributions of
this research are:

Investigated the use of an atmospheric model (MC2-PMS) to derive an extreme
precipitation estimate, and derived the Probable Maximum Storm (subject to verification

by meteorologists).



Used the Probable Maximum Storm in a distributed hydrological model
(WATFLOOD/SPL) to calculate the corresponding flood.

Improved the flood frequency curve through the use of along simulated time series of
streamflow, and through the application of the Schaefer (1990) method.

Examined the effect of model parameters on the range of output for extreme events from
a hydrological model (WATFLOOD/SPL), and developed a method to derive confidence
limits for flood frequency curves calculated from simulated streamflow data.

The remainder of thisthesisis organized as follows: the study areais described in
Chapter 2, the background information is presented in the literature review in Chapter 3, the
Probable Maximum Storm and Probable Maximum Flood are derived in Chapter 4, and the
improvements to the flood frequency curve are described in Chapter 5. Chapter 6 uses the
flood frequency curve to compare the relative magnitudes of the PMS and the PMP and their
effect on the PMF. Finally, Chapters 7 and 8 present the Conclusions and Recommendations

from this research.



2. Study Area

This research was performed for the Columbia River Basin within southeastern
British Columbia. This location was chosen for several reasons. There were sufficient data
to alow the atmospheric and hydrologic models to be developed and calibrated for this basin.
The HRBL model (Danard, et al., 1996b) was available to calcul ate precipitation and
temperature for a 96-year time period over the entire basin. The MC2-PMS (Benoit, et al.,
1997a and 1997b) model was developed and calibrated for this basin so that extreme storms
could be calculated. Finally, there were sufficient observed streamflow datain and near the
basin to alow the hydrological model WATFLOOD/SPL to be calibrated.

The basin islocated in the Rocky Mountain Range, and has a drainage area of
approximately 50,000 km?. The river begins at Columbia L ake and flows north-west for
approximately 330 km through the Rocky Mountain trench before veering south to go
through the states of Washington and Oregon, as can be seen in the 30-arcsecond digital
elevation model (DEM) of the basin (shown in Figure 2-1). The locations of Golden, Mica
Dam, Revelstoke Dam, and Castlegar are shown on theimage. Theriversare also
superimposed on the DEM. The lighter shades indicate higher elevations; the highest peaks
in the basin are approximately 3000 m above sea level, while the lowest elevations are
approximately 400 m. The large elevation range of this basin complicates the normal PMP

estimation procedures.
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Figure 2-1 - Digital Elevation M odel for the Columbia River Basin (GTOPO30)

Most of the storms that affect British Columbia develop in the Pacific Ocean.
However, the Columbia River Basin is sheltered from the ocean by several mountain ranges,
and is therefore comparatively drier than the coastal areas of British Columbia. The PMPis
the maximum summer or fall storm (which would occur when the dam reservoirs are at or
near full). A winter storm would fall as snow (and therefore affect the PMF through the
depth of the snowpack). A spring storm would occur before snowmelt hasfilled the dam

reservoirs, and could be controlled operationally. Summer storms that begin in the Pacific
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tend to travel northward (along the mountain ranges) as opposed to eastward (across the
mountain ranges). Storms can only travel eastward if a high pressure system already existsin
the north (Pellerin, 2000, personal communication). These storms can be very severein the
Columbia River Basin. One such storm occurred on July 11-13, 1983. This storm beganin
the Pacific Ocean, and affected mainly the northern portion of the basin.

The mean annual precipitation in the basin ranges from 500 to 2500 mm. Thereis
more precipitation in the western half of the basin, and lower precipitation in the eastern
portion. Thisvariation is due mainly to the orographic effects of the mountains. The July
mean temperature for the areais 10 to 20 °C, while the January mean temperatureis-20 to
-10 °C (The Cartographic Department of the Clarendon Press, 1977). Approximately half of
the precipitation falls during the winter as snow.

There are 32 streamflow stations operated by Water Survey of Canada on the
Canadian portion of thisriver. Figure 2-2 shows amap of the stations, where the streamflow
stations are indicated by black dots. The map also shows the locations of the four major
BCHydro dams. The Mica Dam has a drainage area of approximately 20,000 km? and is
farthest upstream. Above this point, the river is unregulated. The Mica Dam is situated just
south of where the river exits the Rocky Mountain Trench. Revelstoke Damis
approximately 130 km south of Mica Dam and has alocal drainage area of approximately
4000 km?. Keenleyside Dam is located approximately 200 km further south, with alocal
drainage area of approximately 8000 km?. Keenleyside Dam controls most of the river
discharge that enters the United States. Duncan Dam is located on atributary of the
Columbia River (Kootenay River, which joins the Columbia River south of Keenleyside

Dam), and has a drainage area of approximately 2000 km?.
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Figure 2-2 — Location of Streamflow Stationsand Major Damsin the Columbia River
basin (Fisheries and Environment Canada, British Columbia Active Hydrometric

Stations, December 1977)

Table 2-1 lists the 32 streamflow stations with their WSC number, name, and years of
operation, and the four BCHydro dams with the numbers of years of reservoir inflow data
used in thisresearch. The time series length of each station varied considerably, from 5 years
to 91 years, with an average of 34 years. A portion of these data were used to calibrate the
distributed hydrological model WATFLOOD/SPL in the separate collaborative research
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project with BCHydro (Kouwen, et al., 2000a). The largest streamflows ever recorded at

severa of the streamflow gauging stations were due to the July 11-13, 1983 storm. This

storm also caused the largest recorded storm inflow (inflow that was caused by a storm) into

Kinbasket Lake formed by the Mica Dam. Mica Dam is used as the example basin for the

PMS developed in this research.

Table2-1—List of Streamflow Stationsand B.C. Hydro Damswith Number of Y ears of

Record
Name of Station WSC# Yrs Name of Station WSC# Yrs
ColumbiaRiver at 0BNA002 91 | Mather Creek below Houle 0BNGO76 23
Nicholson Creek
Kicking Horse River at 0BNA006 32 Gold River above Palmer 08NB014 23
Golden Creek
Spillimacheen R. near 08NA011 47 Stitt Creek at the Mouth 0BND018 23
Spillimacheen
Incomappleux River near 0BNEOO1 46 Kirbyville Creek near the 08ND019 23
Beaton Mouth
Kuskanax Creek near OBNEOO6 33| Kuskanax Creek at 1048m O8NE117 22
Nakusp Contour
Kaslo River below Kemp 08NH005 38 St. Mary River below 08NGOQ77 23
Creek Morris Cr.
Lardeau River at 0BNH007 53 Fry Creek below Carney 0BNH130 23
Marblehead Creek
ColumbiaR. near Fairmont 08NA045 50| Cranberry Cr. Above B.C. 0BNE123 5
Hot Springs Hydro Intake
Columbia River at Donald 08NB0O05 51 | Keen Creek below Kyawats 08NH132 22
Creek
St. Mary River near 08NG046 48 Lemon Cr. Above South 08NJ160 23
Marysville Lemon Cr.
Barnes Creek near Needle OBNEO77 45 | Gold River above Bachelor 08NB0O13 21
Creek
Beaton Creek near Beaton OBNEO0O8 43 Blaeberry River below 08NB015 22
Ensign Cr.
Goldstream R. below Old 0BNDO012 33 Split Creek at the Mouth 0BNB016 22
Camp Cr.
Duncan River below B.B. 08NH119 33 Carney Creek below 08NH131 23
Creek Pambrun Cr.
Illecillewaet River at 0BNDO13 32 Arrow Dam 13
Greeley
Jordan River above Kirkup 08ND014 25 Duncan Dam 13
Creek
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Blaeberry R. above 0BNB012 26 Mica Dam 23
Willowbank Cr.

Canoe River below Kimmel 08NC004 23 Revelstoke Dam 13
Creek

Figure 2-3 is an image of the basin generated from Landsat M SS (M ulti-Spectral
Scanner) imagery, taken in 1982. The lighter shades correspond to barren areas and glaciers,
while the darker shades correspond to agricultural land uses such as crops and forests. The
predominant landcover in the region is sub-apine forest (particularly in the Rocky Mountain
Trench, above MicaDam). Thereisrelatively little farming or commercial development in
the region; the development is mainly in the low areas near the Columbia River and the

Kootenay River. However, the forests are commercially exploited.
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Figure 2-3 - Landsat MSSimage for the Columbia River Basin
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3. Background and Literature Review

This Chapter introduces the background and relevant literature for thisresearch. The
Chapter is organized into four sections, which introduce the method to estimate Probable
Maximum Precipitation, Numerical Weather Models, Hydrological Models, and Regional
Frequency Analysis, respectively. The relevant literature is cited within each section. In
addition, the methods and models used in this research are presented, and any preliminary

work (such as model calibration and validation) is described.

3.1. Probable Maximum Precipitation (PMP) Estimation

3.1.1. World Meteorological Organization (WMO) Method

The Probable Maximum Precipitation (PMP) is defined as “the greatest depth of
precipitation for a given duration meteorologically possible for agiven size storm area at a
particular location at a particular time of year, with no allowance made for long-term climatic
trends” (WMO, 1986). The World Meteorological Organization (WMO) has established a
manual of estimation techniques for the Probable Maximum Precipitation (PMP). This
section gives avery brief description of the method; further detail can be found in the WMO
manual (WMO, 1986).

Often, aPMP analysisis performed for alarge area, and the spatial variation in PMP
estimates is necessary. For instance, Miller (1993) prepared PMP estimates for the entire
Columbia River Basin above the Lower Border Dam site (an area of 155,700 km?). To
calculate the PMP estimate for a particular subwatershed, it is necessary to know the spatial
variation in PMP estimates. One common method is to choose an area that represents point
precipitation and thereby to subdivide the watershed into a number of points or grids (e.g.
Miller, 1993, used 10 km by 10 km grids). The PMP analysisisthen carried out for each
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gridpoint, and an index map of the PMP estimates is prepared for a particular duration. Itis
frequently necessary to smooth the PMP estimates prior to drawing the isohyets on the index
maps. These index maps are difficult to make; generally only one index map is prepared.
Curves are prepared to adjust the index map values for different sized areas and storm
durations. Therefore, the steps to calculate the PMP for a particular subwatershed are: create
an index map from the PMP analyses for each gridpoint; calculate the average PMP estimate
for the subwatershed from the index map; adjust the PMP estimates for the desired duration
from the depth-duration curve; and adjust the PMP estimates for the desired area from the
depth-area curve (the subwatershed has a different area than the area of each gridpoint).

The following describes the PMP method for one point. However, as described
above, it is often applied over the entire area of interest, and an index map is prepared to
show spatial variation. The method for flat terrain will be presented first, and the
adjustments for mountainous terrain will follow.

The analysis of precipitation data to determine the PMP for flat terrain involves
several tasks. Thefirst task involves establishing the storm database, and determining which
storms can be transposed into the area. The storms are evaluated to determine their depth-
area-duration characteristics, and the storms are maximized using the precipitable water.
Finally, envelope curves are drawn around the maximized storms to develop the PMP
estimates. These tasks will be explained in greater detail below.

The reliability of PMP analyses depends on the adequacy of the storm samples. A
small number of storms are not likely to yield an accurate estimate of maximum
precipitation. However, the historical data may show that only afew, or even no, storms

have passed directly over the basin (only storms of a sufficient size are included in the
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anaysis). Therefore, WMO recommends transposing storms to the area. When thisis done,
it is necessary to determine transposition limits, based on the meteorology and topography of
the surrounding area. 1n essence, the transposition limits define the limits of storms that
“could have’ occurred over the area. They can be transposed using only minor modifications
to their rainfall amounts. The storm database consists of all storms that either occurred over
the area or occurred within the transposition limits.

A depth-area-duration analysis must be performed for each storm in the storm
database. Depth-area-duration analysisis described in another WMO manua (WMO No.
237, TP 129). The analysis generates atable for each storm, detailing the depth of
precipitation for each combination of area and duration.

The storms are maximized according to the maximum precipitable water available in
the area. The precipitable water in the atmosphere is calculated from the dew point and the
elevation. Thefirst stepisto find the seasonal variation in the maximum persisting 12-hour
1000-mb dew point for the area. The historical database is examined to find the maximum
persisting 12-hour 1000-mb dew point data for each day of the year. The maximum dew
point data are plotted, and an envel ope curve showing a smooth annual variation is drawn.
For a particular storm, the maximum dew point is read from the envelope curve according to
the date the storm occurred. The method also requires the 12-hour 1000-mb dew point for
the storm. These two dew points are used to cal cul ate the precipitable water at the time of
the storm and the maximum precipitable water available for that date. The storm
precipitation is scaled up according to the ratio of the precipitable water observed during the
storm and the maximum precipitable water. For a storm that requires transposition, the storm

precipitation is scaled up according to the ratio of the precipitable water available at the time

19



and original location of the storm, and the maximum precipitable water available at the
transposed location.

Envelope curves of the maximized storms are used for the PMP. The storms are
plotted as depth vs. duration and depth vs. area, and a smooth line that connects all of the
maximum valuesisdrawn. It isnot necessary that one storm provides the maximum depth at
all durations and areas, and in fact, it isvery unlikely. A maximum may be “undercut” if
there is sufficient reason to be suspicious of the value (such as, it is close to the transposition
limits and may not be fully transposable). These curves become the PMP estimate, for each
combination of area and duration.

The PMP estimates in mountainous regions are complicated by orographic influence
on precipitation. There are alarge number of methods to deal with orographic precipitation,
and each region requires a different approach. The most common method to estimate the
PMP is to remove the orographic influence from the storm data, perform the PMP analysis on
the non-orographic (or convergence) precipitation, maximize the orographic influence, and
then add the maximized convergence precipitation and the maximized orographic influence
to form the PMP. The orographic influence may be removed in several ways. The
recommended method is to model the storm in an atmospheric model with topography, and
then to re-model the storm without the topography. This method can only be used if the
atmospheric model has been validated with several storms. For instance, Miller (1993) tried
to use aboundary layer model to calculate the orographic precipitation, but was unsuccessful
in validation. This method, despite its problems, is recommended by the WM O because it
holds the greatest promise for reliable orographic precipitation estimates. Another method is

to evaluate the storms meteorologically and to separate the convergence and orographic
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components of the storms. For instance, the valley precipitation can be used to estimate the
convergence precipitation. If thereisno valley precipitation available, the free-atmospheric
forced precipitation must be calculated (the precipitation that would have occurred if there
were no mountains). The PMP analysisis then performed on the convergence precipitation
from each storm. The maximum orographic precipitation may be calculated by an
orographic model, but this model may only be applied in certain “simple” mountain areas
(e.g. asingle continuous ridge). Another method for calculating the orographic precipitation
isto calculate an orographic intensification factor. This factor combines the storm
intensification effects and the orographic effects. The total PMP precipitation is then the
convergence precipitation multiplied by the orographic intensification factor (e.g. Miller,
1993, used this method). The addition of topography makes the estimation procedure very

complicated.

3.1.2. Physically-based Estimation Techniques

This research examined a method to determine the PMF using physically-based
atmospheric and hydrologic models. The emphasis in the research was to ensure that the
atmospheric and hydrologic processes were modeled accurately and that the estimated PMF
was physically possible.

The WMO method for calculating the PMP for awatershed is based partly on
meteorological processes, and partly on statistics. However, there are some problems with
the method, such as: differences in availability and quality of data; site specific issues such as
topography; and the simplifying assumptions about atmospheric processes. For instance, the
method assumes linearity in the storm maximization and transposition procedure (i.e. that

precipitation increases as moisture increases) and that topographic and convergence
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precipitation can be separated. Abbs (1999) used a numerical weather model to test these
(and other) assumptions, and found that they are generally not valid. Jarrett and Costa (1988)
showed that storm transposition from alow elevation to a higher elevation in Colorado is
unfounded by meteorological, hydrological and paleoflood information. The use of envelope
curves to define the maximum curves assumes that the data set contains at least some of the
true maximum points. There have been instances where a PMP estimate was exceeded, with
the result that the PMP was revised upwards (e.g. Klemes, 2000). However, there have aso
been instances where the PM P magnitude depended on data that were later determined to be
erroneoudly high (e.g. Jarrett and Crow, 1988) or the magnitude was unsupported by
paleohydrologic research (e.g. Pruess, et al., 1998). The most important assumption is that
the PMP involves atype of precipitation system that has been observed in the past. It isnot
known whether a storm system will behave similarly to observed systems at the levels of
precipitation that must be predicted. These problems may reduce the accuracy of the PMP
estimates and so the WM O recommended using caution when applying its PMP calculation
method (WMO, 1986). It isrecommended (and frequently necessary) to examine aternate
methods for a particular site. In the particular case of mountainous regions, the WMO
recommended using atmospheric models to cal cul ate orographic effects (WMO, 1986). It
was therefore reasonable to investigate the use of an atmospheric model to derive the PMP.
This research examined the possibility of estimating the PMP with an atmospheric
model, and using it to calculate the PMF. Many atmospheric models are available in the
literature. For this research, two atmospheric models were used. Thefirst model, called the
High-Resolution Boundary Layer model, estimated a 96-year historical time series of

precipitation and temperature (Danard and Galbraith, 1996b) (see Section 3.2.3), in addition
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to the 100-year melting temperature sequence and the 100-year snowpack depth (Danard and
Galbraith, 1995). These datawere used to calibrate the hydrological model and as antecedent
conditions for the PMP, respectively. The second model, called MC2-PMS (Benoit, et al.,
1997a and 1997b), is aforecast model used in ssimulation mode to develop alarge storm. An
atmospheric perturbation was used as the initial conditions for the model. The model
controlled the development of the storm and calculated the precipitation. The model physics
ensured that the storm was physically possible. These two models are described in Section
3.2.

Thisresearch aso required a hydrological model to develop the PMF from the PMP
and the antecedent conditions. Since the hydrological model would be accepting input from
the atmospheric models, a grid-based hydrological model was advantageous. In addition, it
was required that the hydrological model be physically based or at least behaviorally correct.
Thismodel is described in Section 3.3.

Thirdly, this research required flood frequency curves, to estimate the severity of the
PMF estimates. However, the observed streamflow database was very short, and therefore
the 96-year simulated streamflow time series from the hydrological model was used. The
regional frequency analysis method by Hosking and Wallis (1997) was used, and is described
in Section 3.4.

3.2. Numerical Weather Modeling

The knowledge of atmospheric processes has improved over time and computers have

become more powerful and it has become possible to numerically model the atmosphere a a

useful resolution (e.g. 10 km or better). This section introduces numerical weather modeling,
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and in particular, the two atmospheric models used in this research. Atmospheric modeling

is placed in context, and then the two models are described in turn.

3.2.1. Use of atmospheric models in the literature

There are two main categories of atmospheric models, which have arisen
simultaneously to cover different needs. Climate models arein the first category. They are
used mainly for long-term climate change predictions. These are often calculated with
Genera Circulation Models (GCMs) using low resolution grids over alarge portion of the
globe (see, for example, Mimikou, et al., 2000). The emphasisis usually on modeling the
atmospheric physics. These models are not used in this research and will not be discussed
further.

Various weather models make up the second category of atmospheric models. These
models operate on a high-resolution grid to be able to model local weather phenomena. The
emphasis in these models is on the atmospheric dynamics and data assimilation. Some
weather models are used for short-term weather modeling, and others are used to fill-in
historical data.

There are several Canadian atmospheric models produced by the Canadian
Meteorological Center that can be used for short-term weather modeling. The models
include: the Regional Finite Element (RFE) model (J. Mailhot, et al., 1997), the Global
Environmental Multiscale (GEM) model (Coté, et al., 1998), and the Mesoscale
Compressible Community (MC2) model (Benoit, et al., 1997a). These models generally
operate in aforecast mode, where the initial atmospheric conditions are specified and the
model physics are used to predict future weather conditions (currently, the GEM model is

used for operational weather forecasting in Canada).
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Another application for weather modelsis the simulation of past historical events.
Often the atmospheric models are linked with hydrological models; the atmospheric models
are used to re-create historical weather scenarios and the hydrological models estimate the
streamflows. Several authors have used simulated historical weather datain hydrological
models (for instance, Kouwen, et al. (2000), Lamb (1999), Z. Yu, et al. (1999), Kite, €t al.
(1995)). Some atmospheric models are limited by their need for extensive initial conditions
and boundary conditions, and so only brief periods of time may be generated (e.g. Z. Yu, et
al., 1999, used amodel to generate data during three storms, the earliest of which wasin
1984). Other simpler atmospheric models (e.g. Kouwen, et al., 2000 used data from asimple
atmospheric model by Danard and Galbraith, 1996b) can generate datafor longer periods of

time.

3.2.2. Mesoscale Compressible Community — Probable Maximum Storm

(MC2-PMS) Model

Two different atmospheric models were used in thisresearch. The first model was
the Mesoscal e Compressible Community (MC2) model, developed by Recherche en
Prévision Numérique (RPN) (Benoit, et al., 1997a), which was used to develop extreme
rainfall estimates. The model requiresinitial atmospheric conditions, and calcul ates the
forecasted atmospheric conditions. RPN has developed a module called the Probable
Maximum Storm (PMS) module (Benoit, et al., 1997b), which was added to the MC2 model.
The PMS module calculates the initial conditions for an extreme storm, and the MC2 model
(in forecast mode) develops the storm. The MC2 model physics ensure that the storm
complies with the physical laws governing atmospheric processes. This section describes the

MC2 model, and then the PM'S module is described.
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3.2.2.1. MC2 model description

The Meso-Scale Compressible Community Model (MC2) developed by Recherche en
Prévision Numérique (RPN) is an atmospheric model that can run at multiple resolutions and
is suitable for fine-resolution weather forecasting and simulation. The model is described by
Benoit, et al. (1997a). MC2 is anon-hydrostatic, finite difference, semi-Lagrangian, limited
areamodel. The horizontal variables are distributed in a polar stereographic map projection,
and the vertical variables are distributed according to a modified Gal-Chen height coordinate
(Ga-Chen and Sommerville, 1975). The semi-implicit, semi-Lagrangian integration method
for time was found to be more stable than other integration methods for mountainous terrain
(Pinty, et al., 1995). Thisresearch used version 4.7 of the MC2 model.

The physics package (described in J. Mailhot, et al., 1998) was programmed using a
modular philosophy. Depending on the resolution of the simulation, the modules used for
each physical process can be changed. For instance, alow resolution simulation may use one
module for a particular process. A higher resolution simulation would use a different module
for the same process (one that models the process better at afine scale). The user may
specify the modules to be used for each simulation. In thisway, the physics package can be
used at multiple resolutions. The atmospheric physics package includes modules for the
following atmospheric processes:

Turbulent Vertical Diffusion

Gravity Wave Drag

Cloud Processes

Condensation Processes
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Deep and Shallow Convective Processes

Land Surface Processes

Water Surface Processes

Infrared Radiation

Solar Radiation

The MC2 model has been validated by a number of authors in a number of regions.
A few examples are listed here. W. Yu, et al. (1998) compared the MC2 precipitation
estimates to Doppler Radar precipitation in Quebec, and found reasonable agreement.
Lackman, et al. (1998) validated MC2 in the Mackenzie River Basin; the model was found to
be able to reproduce precipitation events. Degardins, et al. (1998) validated the sea surface
temperatures near Nova Scotia. Kouwen and Innes (2000, 2001) compared the ability of
MC2 data and radar data to produce accurate flood forecasts for the RAPHAEL (Runoff and
Atmospheric Processes for Flood Hazard Forecasting and Control Program in Italy) and
MAP (Mesoscale Alpine Project in Switzerland and Germany) projects. The MC2 datawas
found to produce plausible streamflow forecasts. Benoit, et al. (1997b), as part of a
collaborative research project for BCHydro, validated the model for the Columbia River
Basin. Inall of these papers, it was found that M C2 tended to have atiming problem:
predicted storms were offset in time from when they were actually observed. However, apart
from the time offset, the precipitation distributions in time and space were reasonable and
sometimes very good. In thisresearch, the time offset did not affect the results, since the
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goal wasto generate alarge storm for insertion into WATFLOOD/SPL — the start and end

times were not important.

3.2.2.2. PMS module description

The Probable Maximum Storm module was developed as part of a collaborative
research project for BCHydro, and is described in areport by Benoit, et al. (1997b). The
Probable Maximum Storm (PMS) modul e creates an atmospheric perturbation, and embeds
the perturbation in areal day. The MC2 model devel ops the perturbation and calcul ates the
precipitation distribution. When the PMS module is used, the model is referred to as MC2-
PMS.

The PMS modul e calculates an atmospheric perturbation that consists of a
temperature wave and a pressure wave. The atmospheric perturbation tends to develop into a
cyclonic storm when it is superimposed on an unstable zonal current (such as the jet stream)
(Benoit, et al., 1997b). The jet stream islocated at different latitudes during the summer and
winter seasons, and conditions for devel oping extreme storms are therefore different for these
two seasons. The PM S module used the equations from Nuss and Anthes (1987) to calculate
the atmospheric perturbation. These equations combine meteorological constraints with
sinusoidal equations to describe the waves. The temperature and pressure waves are out of
phase with one another to alow cyclogenesisto occur. The waves slope with height to
account for wind effects at higher atitudes. Various parameters modify the equations, and
manipul ate the perturbation. Benoit, et al. (1997b) devel oped the PM S module but did not
determine the appropriate settings for the development of an extreme storm. This research
continued the work of Benoit, et al. (1997b) and determined appropriate settings for an

extreme storm occurring in the warm season. The PM S modul e settings are described below.
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The perturbation is embedded into datafor area day. When the MC2 model isin
forecast mode, it runs as a hemispheric model for the first smulation (approximately 18,000
km by 18,000 km). The atmospheric perturbation derived by the PMS module was only
9000 km (east-west) by 5000 km (north-south). (The size of the perturbation may be
adjusted in the PMS module.) Therefore, the perturbation was embedded in areal day so that
initial atmospheric values would exist at all the points within the hemispheric domain. The
RPN database contains several years of datathat can be used to initialize the model. This
research used the general circulation for July 13, 1983 as the initial and boundary conditions
for the model. This date was used because alarge historical storm occurred on this date (July
11-13, 1983); it caused the largest recorded reservoir inflows at Mica Dam (due to a storm);
and affected the northern part of the Columbia River Basin.

The July 11-13, 1983 storm developed in the Pacific Ocean. Therefore, the
perturbation was originally placed in the Pacific Ocean in the location of the historical storm.
The location of the perturbation was modified to find the optimal location for the storm.

The atmospheric perturbation is calculated as a 5-step procedure (Nuss and Anthes,
1987). Each step will be described below.

Thefirst step isto calculate a pressure wave for a particular reference height. The
pressure waveisinitialized at the 5 km level, and is calculated as the total of: areference

pressure, an east-west variation, and a north-south variation:

where: P, is the reference pressure, and DPy and DP, represent the east-west and north-south

variations respectively.
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The east-west variation consists of an asymmetric sinusoidal pressure perturbation

that is forced to zero on the northern and southern boundaries:

where a, Ly, F 2(y), di, dz, and Ly are constants. The function c,(x) controls the asymmetry
in the wave, and the Gy(y) function forces the equation to zero at the northern and southern
boundaries. The variable a, refersto the amplitude of the east-west pressure wave. Ly and
Ly are the lengths of the wave in the east-west and north-south directions respectively. F a(y)
is aphase relation in the north-south direction (assumed constant). Finally, d; and d, control
the amplitude of the asymmetry in the east-west wave.

The north-south variation creates a pressure differential across the perturbation, and

includes a streak caused by the jet stream along the flow:

é y- u - '
DP, =-a tanhé—2_C - ayo tanh Ye T
ePiFj (X e (3-3)
. €2ox u
Fi(x)=1- bsing—= +F4(y)g
élx i

where a1, a2, Ye, P1, P2, dy, b, and F 1(y) are constants. The Fj(x) function creates the jet
streak by varying the pressure differential along the east-west direction. The variables a,
and a; are amplitude coefficients for the pressure differential. The variabley. is the center

of the domain in the north-south direction. The coefficients p; and p, affect the density of the

30



pressure differential, and dy isthe grid spacing. The variable b affects the amplitude of the
jet streak, and F 1(y) is a phase relation in the north south direction (assumed constant).

The second step is to calculate the temperature wave for all levels. The temperature
wave is similar to the pressure wave, except that avertical variation isincluded. The vertical
variation allows the temperature wave to be calculated on al levels. The temperature wave,
therefore, isatotal of: the surface temperature, an east-west variation, a north-south
variation, and a vertically varying lapse rate.

T =To + DTy + DTy +G(2DZ oo (3-4)

The east west variation is calculated as an asymmetric sinusoidal function that is

forced to zero at the northern and southern boundaries. However, it also includes vertical

variation in the wave amplitude and phase.
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where by, Ly, dz, di1, de, Ly, Zr, and F »(y) are constants, and z, is the maximum phase
difference. The functions cr(x) and Gr(y) are analogous to c,(x) and Gy(y) for the pressure
wave, and their constants have analogous meanings. D(z) and F +(y,z) introduce vertical

variation in the amplitude of the wave and in the phase of the wave, respectively. The
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variable by refers to the amplitude of the temperature wave in the east-west direction
(analogous to &), din and dy, are analogousto d; and dy, and L and Ly areidentical to L and
Ly for the pressure wave. The variable dz is the vertical grid spacing. Zg isthe reference
pressure level (5 km). F,(y) isthe phase relation in the north-south direction (assumed
constant).

The north-south variation in temperature is similar to the north-south variation in

pressure, but includes aterm to introduce an intense low-level temperature front near the

surface:
DTy =-b tanh tanh —+FR(xyz)
7 gpbl yg Y g
e ol
FR(xyz)—f esm%@p +p—+sng2py‘uan =S zaﬁby_ ................ (3-6)
P Ly 3 &lxp 8'—yz

él 1 a2z~ 3¢
f(e)=arg,- Stenne=,

where by, by2, Ve, Po1, Po2, @nd dy are constants that are analogous to a1, &2, Yc, P1, P2, and dy
for the pressure wave (there is no jet streak term for the temperature wave). The Fr(X,y,2)
function produces the low-level temperature front near the surface, and it decreases as height
increases. The variable & is a constant to describe the rate of decrease with height.

The vertical variation in lapse rate is calculated as a parabolic function:

g(2)Dz = 2k - 29k(z + kY2

2T o
e 28 é ---------------------------------------------------------------------------

where s and DT are constants to indicate the lapse rate at the surface and the temperature

difference between the surface and 10 km.
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The third step is to specify the three-dimensional moisture structure for the relative
humidity. The moisture field is arbitrary since there are no atmospheric constraints for a
particular wave. The humidity fields used in this research are described in Section 4.1.1.

The last two steps are to calculate the pressure on all levels and to cal cul ate the winds
on all levels. The hydrostatic equation describes the relationship between pressure and
temperature in the atmosphere, and so it is used to integrate pressure on al levels. Finally,
the winds are calculated from the temperature and pressure, using the nonlinear balance
eguation.

Table 3-2 summarizes the parameters for the pressure and temperature waves, along
with typical values for those parameters. These may all be adjusted to develop different
storms. Preliminary research at RPN (Pellerin, 2000, personal communication) indicated that
the perturbation was most sensitive to a, by, and s. In thisresearch, these parameters were

varied within the ranges given to generate extreme storms, as described in Section 4.1.

Table 3-2 - Parametersfor the Atmospheric Perturbation

Pressure Wave Variables Temperature Wave Variables
Po (reference 500 mb To (reference 289 K
pressure) temperature)
Lx (length in x) 4000 km Lx (Ilength in x) 4000 km
Ly (lengthiny) 5000 km Ly (lengthiiny) 5000 km
Amplitude factors Amplitude factors
a 3-15mb by 515°C
A1 10 mb by]_ 12 OC
an 18 mb by> 7°C
& 1°C
Packing and Structure Packing and Structure
p1 9 Pob1 11
P2 12 Po2 8
d; 0.25 du 0.25
d, 3 dr 3
B 0 DT 60 °C
S 6.5-10 °C/km
Phase relations Phase relations
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fl 3p/8 f2(y) p

f2(y) p
From: Recherche en Prévision Numérique (1997)

The following figures show the atmospheric perturbation created with the above
parameters. The atmospheric variables (temperature, wind speed, etc) are available at a
number of pressure levels, here they are shown at surface level. The pressure and
temperature waves in Figure 3-4 and Figure 3-5 are orthogonal to each other. The pressure
waveislow (-18 mb), high (+26 mb), low (-23 mb). The temperature waveis high, low,
high. Figure 3-6 shows the wind speed and direction. Note that the waves have created two

circular wind patterns. MC2 will develop the cyclone.
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GZ (Hanteur du geopotentiel)

Mivean: 1000 mb - Etiquette: pms - Intervalle: 6 * 1 0e+00 decametres,

Prevision 00 heures valide 00:00Z le 13 juillet 1983

Figure 3-4 — Atmospheric Perturbation: Pressure Wave (Domain: 18,000 by 18,000 km)
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Figure 3-5— Atmospheric Perturbation: Temperature Wave (Domain: 18,000 by 18,000
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Figure 3-6 — Atmospheric Perturbation: Wind Speed and Direction (Domain: 18,000 by
18,000 km)

3.2.3. High-Resolution Boundary Layer Model

The second atmospheric model used in this research was the High-Resol ution
Boundary Layer (HRBL) Model by Atmospheric Dynamics Corporation. It was used to
model temperature and precipitation for the years 1899-1994 (inclusive). Danard and
Galbraith also used this model to determine the 100-year snowpack and 100-year melting
temperature sequence. The model is described in a series of reports by Danard and Galbraith

(1994, 1995, 1996a (with Davies), 1996b, and 1997), and is described briefly in this Section.
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The model calculations were performed on a2’ (latitude) by 4’ (Ilongitude) grid
(approximately 3.7 km by 4.7 km). The outermost latitudes and longitudes were 48°4' N,
52°2'N, 115°8'W, and 119°4' W (120 rows by 60 columns). A border region of five grid
squares was added on all sides to account for boundary effects, so the calculation grid was
130 rows by 70 columns. The model was used to calculate gridded temperature and
precipitation for the time period from 1899 to 1994.

There were two steps in the model: atria field was calculated from the methods
described below, and then objective analysis was used to fit the trial field to the observed
meteorological station values. The physical equations used in the trial field calculations and
the objective analysis method are presented in the following sections.

The input data for the trial field were generated from the 190 km LFM grid (Limited
area, Finite Mesh grid by U.S. National Centers for Environmental Prediction). The LFM
data were interpolated to the 2’ by 4’ grid with bi-cubic splines. However, the LFM data
were only available from 1971 to 1994. Prior to thistime, other data sources were
interpolated to the 190 km grid. When no other data were available, an analog method was

used to fill in missing data.

3.2.3.1. Maximum and Minimum Temperature Calculation

This Section describes the calculation of the trial field for the daily maximum and
minimum temperature.

The LFM data at 0000 UTC were used to calculate the maximum temperatures, and
the dataat 1200 UTC were used for minimum temperatures. The following data were used
to calculate temperatures:. 850 mb temperature, 700 mb temperature, 850 mb height, grid

point height, and surface pressure.
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If the surface pressure was below 850 mb (i.e. the ground was above the 850 mb
level), the temperature was found using the 700 mb and 850 mb temperatures. The 700 mb
and 850 mb temperatures (from the LFM data) were interpolated to the grid points using bi-
cubic spline interpolation. The temperature was then interpolated vertically at each grid
point by assuming alinear variation of temperature with height.

If the surface pressure was above the 850 mb level, a sea-level temperature was

calculated by assuming the hydrostatic equation applies:

29Zgs5
Rlnaq/ 9
&/ Pgs

where g isthe acceleration of gravity, R isthe gas constant for 1 kg of dry air, Zgs isthe 850

T= P . S (3-8)

mb height, p and pgs are the sea-level and 850 mb pressures, and Tgs is the 850 mb
temperature. (The value of 546.4 (2" 273.2) is used to convert °K to °C.) Bi-cubic spline
interpolation was used to interpol ate the sea-level and 850 mb temperatures to the grid
points, and then the temperature was interpolated verticaly, as before.

After the temperatures were calculated at all the grid points and meteorological
stations as described above, the average bias was calculated. The average difference between
the model estimates and the observations at the meteorological stations was calculated, and
subtracted from the model estimates for the entire grid. The bias was generally negative for
minimum temperatures (the model underestimated minimum temperature), and positive for
maximum temperatures (the model overestimated maximum temperature). The model
estimates with the bias removed constituted the trial field.

Thetria field was then modified with the objective analysis described in Section

3.2.33.
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3.2.3.2. Precipitation Calculation

The model also calculated daily precipitation using the horizontal moisture
convergence as a predictor. Danard (1971) found that this was a useful predictor for

precipitation in a mountainous terrain. The horizontal moisture convergence was found with:

where Dz = 1000m (the assumed thickness of the layer), and q, r, and V are the specific
humidity, density, and wind velocity respectively. The calculations were performed on the
surface \=1500m (\&=Z-Zs) where Z is the height above sea-level and Zsis smoothed terrain
elevation. This surface followstheterrain. Theq, r, and V were all smoothed to avoid
noise. Downwind displacement of precipitation was accounted for by advecting C with the
700 mb wind.

Since the LFM datawere available at 1200 UTC and 0000 UTC, an average was used
for the climate day. The climate day was calculated by combining C at 1200 UTC, at 0000
UTC, and 1200 UTC the following day with weights of 0.25, 0.5, and 0.25 respectively.

Once the climate day C was calculated, the precipitation was found using the

following equation:

P, =8, +a,C+a,C%* +ay(X- X) +a,(y- ¥) +ah i (3-10)
where Py, is the model precipitation, aj to as are coefficients determined for the day by
minimizing S(Pops-Prm)? for all stations, C is the climate day horizontal moisture convergence
interpolated to the grid point, x and y are distances to the east and north in grid units, X and
y are the coordinates of the center of the domain, and h isthe grid point height. This
regression was performed for each day. The coefficients were modified if the equation gave

negative precipitation. The equation was proneto error, as it depended on the amount and
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quality of observed precipitation on each historical day. However, the overall pattern was
considered to be appropriate for the topography, and corrections based on streamflow volume
were used to further improve the results.

Various corrections were performed when observed precipitation was sparse. For
instance, the calculated precipitation was restrained to be within 10 mm of the maximum
observed precipitation. If lessthan 14 stations were available, a simpler equation or the
average precipitation was used instead. For details, see Danard and Galbraith (1996b).

The values of Py, were then combined with observed precipitation in the objective

anaysis.

3.2.3.3. Objective Analysis

The objective analysis method used in the HRBL model is described in Danard, et al.
(1993). Objective analysis was used to make the gridded values match the observed values at
the observation stations, but yet retain the shape and structure of the gridded data. This
method was used to modify both the precipitation and the temperature trial fields.

The first step in objective analysis was to make the trial field match the observations
at the stations. The terms used in calculating the weights to make the trial field match the

observation stations areillustrated in Figure 3-7.

A= Gridd
= G{:‘x S Gridpoint

Cheetwration station i

L) ] L] i

Figure 3-7 —Weight calculation to make the gridpoints match an observation station
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Weights were calculated according to the distance of the station (i) to the four

surrounding grid points (m):

1-r?
W, = LT 123 S (3-12)
a (1- rZ)

where r is the distance from the station to the grid point. The differences between an
observation (O;) and the trial field value (T;), interpolated to the station location, were
weighted by the above W, factors. These weighted differences were used to adjust the trial

field in the following equation:

where G* isthe modified field, G isthe trial field, the summation is performed for all the
stations i within the four squares surrounding the grid point, and m takes on the value 1,2,3,4
according to the location of the station with respect to the grid point. Only grid points that
had an observation station in one (or more) squares around them were modified, but the other
grid points were not yet modified. The second step of objective analysis was to adjust the
unaffected grid points to reduce discontinuities caused by the first step. The unaffected grid
points were adjusted so that the second derivative of the new field matched the second

derivative of thetrial field at all points:

~

N I N TP (3-13)
where G** isthe new field, and G isthetrial field.
The new field, G** matched the observed data at station locations, and retained the

shape of thetrial field, asindicated in Figure 3-8.
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Figure 3-8 — Matching the second derivative in objective analysis

The G** field was the “best guess” for the temperature and precipitation. However, there
were two large sources of error inthe G** field. Thefirst error was caused by errorsin the
observed temperature and precipitation. The second error was due to the shape of the trial
field. For precipitation, the trial field was calculated by aregression equation (Equation 3-
10) that was prone to error. The errors were minimized during hydrologic modeling with the
use of a Precipitation Adjustment Factor (PAF) field (Section 3.3.3).
3.3. Hydrologic Modeling

There are many hydrological models currently in use. Refsgaard and Knudsen (1996)
have listed three general groupings of hydrological models: empirical, lumped conceptual,
and distributed physically-based models. An empirical model is one that is based on
empirically derived equations, which have little or no physical basis. A lumped conceptual
model isone that “lumps’ the watershed into a single element, and uses representative
descriptions of hydrologic processes. These models use parameterizations of hydrologic
processes that are conceptually sound but do not model the detail of the processesin a
watershed. A distributed physically-based model is one that subdivides a domain
(watershed) into hydrologically significant subgroups and uses detailed physically-based

descriptions of the hydrologic processes. There are, of course, models which fall between
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these categories, as some hydrologic processes are not understood very well, and cannot be
modeled in a physically-based manner at a suitable grid scale (Beven, 1989).

Of these three categories of hydrological models, the most sophisticated and
philosophically attractive model is the distributed physically-based model. It is not,
however, the ideal model for all purposes. Refsgaard and Knudsen (1996) found that lumped
conceptual models and distributed physically-based models worked equally well, if there
were sufficient data for calibration. The parameters for lumped conceptual models are
watershed-specific, while the parameters for physically-based models are based on landcover
or soil information, and can be transferred with little or no modification to another watershed.
Therefore, the physically-based models were superior for cases when there were insufficient
data, or there were changes in the basin (deforestation, urbanization, etc.).

This application used a hydrological model to calculate the floods produced by large
theoretical storms. These storms have never occurred, and there are therefore no observed
streamflow data available for calibration and validation of alumped conceptual model. In
addition, the large amounts of precipitation would render invalid any calibration based on
average streamflows. Therefore, this application required a distributed physically-based
model.

This research used the distributed hydrological model WATFLOOD/SPL (Kouwen,
2000). Thismodel is an integrated data management and largely physically based
streamflow simulation and forecasting model package. The model accepts rain and
temperature as input, and simulates hydrologic processes to determine streamflow. The
model works on agrid basis enabling it to use distributed meteorological data asinput, but

integrates runoff to calculate streamflow on a catchment basis.



The remainder of this section will describe the WATFLOOD/SPL model, the
calibration and validation of this type of hydrological model, and the approaches for

determining the level of model uncertainty.

3.3.1. WATFLOOD/SPL subroutines

The WATFLOOD/SPL modeling system consists of two parts. WATFLOOD isthe
data management system that includes a number of data pre-processing programs, and SPL is
the hydrological simulation model.

To account for the spatial variability of the hydrological variables, WATFLOOD/SPL
uses the Grouped Response Unit (GRU) method to group hydrologically similar response
units (Tao and Kouwen, 1989; Kouwen, et al., 1990; Kouwen, et al., 1993). A GRU isa
hydrologic computational unit that consists of a grouping of areas that can be expected to
react similarly to meteorological conditions. The Columbia River Basin has been set up with
eight different landcover types: barren area, high elevation dense forest, low elevation dense
forest, high elevation light forest, low elevation light forest, glaciers, water, and impervious.
LANDSAT MSSimagery from 1989 to 1991 was used to determine the landcover types. In
the GRU method, all similarly vegetated areas (not necessarily contiguous) within agrid
element are grouped into one aggregate response unit and called a GRU. Experience to date
has shown that five to eight classes are usually sufficient to represent the variability of land
cover. The hydrologic response of each classis computed according to the geometry of the
grid, and the response (e.g. streamflow) is weighted according to its percent cover of that grid
element or sub-watershed.

The meteorological forcing data are assumed to be uniform over the grid cell, and it is

assumed that all pixels belonging to aland cover group respond in asimilar way with respect
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to infiltration, surface runoff, interflow, evaporation, snowmelt and drainage to ground water.
Therefore, model parameters are associated with land cover class and are invariant over the
modeled domain. Inthisway, there are very few “watershed specific parameters,” only
parameters pertaining to land cover, which are readily transferred to or from other
watersheds. There are four parameters that are associated with the type of riversin the
modeled area and the underlying geology. These are channel roughness (for both channel
and floodplain) and two groundwater flow parameters. These parameters are watershed
specific, although related to the physiography of the area, and do not vary greatly.

The vertical water balance component of the WATFLOOD/SPL model isa
conventional hydrological model. Where it differsisin the method that watersheds and
regions are subdivided to preserve the hydrological responses of greatly differing surface
areas, namely by employing the GRU or pixel grouping approach. Details of the
hydrological abstractionsin WATFLOOD/SPL are available in previous publications
(Kouwen, et al., 2000, Donald et al., 1995; Kouwen, et al., 1993; Tao and Kouwen, 1989).
Brief descriptions of the algorithms for snowmelt, surface storage, infiltration, soil moisture,
evaporation, interception, overland flow and base flow are given below.

The snowmelt algorithm is based on the Anderson method (1976). It differs by using
hourly time steps instead of days and using separate calculations for each land cover in each
grid instead of basin-wide calculations. Snowcover depletion curves (SDC) are used to
summarize the relationship between snowcover distribution and an average snowcover
property, such as depth of water equivalent, for agiven area (Donald, et al., 1995). More
specifically, these curves provide the amount of snow covered areafor a given depth of water

equivalent for each land cover class.
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Surface storage is modeled according to the ASCE Manual of Engineering Practice
No. 37 for the design of sanitary and storm sewers (ASCE, 1969), which givestypical values
of retention for various surface types. It isassumed that the limiting value of depression

storage (Sq) is reached exponentially (Lindey, et al., 1949)

The Philip formula (Philip, 1954) was chosen to represent the important physical
aspects of the infiltration process. A three-zone scheme is used to manage soil moisture and
therefore control infiltration. The zones are:

UZ  Upper zone storage (saturated)
1Z Intermediate zone storage (unsaturated)
LZ Lower zone storage (saturated)

Infiltrated water initially is accumulated in the Upper Zone Storage (UZS). Water
within this layer percolates downward or is exfiltrated to nearby streams as interflow. A
simple storage-discharge relation represents interflow. Upper zone to lower zone drainage is
the same simple linear function as for interflow. Interflow and drainage occur
simultaneously and are prorated if the amount calculated cannot be supplied from UZS. The
moisture content of the intermediate zone (1Z), through the Philip formula, affects the
infiltration rate of rain and melt water. It isused only as an index to provide a method of
calculating the progress of the wetting front. When the temperature is less than 0 °C the soil
moisture is not changed.

The specific retention of the soil in the upper zone is an analogue for the field
capacity and is used to limit the amount of water that can become interflow or drain to the

saturated zone. Retained water can be evaporated but not drained.
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In WATFLOOD/SPL, the Priestley-Taylor method (1972), Hargreaves and Samani
method (1982), and pan evaporation data can be used to calculate potential evaporation.
Comparisons between these methods within the WATFLOOD/SPL system have shown that
one method is not greatly superior to any other in long term simulation. The choice of the
method is mostly based on the availability of the data. For the Columbia River Basin,
radiation data were not available and therefore the Hargreaves equation (Hargreaves and
Samani, 1982) was used to estimate the potential evapotranspiration (PET). The PET is
reduced to the actual evapotranspiration (AET) with the use of three coefficients, which are
functions of soil moisture availability, degree-days and vegetation type respectively.
Evaporation of intercepted water is assumed to occur preferentially to soil water evaporation.

The procedure used for tracking interception storage and interception evaporation
follows the model developed by Linsley, et al. (1949).

When the infiltration capacity is exceeded by the water supply, and the depression
storage has been satisfied, water is discharged to the channel drainage system. The
relationship employed is based on Manning' s formula. The internal slopes (i.e., the slope of
the local relief, not the average slope) of the GRUs are explicitly incorporated in this
calculation while the roughness value is a parameter for each GRU (land cover class).

An exponential ground water depletion function is used to gradually deplete the lower
zone storage. Ground water is replenished by recharge from the UZS. GRUsfrom al land
covers within one grid element contribute to a single lower zone reservoir for the grid.

Thetotal inflow to the river system is found by adding the surface runoff

components, the interflow, and the base flow. These flows, along with flows produced by
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upstream grids, are all added to the upstream end of the channel traversing the runoff
producing grid.

SPL isastorage model and as such, all water storage quantities need to beinitialized.
The storages are surface (snow and/or water), upper zone, lower zone, and channel storage.
The water storage on the surface is always assumed to be zero when amodeling run is
initiated. Thisis areasonable startup condition when arun isinitiated during adry period.
Snow storage is usually initiated using snowcourse data athough it is preferable to start arun
when no snow is present in the watershed. Upper zone storage isinitialized using the
Antecedent Precipitation Index. Channel and lower zone storages are initialized using
measured streamflow at a downstream gauging station. Prorated flows, based on drainage
area, are used to determine the initial channel storage using the storage-discharge functionsin
reverse.

The WATFLOOD/SPL model was calibrated and validated for the Columbia River
basin as part of the collaborative research project for B.C. Hydro (Kouwen, et al., 2000). A
grid size of 10 km by 10 km was chosen for this basin. This resolution was sufficient to
represent the topography of the basin. The HRBL model data were available at aresolution
of 3.7 km by 4.7 km for the time period of 1899 to 1994, and these were aggregated to form
10 km by 10 km estimates. The observed streamflow were obtained from Water Survey
Canada and B.C. Hydro (36 stationsin total). Most of these stations recorded observed
streamflow during the years 1972 to 1994. Therefore, calibration was performed for the
years 1981 to 1985, and validation was performed for other years. To avoid possible errors
in the startup conditions for the WATFLOOD/SPL model, however, it was recommended

that atwo-year spin-up period be used. The simulated data from these two years were
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discarded. The parameters were calibrated for five of the landclasses (barren, high elevation
dense forest, low elevation dense forest, high elevation light forest, low elevation light
forest). The parametersfor glaciers, water, and impervious were set to textbook values. The
variation in river type for this basin was represented by three river classes: valley, high
elevation mountain, and low elevation mountain. The model required approximately 3-4
hours to simulate the streamflow for the entire 96-year time period for the Columbia River
basin (using one CPU on an Origin 200 180 MHz computer).

The HRBL model gave daily estimates of maximum and minimum temperatures, and
daily precipitation totals. When used in WATFLOOD/SPL, the maximum and minimum
temperatures were assumed to occur at noon and midnight, respectively. Thisresulted in a
dlight offset from the true maximum and minimum times (which often occur in the early
afternoon hours and pre-dawn hours, respectively), but this did not greatly affect daily
streamflow estimates. Temperature was assumed to follow a sinusoidal function between
these two time periods, and 3-hourly temperature was calculated for input into the
WATFLOOD/SPL model. The precipitation was assumed to occur evenly throughout the
day (the precipitation was divided by 24 and an equal amount of precipitation was applied in

each hour).

3.3.2. Approaches to Calibration and Validation

Physically based hydrological models are superior to lumped modelsin their ability to
model hydrological processes because they can be transferred between watersheds without
extensive re-calibration. However, the initial calibration is more difficult for physically
based models since they have alarger number of parameters. The literature reveals three

approaches to this problem.
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The first acknowledges that multiple “local optima” exist in the parameter space of
physically-based hydrological models. The models are calibrated so that an error function is
minimized (e.g. root mean squared, RMS, error). Two or more parameter sets may give
similar values of the error function. Severa authors contend that, while the models may
produce good results with a particular set of parameters, there are hidden errors in the model
(e.g. Beven, 1989, Grayson, et al., 1992, and Beven, 1993). The errorsin one physical
process can be cancelled by errorsin other physical processes. They contend that it is
difficult to determine the “best” set of parameters, if it exists. They recommend either using
simple models whenever possible or using multiple sets of parameters. For instance, during
calibration Vertessy and Elsenbeer (1999) used a distributed, physically based model and
found that the “best” parameters varied depending on the event used for calibration, and
therefore they used multiple sets of parametersin their analysis. These authors recommend
great caution with physically-based hydrological models. However, this approach does not
solve the problem of modeling non-gauged watersheds or changing conditions.

The second approach is more optimistic. Several authors have developed agorithms
to search for the “global optimum” parameters, and not smply alocal optimum (e.g. Thyer,
et al., 1999, Gupta, et al., 1999). The models are calibrated to minimize an error function,
but the algorithms are able to jump between different local minima of the error function.
These are essentially automatic calibration algorithms, which are programmed to search for
several optima.

The third approach takes advantage of the physical modelling in the hydrological
model. The use of physically-based parameters (i.e. parameters that can be measured in the

field) and the use of multi-response data (i.e. calibration using outputs other than streamflow)
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are recommended in this approach. This approach solves the problem of modelling non-
gauged watersheds and changing conditions.

The amount of calibration required by a model may be reduced with measurable
parameters. Refsgaard (1997) recommends selecting parameterization schemes that allow
the user to measure the parameter valuesin thefield. Refsgaard (1997) aso recommends
that physically-realistic intervals be determined for each parameter. Some very simple
models do not require any calibration (e.g. Lange, et al., 1999), as all of their parameters may
be measured in the field. However, these simple models are limited in the hydrological
conditions they can simulate and can only be applied to certain small watersheds. More
complex models will require some calibration, as not all of the parameters can be measured
in thefield.

In terms of calibration, distributed physically-based hydrological models have an
advantage over lumped conceptual models as they are more suited to model domains that
encompass widely varying hydrological conditions and processes. Therefore, multiple-site
data and multiple-response data, where they exist, can be used to help calibrate and validate a
model. KlemesS (1986) proposed a series of hierarchical validation tests, which include
multi-site validation. The model must be validated at each hierarchical level in order to be
considered valid. Therefore, the model must pass a split-sample test (single location),
followed by a proxy-basin test (multiple locations), followed by other tests when the end-
purpose of the model requires further validation. Mroczkowski, et al. (1997) extended the
hierarchical tests to include interior data such as soil moisture, snowdepth, evaporation,
internal streamflows, etc. Thiswill allow the user to test the internal physics of the model to

ensure that the model simulates the hydrological processesin a reasonable manner.
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Refsgaard (1997) recommended that a model be validated on all of the outputs that are
required for the research. He stated that “comprehensive validation procedures specifically
adapted for each particular application of a distributed model should be used” (pg. 95,
Refsgaard, 1997). Therefore, it would seem that a model may be considered validated if each
of the major hydrologic processes modelled have been validated.
The calibration and validation of WATFLOOD/SPL has followed this third approach.
The parameterization schemesin WATFLOOD/SPL have been chosen so that all the
parameters have physical meanings. Although not al of the parameters may be measured in
thefield, al of the parameters have physically definable limits. These limits have been
established using textbook values and through experience with the model. The parameters
with their limits are listed in Table 3-3. When parameters remain within these limits, the
hydrological processes within WATFLOOD/SPL operate correctly.
A calibration of WATFLOOD/SPL proceeds in the following manner:

the model is calibrated by hand until the internal variables (such as evaporation,

snowmelt, etc.) show that the model physics are operating realisticaly in all grids;

the parameters are “fine-tuned” with an automatic calibration procedure, to match the

calculated streamflow to the measured streamflow (all internal and external streamflow

observations are used); and

the internal variables are checked again to ensure that the model physics are redlistic.
In the first two of these steps, the parameter limits from Table 3-3 are used as a guideline for
calibration. The method cannot be automated, asit is necessary to verify the internal

parameters.
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Table 3-3 - Parameter Valuesand Limitsfor WATFLOOD/SPL (Columbia River
Domain)

Parameter Name Number of L ower Upper
Classes Bound Bound

Unsaturated Zone Moisture A5 1 0.98 0.999
Coefficient
Surface Permeability AK 5 1 100
Surface Permeability under AKfs 5 1 100
snow
Interflow storage-discharge REC 5 0 0.1
coefficient
Overland flow conveyance R3 5 5 90
parameter
Overland flow conveyance R3fs 5 5 90
parameter under snow
Sail retention coefficient RETN 5 0 50
Upper to lower zone AK2 5 0.01 1
drainage coefficient
Upper to lower zone AK?2fs 5 0.01 1

drainage coefficient under

snow

Lower zone drainage LZF | 3river classes 10”7 10°
function

Lower zone drainage PWR | 3river classes 0.3 3
function exponent

River roughness coefficient R2 3river classes 0.1 4
Melt factor MF 5 0.05 0.25
Base temperature BASE 5 -5 5
Potential FPET 5 1 3
Evapotranspiration Factor

Evapotranspiration Factor FTALL 5 0.5 1.2

for Tall Vegetation

Number of parameters. 70

Theinitial manual calibration is accomplished by adjusting parameters to match

various components of observed hydrographs. For instance, the base temperature for

54




snowmelt is adjusted so the initial rise of the computed spring melt hydrograph occurs at the
proper time. If computed peaks are consistently late and low throughout the domain, the
river roughnessisreduced. If the peaks arelate and low only in the smaller watersheds, it is
likely that the interflow discharge coefficient is set too low. Recession curves can be
matched using the lower zone function parameters and the parameter governing recharge,
using log plots of flow versustime. Evaporation rates are adjusted to ensure annual volumes
of runoff are correctly computed. Boyle, et al. (2000) reported on asimilar approach to
match the various segments of the hydrograph that they labelled as “driven”, “nondriven
quick”, and “nondriven slow” (corresponding to flow driven by rainfall, the “fast” portion of
the recession curve, and the “slow” portion of the recession curve respectively).

Once the parameters are given these initial values, an automatic scheme can be used.
For the “fine-tuning” step, the model employs the Hooke and Jeeves (1961) automatic pattern
search optimization algorithm taken from Monro (1971). The parameters for optimization
are recharge and interflow coefficients, soil permeability, overland flow roughness, channel
roughness, melt factors, base temperatures, soil retention, lower zone drainage coefficients,
and an unsaturated zone soil moisture coefficient. The optimization is based on minimizing
the root-mean-square error of streamflow estimates for all of the streamflow stations.

Finally, the internal variables are checked again to ensure that the model physics are
realistic. The main tool for checking the internal model physicsis shown in Figure 3-9. This
figure plots the time variation of various state variables for the high elevation dense forest
classinonegrid cell. The mgjor storage locations (lower zone storage, upper zone storage
and depression storage, with and without snow cover) are plotted in the upper portion of the

figure. The middle portion shows the fraction of the area covered with snow, the snow water
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equivalent and heat deficit. Finally, the lower portion shows the cumulative precipitation,
runoff and evaporation for the high dense forest class. In figures such as Figure 3-9, all state
variables can be tracked for all land cover classes on any grid. Snowmelt and snow
accumulation, infiltration, evaporation and other processes may all be examined in this
figure. Theinterna parameters of WATFLOOD/SPL can also be viewed with a program
called EnSim Hydrologic (Calder, 1999). EnSim Hydrologic is capable of displaying
watershed datain 2-D format, or as atime variation plot for asingle grid square. An
examination of several such figures can be used to diagnose any parameter problemsin
WATFLOOD/SPL, and plots can be compared to field data when available.

The calibration of the WATFLOOD/SPL model for the Columbia River basinis

described in Kouwen, et al. (2000).
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Figure 3-9 — Calibration tool for WATFLOOD/SPL

In addition to the implicit calibration and validation of internal streamflow and
internal state variablesin the model, a series of studies of multi-site and multi-response

calibration and validation has been performed with WATFLOOD/SPL (Bingeman, et al.,
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2001). The validationsincluded comparisons of measured and computed soil moisture,
evaporation, snowmelt and accumulation, groundwater flow, and peak flows. A set of
parameters has been found that generates physically-realistic streamflow for multiple basins:
farmland in Southern Ontario (Kouwen, et al., 1993), the Rocky Mountains in British
Columbia (Kouwen, et al., 2000), the BOREAS study areas in Northern Saskatchewan and
Manitoba (Neff, 1996) and the Mackenzie river basin in north-western Canada (Seglenieks,

et al., 1998). These parameters are called the “global parameter set.”

3.3.3. Uncertainty in Model Estimates

Although each of the major hydrological processes within WATFLOOD/SPL have
been calibrated and validated, the output data are still subject to modeling uncertainty
because of the site-specific nature of these tests. Three types of errors lead to uncertainty in
the estimates of the model. They are caused by model formulation errors, input data errors,
and calibration errors (Lei and Schilling, 1996). Each of these errorswill be discussed in
turn.

The first type of error, model formulation error, refersto an error in the model itself,
and is difficult to evaluate. Two examples of thiskind of error are: an important hydrologic
process may be missing from the model; or the processisincluded but modeled inaccurately.
Lei and Schilling (1996) recommended that the model structure and equations be examined
prior to calibration. The hydrologica model WATFLOOD/SPL has been extensively
examined with multiple validation studies (Bingeman, et al., 2001). In addition, the model
has been successfully applied on many watersheds in Canada, as described in Section 3.3.2,

indicating a great degree of model stability. These tests indicate that the WATFLOOD/SPL
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hydrological model haslow model formulation error, although it is acknowledged that this
applies only at the scale that it is usually applied, namely agrid size of 1 to 25 km.

The second error, input data error, refers to inaccurate model forcing data. This
research used the HRBL model estimates of precipitation and temperature data as input for
the hydrological model WATFLOOD/SPL. Therefore, the precipitation and temperature data
are also subject to modeling uncertainty, and were examined. Typically, precipitation data
are more difficult to both measure and predict than temperature data. There are several
reasons for this, including problems with the observation network and problems with
interpolation schemes. Most observation stations are located in valleys, and very few data
exist for higher elevations. Observation stations may not record arain event if the
observation network istoo sparse. The gauge may undercatch because of wind effects,
causing the measurements to be inaccurate. The interpolation scheme used in the HRBL
model was a regression equation based on the horizontal moisture convergence, and the
regression equation could not model the precipitation perfectly. Therefore, the examination
focused mainly on the precipitation data.

To test the precipitation data, the data were used to calculate streamflow, and a
comparison of streamflow volume was performed (Kouwen, et al., 2000). One streamflow
station, Columbia River at Nicholson, had 91 years of observed streamflow, and could be
used to validate almost all of the 96 available years of data. The streamflow estimates

closely matched the observed streamflow for all 91 years (Figure 3-10).
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The streamflow estimates also matched closely for the inflow to Mica Dam (Figure 3-
11). There were 23 years of observed inflow available for comparison (1972 to 1994). For
both of these locations, the observed and simulated hydrographs matched very well. The
timing of the snowmelt was accurate for both locations, and the volume of snowmelt also
matched. The summer precipitation peak flows were generally well represented. Finally, the
recession curves and low winter flows were also in agreement between the observed and
simulated hydrographs. Therefore, it was reasonable to state that the temperature and
precipitation data from the HRBL model were suitable for the prediction of long-term

streamflow.
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The hydrographs shown above indicated good agreement between the observed and
simulated streamflow data, indicating that the temperatures for predicting freezing and
thawing were acceptable. Similarly, the hydrographs indicated that the timing of the
precipitation was suitable for predicting streamflow. However, some stations were
consistently over- or under-estimated. This consistent over- or under-estimation indicated an
error in the precipitation estimates from the HRBL model. The average errors for the 32
streamflow stations for the period 1972 to 1994 were calculated for each streamflow station,
and a contour plot of error was created (Figure 3-12). These years were chosen because
LFM data were available to create the precipitation data during this period (and therefore the
precipitation data were most accurate), and because most of the streamflow stations were
active during this period. This error plot indicates the amount of error in the most accurate
portion of the time period modeled (1972 to 1994). Thisfigure shows that the streamflow
volume differences at a station can be very significant, up to 80% error. In general, the
model underestimates streamflow in the northwest corner, and overestimates in the southeast
corner. This pattern further indicated consistent errorsin the precipitation data. Therefore, a
precipitation adjustment factor (PAF) field was created based on this error field. The PAF
field was used to adjust the precipitation estimates. The streamflow estimates improved, as
stations that were generally under-estimated received a greater amount of precipitation (and

viceversa). Inthisway, the input data errors were minimized.
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The temperature data were verified briefly by comparing the timing of the ssmulated
snowmelt and snow accumulation to observed snow measurements. Wong (2000) compared
the ssmulated snow water equivalent (SWE) to observed snowcourse measurements and
observed snow pillow datain the Columbia River basin. There were some significant

differences in the ssmulated SWE and the snowcourse data, but these were attributed mainly
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to differences in the elevation of the snowcourse and the 100 km? grid. That is, the
snowcourse was above or below the grid elevation (an average over 100 km?), and would
therefore record more or less snow, respectively. The snow pillow data provided atime
series of snow water equivalent, and these data indicated that the timing of the snowmelt and
snow accumulation was correct. These results indicated that the temperature data derived by
Danard, et al. (1996b) were adequate for long-term hydrological modeling.

The third type of error in ahydrological model is uncertainty in the parameter
calibration. In comparison to the number of hydrological models available, there has been
relatively little focus on this type of error. In general, hydrological models are highly non-
linear and analytical techniques to convert parameter uncertainty into output uncertainty are
difficult to derive. Monte Carlo analysis can be used, but many hydrological models require
alarge amount of computer time for asingle simulation. A Monte Carlo analysisallows a
distribution to be defined for each parameter. These distributions are randomly sampled, and
amodel simulation is performed for each sample to derive the output distribution. Therefore,
aMonte Carlo analysis can be very time consuming for a hydrological model. However, the
confidence of model predictionsisimproved through the estimation of parameter uncertainty.

Where the uncertainty due to errorsin the parameters have been estimated, most
authors recommend a Monte Carlo analysis. A variation such asimportance sampling may
also be used. Importance sampling can be used when there is sufficient information about
the behaviour of the model and parameters to be able to confine the Monte Carlo to a small
range in the parameters. However, these authors accept the “equifinality” concept (Beven,
1993), where multiple sets of parameters can deliver similar or identical quality of

hydrological predictions. The parameter distributions for the Monte Carlo are chosen
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according to this assumption. For instance, several authors (e.g. Binley, et al., 1991)
recommend that the model be calibrated for numerous calibration events. Each calibration
event will have different optimal parameters, and so the mean and standard deviation of each
parameter can be defined from the different calibration events. A normal distribution is used
to describe the parameter uncertainty, using the calculated mean and standard deviation.
Once the distribution has been chosen, the Monte Carlo analysisis performed (avariation,
such as importance sampling, may also be used instead), and confidence limits are derived.

There were two problems with performing this type of Monte Carlo analysis for
WATFLOOD/SPL. Firgt, the uncertainty analyses performed in the literature use the
“equifinality” approach to parameter calibration, which implies multiple sets of parameters
are equally valid. However, the calibration process of WATFLOOD/SPL ensures that the
“true” optimum parameter values are found. The calibration process checks all of the
internal variables within the WATFLOOD/SPL model, and therefore ensures that the
hydrological processes are operating in arealistic manner. Thereisstill error in the
parameter values (due to possible input errors), but the calibrated parameter values represent
amost likely set of parameters, or a“mode.” The parameter distributions were chosen based
on the mode and the boundaries of the parameters. Secondly, a single 96-year ssmulation
takes approximately 4 hours on asingle processor of the SGI Origin 200 computer, and
therefore computer time was alimitation for the analysis. These two issues were addressed
in this research.

The calibration philosophy of WATFLOOD/SPL assumes that the * optimum”
parameter values can be determined through the calibration process. The parameter set can

be used for multiple basins, and the internal variables of the model have been validated (as
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described in Section 3.3.2). Therefore, if the calibrated parameters are not truly the optimum
parameter values (due to uncontrollable uncertainties in input data), then they are “close” to
optimum; that is, they are on the same “hill” of the objective function. The physically
possible boundaries for the parameters were checked to ensure that they remain on asingle
hill of the objective function. (In thisresearch, the term “objective function” isageneric
term to represent the degree of fit between the observed streamflow and the cal culated
streamflow. A “hill” on the objective function denotes an area of parameter space where the
function risesto a“good” fit and then falls away again.) There are multiple hillsin the
objective function, as other combinations of parameters may lead to reasonable streamflow
estimates. However, these other hills would result from two (or more) errorsin modeling the
hydrological processes that cancel each other. Should this condition occur, a check on each
of the process plots (Figure 3-9) would reveal some sort of non-plausible condition.
Furthermore, unrealistic parameters affecting river routing would become evident using the
hierarchical validation approach with alarge number of streamflow stations simultaneously.
A set of parameters from another “hill” of the objective function would therefore be rejected
during the validation process of WATFLOOD/SPL. Therefore, in keeping with the
calibration philosophy of WATFLOOD/SPL, it was also necessary to choose the parameter
distributions so that the Monte Carlo simulations remained on the same “hill” of the objective
function.

The second difficulty with the Monte Carlo analysis was simulation time. Since all
parameters were allowed to vary ssmultaneously in the Monte Carlo analysis, approximately
100 simulations per variable (on average) were necessary to achieve realistic 95% confidence

limits (Crosetto, et al., 2000). For 70 variables, this was a minimum of 7000 simulations!
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Therefore, it was not feasible to perform the Monte Carlo analysis for the entire 95-year
simulation. Instead, the full 95-year ssimulation was represented by afive-year sequence that
included a variety of wet and dry years. It was assumed that the confidence limits from the
five-year analysis could be used in the 95-year analysis. This assumption was checked as
part of the analysis and shown to be accurate.

The detailed methodology to resolve these conflictsis described in detail in Chapter
S.
3.4. Regional Frequency Analysis and the Method of L-Moments

The atmospheric model and the hydrological model were used to derive a physically-
based PMF in thisresearch. One method to check the magnitude of the PMF isto calculate
the probability of the PMF on afrequency curve (Smith, 1998). The return period of the
PMF may range from 10,000 years to 1,000,000 years (Smith, 1998). In addition, a
frequency curve would allow risk-based analysis to be performed for the dam. Thisresearch
investigated the use of a simulated streamflow time series to derive flood frequency curves.
The ssimulated streamflow were obtained by using the 96-year HRBL meteorological dataas
forcing datafor the WATFLOOD/SPL model. Theregional frequency analysis method
using L-moments (Hosking and Wallis, 1997) was chosen for this research because it
estimates extreme flood quantiles with less uncertainty than conventional methods (Pilon and
Adamowski, 1992, Hosking and Wallis, 1987). This section describes the regional frequency
anaysis method.

Frequency analysisis a standard statistical method (see, for example, Y evjevich,

1972) used to estimate extreme events. A probability distribution isfitted to the observed
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data, and then the extreme values are estimated using the probability distribution. Two
problems with this method are:
Frequency analysisis often limited by a short time series.
It is difficult to move from a gauged site to a nearby ungauged site, since the probability
distribution depends on the statistics of the gauged site, which are not available for the
ungauged site.
Regional frequency analysisis a method to deal with these issues.

Regional frequency analysis has been in use for many years; an early exampleis
Dalrymple (1960). Regiona frequency analysis “trades space for time”. Gauges that are
similar are grouped together, thus increasing the effective amount of data and reducing the
uncertainty in the frequency distribution parameters. The frequency distribution at ungauged
locations may then be estimated by using the probability distribution of the group.

Two concepts must be presented before regional frequency analysis can be discussed.
Accordingly, the next two sections present the index flood procedure and L-moments, both
of which are included in regional frequency anaysis. The following section describes the

regional frequency analysis method of Hosking and Wallis (1997).

3.4.1. Index-Flood Procedure

The index-flood procedure is a simple way to pool data from different locations. The
name comes from its original application to flood datain hydrology (e.g. Dalrymple, 1960).
The index-flood procedure assumes that the probability distributions for the sites are ssmply a

scale factor multiplied by the regional probability distribution, such as:

Q(F)=MA(F) 1 =L N oo (3-14)
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where Q;(F) isthe quantile function of the frequency distribution of each site, m is the index-
flood of each site, and q(F) is the quantile function of the frequency distribution of the group
of sites. This method assumes that each site has the same underlying probability distribution.
The index-flood (m) is often chosen as the at-site mean, but a median, trimmed mean, or
another percentile may aso be used.

The index-flood procedure makes the foll owing assumptions about the data.

Observations at a site are identically distributed.

Observations at a site are temporally independent.

Observations at different sites are spatially independent.

Frequency distributions are identical at all sites, and follow aregional frequency
distribution, except for a scale factor.

Theregional frequency distribution is correctly specified.

These assumptions are never fully met with environmental data. There may be some
serial dependence in any environmental data and correlation between sites is common, since
neighbouring sites have similar weather patterns. The fourth assumption can only be
approximately satisfied, by careful grouping of the sites. The frequency distribution is
chosen as the best fit of the data in the region, and so the last assumption is also only
approximately satisfied. However, research (e.g. Pilon and Adamowski, 1992) has shown
that it is possible to use the index-flood procedure to yield suitable extreme quantile

estimates.
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3.4.2. L-moments

3.4.2.1. Introduction

Frequency distributions have traditionally been described by their moments. The
moments are:

m=E(X) (mean)

m=E(X-m" r=23... (higher central moments)
where X is any random variable (such as precipitation or streamflow).

The mean describes the location of the center of the distribution. The second moment
describes the dispersion of the distribution. Dimensionless versions of the higher moments

are usually used, such as:

g= %z (skewness)
k = % (kurtosis)

These moments can be estimated with a data sample. However, these estimates are
known to be biased and bounded by the sample size. Skewness and kurtosis are also
sensitive to outliers in the data, since they use the difference between the value and the mean
to the third or fourth power. Therefore, they are unreliable as measures of distribution shape.

L-moments are alternative measures of distribution shape. They are modifications of
the “ probability weighted moments’ of Greenwood, et al. (1979). The two most useful

probability weighted moments are

a, = OXU)(2- u)'du, b, = QU AU e (3-17)
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where x(u) isthe inverse of the cumulative density function, and the integration is performed

over the range of u, the probability of non-exceedance (Figure 3-13).

A

Probahility 1
of non-
exceedence

u

Ko

|
Lol

4

Figure 3-13 — Definition of termsin calculation of Probability Weighted M oments

Probability weighted moments involve powers of the functions u and 1-u, while conventional

moments involve powers of the data, x(u). Various authors have related a, and b, to the

conventional measures of distribution shape (e.g. Hosking and Wallis, 1985), and these

relationships are termed the L-moments. The term “L-moments’ is used because the L-

moments are calculated as linear combinations of probability weighted moments.

To estimate the L-moments for a data sample, first arrange the datavaluesin

ascending order: Xi.n £ Xon £%2 £Xn:n. Thefirst four sample by’ s can be found with the

following formulas,
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The sample L-moments are then found using,
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L =k

l,=2b - by

|5 =6b, - 6b, +b,

|, =200, - 30b, +12b, - b,

The first L-moment, |4, is analogous (and equal) to the conventional mean. The
second L-moment, |, is analogous to the conventional standard deviation. The conventional
coefficient of variation (CV) is calculated as the standard deviation divided by the mean.
Therefore, the L-moment equivalent, the L-CV, isfound as t=l,/l; (no subscript is used with t
by convention). The conventional skewness and kurtosis are dimensionless, and so the L-
moment equivalents are al'so dimensionless. The L-skewnessisfound asts=ls/l,. Similarly,
the L-kurtosisis found as ts=l4/l,.

L-moments have been found to be better estimates of distribution shape than
conventional moments. The estimates of L-skewness and L-kurtosis have been found to be
much less biased than conventional estimates. The L-moments are not bounded algebraically
by the sample size. L-moments have a natural bound [t(|E 1 (where t, represents the
population statistic), making interpretation of the magnitude of the moment easier. L-
moments are less affected by outliersin the distribution, since they give less weight to the tail
of the distribution (u" is used instead of (x(u)-n)", and in the tail u'® 1, whereas (x(u)-
m'® ¥). L-moments have also been shown to discriminate between different distributions
better. Therefore, L-moments are more reliable than ordinary moments for estimating the
distribution shape.

Figure 3-14 shows the ranges of several common distributions in terms of L-skewness
and L-kurtosis. Thisfigure can be used to visually fit distributions, or the equations supplied

by Hosking and Wallis (1997) can aso be used to fit distributions. The parameters for each
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distribution can be calculated from the L-moments in a similar manner that parameters can be
calculated from regular moments. For example, the parameters for anormal distribution are

the mean and the standard deviation. Using L-moments, the parameters become the mean

(I 1) and p®°l , (I » isthe L-standard deviation).
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Figure 3-14 — L -moment ratio diagram (from Hosking and Wallis, 1997). Two and
three parameter distributions are shown as points and lines, respectively.
E=Exponential, G=Gumbel, L=L ogistic, N=Normal, U=Uniform, GL O=Generalized
Logistic, GEV=Generalized Extreme Value, GPA=Generalized Par eto,

LN3=L ognormal, PE3=Pearson Typelll, OLB = Overall Lower Bound

3.4.2.2. Regional L-moments

This section discusses the link between L-moments and regional frequency analysis.
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In regional frequency analysis, several locations are grouped together into aregion,
and adistribution is found for the region. It is necessary to develop aregional estimate of the
L-momentsin order to fit a distribution to the region. Hosking and Wallis (1997)

recommend the use of aweighted average of the at-site estimates,

X i o
o= T 2 o1 = 4 OO (3-20)

i=1 i=1
where N is the number of stations, gk is the L-moment of interest, and n; is the number of
data values at each station. Therefore, the at-site L-moments are found from the equationsin
Section 3.4.2.1, and the weighted average is found according to the length of record at each
site. This method results in discontinuities in the frequency domain between regions.

A second method for calculating the regional estimate of the L-momentsisto derive a
relationship between the L-moments and other watershed variables. Runoff varies smoothly
between regionsin asimilar way that precipitation varies smoothly, although there may be
local differences due to topography and/or soils. These can be accounted for by using
topographical and/or soils datain the relationship to allow the regional L-momentsto vary
smoothly between regions). This method was described by Schaefer (1990), and later used in
Canada by Adamowski, et al. (1996). These authors used precipitation data, and derived
relationships across a super-region between the L-moments for homogeneous sub-regions,
mean annual precipitation for the sub-regions, and other sub-region variables. Thisresearch
also used this concept: arelationship between the L-moments and basin-averaged
topographic and physiographic characteristics was found and used to estimate the regional L-
moments. However, the relationships were formed from the network of individual stations,
not from homogeneous sub-regions. A similar method has been used for streamflow data; an
exampleisthe work of Daviau, et al. (2000), who used a GIS system to develop rel ationships
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between L-moments and geostatistical datafor streamflow gaugesin Eastern Canada. This
method will be referred to as the Schaefer (1990) method, although it has been modified (e.g.
Daviau, et al., 2000) to be performed for the network of stations.

The Schaefer (1990) method has some advantages over the Hosking and Wallis
(1997) method. One advantage is that it does not assume that the at-site L-moments are
perfect. By allowing the L-moments to be represented by regressions over all sites available,
anomalous data (high or low) may be smoothed over. The Hosking and Wallis (1997)
method uses the average of all of the L-moments within the region, and one anomalous
station could strongly affect the results. A second advantage is that the regionalized L-
moments are formed from a larger data pool (all sites available instead of the sites within the
region) and can therefore be expected to be more accurate. Therefore, the Schaefer (1990)
method lowers data uncertainty.

When the index-flood procedure is used with m equal to the at-site mean for each
station, the L-location (the first L-moment) will always be equal to 1. Therefore,
distributions are fitted to the following regional L-moments: 1,t7,t57 ts".

Since the regional estimates of L-moments are found from at-site estimates, the
necessity of using L-momentsisclear. L-moments are more reliable than ordinary moments
for short datarecords. It isimportant that the at-site estimates are as accurate as possible, so

that the regional estimate will also be accurate.

3.4.3. Steps Involved in Regional Frequency Analysis

There are four main steps to the Hosking and Wallis (1997) regional frequency

analysis method. These are: 1) Data screening, 2) Identification of regions, 3) Choice of a
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frequency distribution, and 4) Estimation of the at-site frequency distribution parameters.

These steps will be discussed below.

3.4.3.1. Data screening

Dueto errorsin recording or transcribing of data (e.g. incorrect logger setup, or
changes in the rating curve due to vegetation growth), the data must be screened to remove
invalid data. For instance, occasionally negative streamflow data are recorded, or an
incorrect rating curve causes errors in the streamflow estimation procedure.

Hosking and Wallis (1997) presented a discordancy measure to help identify

discordant data. The discordancy measureis

where u is the vector of L-moments, and N is the number of stations. The discordancy
measure is essentially the Mahalanobis distance (e.g. Pao, 1989) of the station in the 5-space
of the L-moments from the mean of the stations. For “large” values of D, the datain that
station should be examined for errors. (For N2 15, D; should be less than or equal to 3.) Itis
possible, however, that the data are correct, even for large D;.

Regional frequency analysis was performed with streamflow station data. These data
(obtained from Water Survey Canada and B.C. Hydro) are generally valid. The analysiswas
also performed with the output of a hydrological model, and the calibration process ensured

that the output was realistic. Therefore, these data were screened before this research.

3.4.3.2. Identification of regions
This step is perhaps the key step in regional frequency analysis. Hosking and Wallis
(1997) assumed that all stations within the region have identical frequency distributions.
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This research incorporated the variation in L-moments across the region by forming
regressions between L-moments and watershed characteristics (Schaefer, 1990). This
method relaxed the requirement for completely homogeneous regions; however,
homogeneous regions were still required for identification of a suitable frequency
distribution. This section describes the general method for forming homogeneous regions
according to Hosking and Wallis (1997), and a specific clustering algorithm by Burn, et al.
(1997).

Hosking and Wallis (1997) called their regions homogeneous, since the frequency
distribution was assumed identical at all stations. They recommend that the stations be
assigned to regions according to non-statistical parameters. Thiswill allow an ungauged
location to be classified into aregion, athough it is not possible to calculate statistical
parameters for the location. In addition, the criterion to test for region homogeneity is based
on the L-moments of the stations, so it would be inappropriate to use the L-moments for
calculating both region definition and region homogeneity. Therefore, climatic and
physiographic variables may be used to define aregion, but the L-CV may not be used.

Hosking and Wallis (1997) presented a criterion for homogeneity based on the L-

moments of the stations. The criterion for homogeneity of aregion is based on

where V isthe weighted standard deviation of the at-site sample L-CVs (1), and my,
and sy are the mean and standard deviation of V, found through simulation. The simulation
is performed by fitting a Kappa distribution to the regional average L-moment ratios, 1, t°,

ts", t,°. A Kappadistribution is used because it is a four-parameter distribution and therefore

78



makes fewer assumptions about the shape of the distribution than the more common three-
parameter distributions. The region is assumed homogeneous (since a single Kappa
distribution is used), and data are simulated for each station, according to the number of
years of record at each station. For each set of data simulated, V is calculated, and the mean
and standard deviation of V are calculated at the end of the ssimulation. If H is sufficiently
large, the region is declared heterogeneous. Hosking and Wallis (1997) suggest that the
region is “acceptably homogeneous’ if H<1 and “possibly homogeneous” if HE2. Schaefer
(1997), however, points out that, due to variability in meteorological datafrom local site
changes through time (station location, growth of trees, etc.), these limits should be changed
to 2 and 3 respectively.

There are two other methods of calculating the heterogeneity measure, V. Thefirst
measure, V2, measures the at-site dispersion of sample L-moments based on L-CV and L-
skewness. The second measure, V3, measures the at-site dispersion of sample L-moments

based on L-skewness and L-kurtosis.

; 1/2 ;2
2—¥gn,:((')-t ) +(tg) tR)g an,y ................................. (3-23)
fi=1 ! 1 b
N /. 1/2 '.']/2
!é_nli(') t;?) (( -t4)g anl§ .................................. (3-24)
fi=1 |

The identification of homogeneous regions is therefore an iterative process:
|dentify regions from non-statistical parameters
Calculate H for each region

If H istoo large for some regions, go back and redefine the regions
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One clustering agorithm that follows the above recommendations is the clustering
algorithm developed by Burn, et al. (1997). Thisagorithm used a combination of
geographic position and other hydrologic datato form regions. Geographically contiguous
regions can be identified.

Many clustering algorithms operate by determining a“distance” between each set of
two watersheds. The two watersheds with the shortest distance between them are clustered
together, and then the distances are re-cal culated between the new cluster and all of the other
watersheds. Again, the two watersheds with the shortest distance between them are
clustered, and the process repeats until the desired number of clusters are obtained.

The Burn, et al. (1997) algorithm used the following distance measure:

where: Dj; isthe dissimilarity between two watersheds (i and j) in terms of one or more
hydrologic data (defined below), d;; is the geographic distance between two watersheds (i and
1), dmax 1S the largest geographic distance between any two watersheds, and w is aweighting
coefficient. A low weighting coefficient implies that the geographic location has limited
effect on the formation of clusters. Asthe weighting coefficient increases, a greater
emphasisis placed on distance, to preserve geographic continuity in the clusters. Burn, et al.
(1997) used aweighting coefficient of 0.3 with a set of streamflow stationsin the
Saskatchewan-Nelson River basin, covering Saskatchewan, Manitoba, and western Ontario.
The appropriate value of w was determined by visual inspection of the clusters formed by the

algorithm.
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The dissimilarity between two watersheds in terms of the hydrologic datawas found

with the following:

P I Xik - Xik
Djj = 1s '—J| .................................................................................. (3-26)
P =1 Xik + X jk

where: p isthe number of hydrologic properties, and Xy is the value of the k™ hydrologic
response property for catchment i. This measure, called the Canberra dissimilarity metric,
was developed by Lance and Williams (1966).

These distance measures were used in the standard clustering algorithm, to develop
the desired number of clusters. The clusters werefirst tested for homogeneity, using the
Hosking and Wallis (1997) homogeneity test. If the clusters were homogeneous, they were
accepted. If they were not, the clustering algorithm was re-applied (using only the
watersheds not already in clusters) and the number of desired clustersincreased by one to
develop different clusters. After several levels of this, a number of homogeneous, or
possibly homogeneous, clusters would be formed, and several “residue’ watersheds
(watersheds that could not be placed in a cluster) may have been left behind. Since the
clustering algorithm was applied several times, it was termed “multi-level clustering.”

After the desired number of clusters was formed, the Burn, et al. (1997) algorithm
entered a second stage, termed the enhancement stage. The residue watersheds were tested to
determine if they could be added to the existing clusters. Discordant stations within a cluster
were tested to determine if they should be moved to another cluster, and thereby improve

both clusters. In thisway, the “best” clusters were formed.
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3.4.3.3. Choice of a frequency distribution

There are several frequency distributions that can be used to describe a particular set
of data. The distributions have different upper and lower bounds, and different tail weights.
It isimportant to ensure that the best fit to a frequency distribution is made, otherwise the
extreme estimates may be in considerable error.

A goodness-of-fit statistic was developed by Hosking and Wallis (1997) to help
determine which three-parameter distributions can be used to describe the data. The statistic
calculates how well the candidate distribution simulates the fourth L-moment, since this L-
moment is not used to fit the distribution. Thefirst step isto assemble a series of candidate
three-parameter distributions. Next, data are simulated at each station (according to the
number of years of record) by assuming a K appa distribution for the region. For the m™
simulation, the regional average L-kurtosis must be calculated (t,™). After al the
simulations, the bias (B,) and standard deviation (s.) of t,~ are found:

B, = N2 (L - 17)

m=1

e (3-27)

s, = dNa- DA (L7 - 1) - N, Bzgu
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Then, for each distribution, the goodness-of-fit measure is found as:

A = ) (3-28)

DIST

wheret, is the L-kurtosis for the distribution. A reasonable criterion for an

acceptablefit is [ZP'STIE1.64. If no distributions are found to be acceptable, a four (or more)
parameter distribution such as the Kappa or the Wakeby distributions should be used. If
several distributions are acceptable, the most robust distribution to misspecification in

parameters should be used.
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The Schaefer (1990) algorithm required that one distribution be chosen for all
regions, to avoid the problem of discontinuity at the edges of the regions. After the

distribution was chosen, the regions were discarded, as they were no longer necessary.

3.4.3.4. Estimation of the at-site frequency distribution parameters

The final step to regional frequency analysisis the estimation of the frequency
distribution parameters. The at-site mean was used as the index-flood, to scale the regional
frequency distribution up or down. The parameters of the regional frequency distribution
were estimated according to the method of regionalization. In the Hosking and Wallis (1997)
method, the weighted averages of the L-moments for all stations within aregion were used as
the regional average L-moments. In the Schaefer (1990) method, the interpolation functions
based on basin characteristics were used to estimate the regional average L-moments. The
regional L-moments were used to calculate the distribution parameters. After the distribution
parameters and the index-flood were cal culated, the distribution was used to calculate the

flood frequency curves.

3.4.4. Description of Data used for Frequency Analysis

As described in Section 3.4.3, non-statistical hydrologic data are required for regional
frequency analysis. Thisresearch used two types of data: climatological data and
physiographic parameters (Solomon, et al., 1968). These data were used to form
homogeneous regions with the Burn, et al. (1997) algorithm (Section 3.4.3.2). In addition,
the Schaefer (1990) algorithm required relationships to describe the variation in L-moments,
and the non-statistical hydrologic data were used to determine these relationships. This

section describes these data.
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Two climatological values were derived from the streamflow data. Thefirst value
was the average Julian date of the largest flood. The second value was the average of the
ratio of the peak flood to the mean streamflow. These two values, while derived from the
streamflow data, are still independent from the L-moments of the data and can therefore be
used for clustering.

The physiographic parameters were derived as defined by Solomon, et al. (1968).
The parameters were calculated from adigital elevation model (DEM), called GTOPO30
(U.S. Geological Survey National Mapping Division), that is composed of 30 arc-second grid
squares for all of Canada. The following parameters were calculated from the DTM:
elevation, slope, azimuth, distance to ocean (8 compass directions), shield effect (8 compass
directions), and barrier height (8 compass directions). These parameters are defined in Table
3-4. Solomon, et al. (1968) found these physiographic parameters to be useful for estimating
monthly precipitation, temperature and runoff. The watersheds for each of the 36 streamflow
gauges and dams were delineated in the digital terrain model, and the average value of each
parameter over each of the basins was found. The drainage area was also found and used as

aparameter.

Table 3-4 — Definitions of Physiographic Parameters

Elevation Average elevation in the grid square
Slope Local slope of the grid square
Azimuth Direction of slope (in degrees with North defined as zero)

Distance to The distance to the ocean in the given compass direction (Figure 3-15a)
Ocean (DTO)

Shield Effect | The sum of the elevation differential of all ascending stretches of terrain
(SHE) encountered when travelling from the ocean shore in the given compass
direction to the corresponding point (Figure 3-15b)

Barrier Height | The difference between the elevation of the square and the highest
(BH) elevation encountered in the given compass direction between the
square and the ocean (Figure 3-15c)
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Figure 3-15 — Definition of Physiographic Parameters

The shield effect, which isthe sum of all differential elevation increases, was
calculated using a signed 2-byte integer (which has a maximum value of 32767). (Dueto

disk space considerations, the 2-byte integer was used.) The mountainous terrain in British

85



Columbia cause the maximum value to be reached for the majority of the pixelsin the
watershed in three of the eight compass directions (northwest, south, and southeast).
Therefore, these three directions could not be used, as there was little or no variation in these
parameters between watersheds and therefore they could not be used for forming regressions.
Due to significant cross-correlation, not all of the remaining physiographic
parameters were used. To lower cross-correlation, only four of the eight compass directions
were used. There were two choices for compass directions. north, east, south and west, or
northeast, southeast, southwest, and northwest. Either set of compass directions would retain
the majority of the information in the parameters. When linear regressions were calcul ated
between the parameters and the L-moments, the regressions were better with the northeast,
southeast, southwest, and northwest directions than with the north, east, south and west
directions. Most summer storm systems in British Columbiatravel in the northeast and
southeast directions, because they are controlled by the jet stream. Thejet streamisan
unstable wind current located just below the tropopause that blows from west to east across
North America. The jet stream, due to the locations of the polar and tropical air masses, the
Coriolis effect of the rotation of the earth, the influence of the mountain ranges, and other
factors, often blows northeastwards or southeastwards over British Columbiainstead of
directly east (Benoit, et al., 1997b). In addition, variations in topography affect precipitation
(e.g. less precipitation falls on the lee side of a mountain range, while more precipitation falls
on the facing side of a mountain range). Many of the watersheds for the streamflow
observation stations used in this research are oriented in a northwest, northeast, southwest, or

southeast direction. Therefore, it was appropriate that these directions should give better
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regressions. Therefore, the northeast, southeast, southwest, and northwest directions for
distance to ocean, shield effect, and barrier height were used to help define the regions.

The following fifteen variables were used in the analysis. drainage area, slope,
azimuth, average Julian date of peak flow, ratio of peak flow to mean flow, distance to ocean
(northeast, northwest, southeast, southwest), barrier height (northeast, northwest, southeast,
southwest), and shield effect (northeast, southwest). The cross-correlation table isincluded
in Table 3-5. Thereis still some high cross-correlation, most notably in the distance to ocean
variables, but these variables were kept since they do contain distinct and potentially

important information.

Table3-5—-Cross Correlation Table for Hydrologically Significant Variables

Area Ratig Jday| Azi| Slopg bh-ng bh-nw| bh-sg bh-sw| dto-ngdto-nw dto-sg dto-sw| she-ng she-sw
Areg 1.000
Ratig 0.125 1.000
Jday| -0.470 -0.568 1.000
Azi|-0.175 0.152 0.201 1.000
Slopg -0.087 -0.080 0.185 0.329 1.000
bh-ng 0.057 -0.437 0.043 -0.341 -0.318 1.000

bh-nw| 0.280 -0.177 -0.391] -0.523 -0.511] 0.482 1.000
bh-sg 0.013 -0.463 0.155 -0.444 -0.205 0.885 0.454 1.000
bh-sw| 0.481] -0.209 -0.436 -0.533 -0.388 0.562] 0.784 0.465 1.000
dto-ng -0.122 -0.730 0.584] -0.189 0.274] 0.163 0.057 0.350 0.092 1.000
dto-nw| -0.028| -0.662 0.467) -0.219 0.146 0.074 0.165 0.190 0.193 0.944 1.000
dto-sg 0.008 0.626 -0.382 0.189 -0.159 0.098 -0.174 0.000 -0.168 -0.871 -0.962 1.000

dto-sm 0.063 -0.371] 0.170 -0.172 0.203 -0.318 0.163 -0.267] 0.183 0.658 0.812 -0.910 1.000

she-ng -0.214} -0.566 0.535 0.066 0.319 0.557 -0.260 0.624] -0.095 0.563 0.348 -0.153 -0.169 1.000

she-sw| 0.179 0.095 -0.367| -0.037] 0.170 -0.367 0.016 -0.513 0.253 -0.083 0.119 -0.266 0.570 -0.493 1.000

L egend:

IArea— Drainage area of the basin

Ratio — Ratio of average peak flow to mean flow

Jday — Average julian date of peak flow

IAzi. — Azimuth angle of the basin

Slope — Slope of the basin

BH-ne — Average barrier height of the basin in the northeast direction

BH-nw — Average barrier height of the basin in the northwest direction

BH-se — Average barrier height of the basin in the southeast direction

BH-sw — Average barrier height of the basin in the southwest direction

DTO-ne — Average distance to the ocean of the basin in the northeast direction

DTO-nw — Average distance to the ocean of the basin in the northwest direction

DTO-se — Average distance to the ocean of the basin in the southeast direction

DTO-sw — Average distance to the ocean of the basin in the southwest direction

SHE-ne — Average shield effect of the basin in the northeast direction

SHE-sw — Average shield effect of the basin in the southwest direction
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These fifteen variables were used to generate relationships to describe the variation in
the statistical parameters.
3.5. Chapter Summary

This chapter has been used to describe the relevant literature and background
information for thisresearch. In the following chapters, the MC2-PM S model will be used to
develop a maximum precipitation event and it will be converted to aflood with the
WATFLOOD/SPL model. Thereturn intervals of the two floods will be used to compare the
flood calculated from the PM S and the traditional PMF. The return intervals will be

calculated from a frequency curve devel oped with the regional frequency analysis method.
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4. Calculating the Probable Maximum Flood with the
Probable Maximum Storm Model

The Probable Maximum Flood (PMF) is the theoretically largest possible flood in a
particular area. For the Columbia River Basin, this may involve a combination of events,
such as alarge snowpack, a quick melting temperature sequence, and a large storm occurring
together. One aim of this research was to improve the estimation of the PMF through
improved estimation of the large storm, termed the Probable Maximum Precipitation (PMP).
Previoudly, these estimates were based on a combination of meteorological and statistical
methods. In thisresearch, a physically-based atmospheric model was used as a possible
alternative.

The MC2-PM S model was used to generate a “ Probable Maximum Storm” (PMS).
Thiswas the largest storm that the model could generate, and was therefore the largest storm
theoretically possible, given the model setup. The PMS was used in place of the Probable
Maximum Precipitation to generate aflood. This section will describe the process used to
develop the PM S and calculate the “new” PMF. The first section will describe the procedure
to develop the PM S with the MC2-PM S model, and the second section will describe the
conversion of the storm into a flood with the WATFLOOD/SPL mode!.

7.1 Calculating the Probable Maximum Storm

This section describes the derivation of the Probable Maximum Storm (PMS). First,
the setup information for the MC2-PM S model is presented. The modifications of the
perturbation to derive the PMS are described: the storm location and the wave parameters

were modified. Finally, the PMSis compared to other significant precipitation events.
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7.1.1 Setup Information for the MC2-PMS Model

The first step of this research was setting up the MC2-PM S model so that the
calculated storm would affect the basin of interest, the Columbia River Basin. Thisincludes
date and location choices, and nesting information. Various historical storms that have
occurred over the Columbia River basin were examined to determine common
meteorological characteristics. Large winter storms tend to begin in the middle of the Pacific
Ocean as asmall perturbation. If conditions are appropriate, the perturbation in the Ocean
develops and collects humidity from the ocean asit travelsto the coast. Therefore, the model
was setup to create a perturbation in the Pacific Ocean. The perturbation was described in
detail in the literature review in Section 3.2.3.

The perturbation was placed in the mid-Pacific, in the approximate location of the
winter storms. The perturbation had atwo-day travel time to the coast (during which the
storm could collect humidity from the ocean). It was necessary to embed the perturbation
inside the general circulation (meteorological conditions) for a particular day, in order to
establish initial and boundary conditions for the model. Since a summer storm that would
occur when the reservoirs were at or near full was desired, the perturbation was embedded
into the general circulation data for September 20, 1983 (the reservoirs arefilled by
snowmelt in the spring and early summer, and are full by late summer). However, it was
found that the storm traveled north towards Alaska, and very little rain fell on southeastern
British Columbia. Figure 4-16 shows the 6-day precipitation from one of these storms at the
150-km grid size. Most of therain fell in the North Pacific and very little fell over the

Columbia River Basin (red box).
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Figure 4-16 — Precipitation accumulation (mm) from a storm that traveled through
Alaska

Pierre Pellerin at RPN (personal communication, 2000) examined two large historical
summer storms for the Columbia River Basin (July 11-13, 1983 and August 25-27, 1984).
He found that, unlike winter storms, large summer storms for the Columbia River Basin do
not originate in the mid-Pacific. The storms begin near the coast and will tend to travel
northwards unless a high-pressure system already exists in the north to force the storm
inland. Therefore, it was decided to move the perturbation closer to the coast, and to embed

the perturbation inside the July 13, 1983 general circulation data. This date was chosen
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because alarge historical storm occurred on this date, and a high-pressure system existed in
the north. Figure 4-17 shows the geopotential height plot of the perturbation embedded in
the July 13, 1983 general circulation. Geopotential height approximates the actual height (in
this Figure, in decameters) of a pressure surface (in this Figure, 1000 mb) above mean sea-
level. The pressure waveisvisiblein this Figure as alow-high-low pattern just west of the
continental United States. Note the existence of the high-pressure system to the north-east of
the perturbation in northern British Columbia and Alberta. With these changes, the storm

affected the Columbia River Basin.

Previzion 00 hevres walide 00:00 le 13 juillet 1983

|

Figure 4-17 — The perturbation embedded in the July 13, 1983 general circulation
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However, the new location for the storm was less than a one-day travel time to the
coast. Therefore the storms would not have enough time to collect humidity from the ocean
before reaching the coast. Wet and dry humidity profiles were created to address this
problem. The curvesin Figure 4-18 were used (Pellerin, personal communication, 2000).
These curves were based on observed summer storms. They have not yet been validated to

determine if they produce the largest possible storm.
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Figure 4-18 — Relative Humidity Profilein thea) Warm Front and b) Cold Front
(Vertical axisisPressurein mb, Horizontal axisis Relative Humidity in %)

Once the model was setup so that storms were occurring over the Columbia River
Basin, it was necessary to “ cascade’ the model down to aresolution appropriate for the
hydrological model. In thisresearch, data at aresolution of 10 km were required for the
WATFLOOD/SPL model. A three-part simulation was performed: 150 km, 50 km, and 10

km. The simulation domain for the 150 km resolution is shown in Figure 4-19, where the
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highlighted section is the location of the theoretical perturbation for the Probable Maximum
Storm. The 150 km simulation was a hemispheric model, to allow for simulation of global
atmospheric phenomena. The highlighted section in Figure 4-20 shows the portion of the
hemispheric simulation that was simulated in the 50 km resolution. The highlighted section
in Figure 4-21 shows the portion of the 50 km simulation that was modeled in the 10 km
resolution. Note that the Columbia River Basin isincluded as part of the domain. The lower

mainland watersheds are also included, but are not examined as part of this research.

Figure 4-19 — Calculation Domainsfor MC2: 150km domain showing location of
perturbation
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Figure 4-20 — Calculation Domainsfor MC2: 150 km domain showing 50 km domain
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Figure 4-21 — Calculation Domainsfor M C2: 50 km domain showing 10 km domain

7.1.2 Adjusting the location of the storm

The location that Pellerin (personal communication, 2000) used for the perturbation
generated a short, intense storm over the Columbia River Basin. After 12 hours of
simulation, a cyclone with a depression of 32 mb was visible just to the west of Vancouver
Island. For the rest of the ssmulation, the low pressure point remained west of Vancouver
Island, but an "arm" of the cyclone passed from south to north over the basin between hours

6 and 30. (Notethat at the 10-km resolution, the “arm” passed over the basin between hours
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0 and 24, since three hours are lost with each cascade.) After 48 hours, the cyclone had
dissipated, and a new storm was developing in northwestern U.S.A. A series of figures
showing the development of the storm every three hoursis available in Appendix A (Figures
A-1to A-17). For the Columbia River Basin, the precipitation occurred as aresult of the
“arm” passing over the basin (between hours 0 and 24). Therefore, the 24-hour precipitation
was used in this research, so that the precipitation from the passage of the arm was obtained.

The perturbation location was based on the true location of the storm in July 1983.
However, it was thought that another location might increase the storm’ s intensity and/or
duration. Probable Maximum Flood analysisis often performed with a 3-day Probable
Maximum Precipitation, so alonger storm would be desired.

The storm could not be moved to the east, since the storm must begin over the ocean.
Therefore, various locations to the west of the original location were used to generate storms.
As the storm moved west, it had more time to develop before it reached the coast. The storm
was moved by degrees west and then north or south, as shown in Table 4-6. The
precipitation was calculated at the 150-km, 50-km, and 10-km resolutions, as shown in
Figure 4-19 to Figure 4-21. The average precipitation for the 24 hours over al of the
Columbia River Basin grid squares was calculated and shown in Table 4-6. The Table also
shows the average precipitation over the Mica Dam basin, because the July 1983 storm
affected mainly the northern part of the basin near Mica Dam. For the entire Columbia River
Basin, the largest precipitation occurred during the storm that was 2 degrees west and 2
degrees north of the original location. For the Mica Dam Basin, the largest precipitation

occurred during the storm that was 2 degrees west and 1 degree north of the original location.
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Table 4-6 — Comparison of the 10-km precipitation with the center of the perturbation
placed in variouslocations

Location Avg. Columbia River Avg. MicaDam Basin
Basin Precip. Precip.

Original, historical July 1983 52.3 mm 55.2 mm
storm location

1 degree west, 1 degree north 51.1 mm 49.4 mm
1 degree west 57.4 mm 53.1 mm
1 degree west, 1 degree south 51.3 mm 49.2 mm
2 degrees west, 2 degrees north 59.1 mm 56.1 mm
2 degrees west, 1 degree north 57.5 mm 56.9 mm
2 degrees west 54.9 mm 54.1 mm
2 degrees west, 1 degree south 43.8 mm 39.3 mm
3 degrees west 48.6 mm 46.2 mm
4 degrees west 48.2 mm 45.4 mm

It should be noted that the higher average precipitation for the Columbia River Basin
is due to the location of the precipitation event with relation to the Mica Dam basin. A large
amount of precipitation occurred in the valley below Mica Dam, and these data were not
included in the average for Mica Dam. For instance, the Illecillewaet River at Greeley
station (WSC #08NDO13, drainage area of 1170 km?) is located in the valley below Mica
Dam, and received an average of 106.5 mm for the storm that was 2 degrees west and 1
degree north of the original location.

Figure 4-22 shows the calculated 24-hour precipitation for the two storms highlighted
above. The approximate limits of the Columbia River basin are shown with red rectangles.
The storm that was 2 degrees west and 1 degree north consisted of one intense band of
precipitation near MicaDam. The storm that was 2 degrees west and 2 degrees north was a
broader, less intense band of precipitation that was not focused on Mica Dam. This visual
comparison shows that the storm two degrees west and 1 degree north of the original location
had a better rainfall distribution over MicaDam. Therefore this storm location was used for

further analysis, since the PM S estimate for Mica Dam was desired.
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Figure 4-22 — Precipitation (mm) from Perturbation located at: a) 2 degreeswest and 1
degree north, b) 2 degreeswest and 2 degrees north
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It was found that the location of the perturbation did not affect the duration of the
storm. Each location generated a storm that lasted approximately 24 hours. In addition, the
location of the perturbation did not greatly affect the direction of the storm. The central
pressure low for the storms stayed just to the west of VVancouver Island. Asthe location of the
perturbation moved west, the strength of the precipitation band near Mica Dam varied. The
strongest precipitation band near Mica Dam occurred for the storm that was 2 degrees west
and 1 degree north of the original location.

The majority of the precipitation (that fell over the Columbia River Basin) fell in a
precipitation band near Mica Dam. The topographic effect of the mountains caused the
precipitation band to be narrow and confined to the mountain pass. Figure 4-23 illustrates
that the majority of precipitation fell over the lower elevations of the domain. The figure was
made from the storm that was 2 degrees west and 1 degree north of the original location, and
the elevation was the average elevation for the 10 km? grid. The use of the average values
for a10 km? grid is not as accurate as point precipitation and point elevation data, but it
suffices for illustrating the topographic effect. Above approximately 1600 m, the 24-hour
precipitation decreased. These results are in agreement with Jarrett (1990a), who found no
meteorological, hydrological, or paleohydrological evidence of significant precipitation at
high elevations in the American Rocky Mountains (2300 m in Colorado, but only 1600 min
Montana — Jarrett, 1990b). The WMO method for PMP calculation does not ensure that
precipitation occurs mainly in the valleys and mountain passes. Therefore, the MC2-PM S
method is superior to the WMO method in its calculation of the topographic effect on

precipitation.
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Figure 4-23 — Comparison of Precipitation versus Elevation using 10km? grids
7.1.3 Parameter Variation to determine the Probable Maximum Storm

Once the storm location was chosen, the pressure and temperature wave parameters
were varied to determine the maximum storm. The MC2-PMS model is a combination of the
MC2 model and an added PMS module. The PMS module creates an atmospheric
perturbation, and the MC2 model develops the perturbation. In this research, the search for a
maximum storm consisted of modifying the PMS module parameters only. The internal
meteorological parameters of MC2 were not altered because this was outside the scope of

this preliminary hydrological investigation. This section develops the relationships between
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the wave characteristics and the storm magnitudes and directions. First, the methodology for
the parameter variation is presented. Next, the results of the parameter variation are
examined to determine the effect of the parameters on the storm location and the effect of the

parameters on the storm magnitude.

7.1.3.1 Parameter Variation for MC2-PMS perturbations

Several PM S module parameters controlled the characteristics of the pressure and
temperature waves (described in Section 3.2.2.2). Preliminary studies at RPN showed that
three parameters in particular, the amplitude of the temperature wave, the amplitude of the
pressure wave, and the lapse rate were the most important parameters (Pellerin, personal
communication, 2000). These parameters were varied to determine how they would affect
the characteristics of the storm. In particular, two relationships were desired: between the
parameter values and the direction of the storms; and between the parameter values and the
magnitude of the storm.

Accordingly, the three variables were allowed to vary across their “normal” range.
The normal range for the amplitude of the temperature wave is 5°C to 15°C. For the
amplitude of the pressure wave, the normal rangeis 3 mb to 15 mb. The normal range for
the lapse rate is 6.5 to 10 °C/km. A high, medium, and low value of each variable was
chosen, and every combination was used to generate a storm (27 storms). All storms were
generated with the perturbation located two degrees west and one degree north of the original

location, as determined from Table 4-6. The variables are listed in the table below.

Table 4-7 —Values of parameter variablesfor each storm

Storm|  Pressure wave Temperature wave Lapse Rate—s
# | amplitude—ax (mb) | amplitude—bx (°C) (°C/km)
1 15 15 6.5
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2 7 15 6.5
3 3 15 6.5
4 15 10 6.5
5 7 10 6.5
6 3 10 6.5
7 15 5 6.5
8 7 5 6.5
9 3 5 6.5
10 15 15 8
11 7 15 8
12 3 15 8
13 15 10 8
14 7 10 8
15 3 10 8
16 15 5 8
17 7 5 8
18 3 5 8
19 15 15 10
20 7 15 10
21 3 15 10
22 15 10 10
23 7 10 10
24 3 10 10
25 15 5 10
26 7 5 10
27 3 5 10

These 27 storms were generated, and then cascaded from 150 km grid squares to 50
km grid squares, and finally down to 10 km grid squares (Figure 4-19 to Figure 4-21). Each

cascade refined the precipitation estimate, as the mountain topography improved.

7.1.3.2 The relationship between the parameters and storm direction

The movement of the low pressure system was used to determine the travel direction
of the storm. However, the 27 storms all behaved in the same way. In each case, the central
low formed and deepened, and traveled north to Vancouver Island. The low pressure system
stayed west of Vancouver Island for the entire length of the storm. A low pressure “arm” of
the storm, which passed from south to north over the basin between hours 6 and 18, caused
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the precipitation over the Columbia River Basin. Each storm produced similar pressure plots
at each time step (the time variation in pressure was similar to that of the series of figures
(Figures A-1to A-17) shown in Appendix A for the storm described earlier). The storms
differed mainly in the depth of the low pressure system. These data showed that the storm
travel direction was not sensitive to characteristics of the perturbation.

Similarly, the travel direction for the storm was also not affected by changing the
location of the perturbation (Section 7.1.2). In each case, the low traveled north to
Vancouver Island, and alow pressure “arm” passed over the Columbia River Basin.

Further experiments were performed with the perturbation embedded inside
September 20, 1995. These storms traveled in a different direction from storms that were
embedded inside July 13, 1983. However, varying the parameters showed that all storms
embedded in September 20, 1995, traveled in the same direction.

Generally, the storm travel direction seemed insensitive to the characteristics of the
perturbation; however, it was sensitive to the conditions surrounding the perturbation.
Therefore, it was assumed that the travel direction is dependent only upon the atmospheric
characteristics of the day chosen for embedding the storm. If a storm over another basin
were desired, a different day would have to be chosen as the embedding day. The historical
record would need to be examined to find a day with appropriate conditions (such as the day

asignificant historical storm occurred).

7.1.3.3 The relationship between the parameters and storm magnitude

The magnitude of the storms varied widely. For instance, Figure 4-24 shows a small
storm with very little precipitation, and alarge storm with significant precipitation. The red

rectangles show the approximate limits of the Columbia River Basin.
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Figure 4-24 —a) Low Precipitation Storm (#25), b) High Precipitation Storm (#1)

Due to this wide variation, an examination of the relationship between the parameters
and the storm magnitude required a definition of storm magnitude. There were many

possible indicators, such as: intensity, total depth, and areal coverage. This research was
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concerned with calculating the Probable Maximum Flood. As such, a statistic that could be
used to evaluate the effect of the storm on runoff was used.

The runoff isrelated to the total depth of precipitation that falls over a particular
watershed. Therefore an appropriate statistic would be the average (over al grid squaresin a
particular basin) of the total depth of precipitation. Since the precipitation for all 27 of the
storms occurred during the first 24 hours of the 10-km simulation, the total depth of
precipitation was taken as the precipitation after 24 hours. The averaging was performed for
the basin upstream of Mica Dam, since the storm was focused on the area near Mica Dam.

This statistic was calculated for all 27 storms, and displayed in Table 4-8. The
highest precipitation (55.0 mm) occurred in storm 1, and the lowest precipitation (8.4 mm)
occurred in storm 25. The table has been arranged so that the effect of the lapse rate (s) may
be clearly seen. In al cases, when the wave amplitudes were kept constant, the effect of the
lapse rate on precipitation was small. The average precipitation varied by less than 7% when
the lapse rate was changed. For instance, storms 1, 10 and 19 had constant values for the
wave amplitudes (ax=15, bx=15), and three different |apse rates. However, the precipitation
was not greatly affected (51.1 mm to 55.0 mm). The lapse rate was therefore considered a
minor variable. The storms with the lapse rate set equal to 10 °C/km generally had the

highest precipitation.

Table 4-8 — Comparison of Storm Magnitudesfor 27 simulations (based on 10-km
precipitation estimates)

Ax,Bx | Storm Avg. Mica | Storm Avg. Mica Storm Avg. Mica
(s=6.5) | Precip.(mm) | (s=8) | Precip. (mm) | (s=10) | Precip. (mm)
15, 15 1 55.0 10 51.1 19 54.9
7,15 2 39.9 11 39.9 20 42.3
3,15 3 25.5 12 26.2 21 26.2
15, 10 4 42.0 13 42.0 22 43.0
7,10 5 36.1 14 38.3 23 38.7
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3,10 6 29.5 15 29.5 24 30.0
15,5 7 8.9 16 8.9 25 8.4
7,5 8 17.3 17 17.3 26 17.3
3,5 9 18.8 18 19.6 27 19.6

The table shows that the two wave amplitudes had a significant effect on

precipitation. In addition, the data showed a high degree of interaction between the

variables. Therefore, the plot in Figure 4-25 was created to show the relationship between

the wave amplitudes and the average precipitation. When one variable was high and the

other was low, very little precipitation resulted: the conditions were insufficient to generate

significant precipitation. If both amplitudes were low, a small storm developed. However,

significant precipitation resulted when both amplitudes are large. The maximum storm

occurred in the vicinity of ax=15 and bx=15.

Figure 4-25 — Average Mica Precipitation ver sus Ax and Bx, using the nine original

simulations
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These data showed that |arge precipitation occurred when the temperature and
pressure wave amplitudes were both large. Therefore, several simulations in the vicinity near
ax=15 and bx=15 were performed in order to refine the estimation of the maximum storm.
All of the storms were calculated with the lapse rate, s, equal to 10 °C/km. The extra storms,

along with the values of the two wave amplitudes, are listed in Table 4-9.

Table 4-9 — Extra simulationsto refine the maximum storm

Storm | AX Bx | Storm | AX Bx
# #

28 13 13 36 12 13

29 11 11 37 11 14

30 12 12 38 10 13

31 13 15 39 9 13

32 15 13 40 10 12

33 11 13 41 10 14

34 13 11 42 9 12

35 11 12 43 9 14

These storms were generated with MC2-PMS. The average for Mica Dam of the 24-
hour precipitation estimates was calculated for each storm. These data were used to generate
another surface plot of precipitation versus the two amplitudes (Figure 4-26). This Figure
shows that a maximum in precipitation was found (at ax equal to 10 mb and bx equal to 13

°C). This storm was the Probable Maximum Storm.
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Figure 4-26 — Average Mica Precipitation ver sus Ax and Bx, including the extra
simulations and showing the maximum precipitation

7.1.4 Comparing the PMS to Other Significant Precipitation Events

The Probable Maximum Storm is shown in Figure 4-27. Thiswas the largest
precipitation that could be generated by MC2 with this particular perturbation embedded in
this particular day. Figure 4-27a shows the 24-hour precipitation for the entire domain of the
10-km simulation, while Figure 4-27b shows the 24-hour precipitation over the Columbia
River modeling areaonly. The vertical linesin Figure 4-27b indicate the area above Mica
Dam. Thetotal precipitation ranged from approximately 19 mm to 111 mm, with an average
of 73.4 mm over the Mica Dam basin. The topographic effect of the mountains on the
precipitation isvisible in Figure 4-27. The use of new amplitude parameters caused the
precipitation to move sightly; it occurred mainly in two areas: in the valley above Mica
Dam, and in the valley below MicaDam. The lllecillewaet River at Greeley station (WSC

#08NDO013) islocated near Rogers Pass (the horizontal linesin Figure 4-27b correspond to
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the lllecillewaet River basin). The average basin precipitation over the Illecillewaet River
basin for the 1983 storm was 89 mm, and corresponded to a 500-year return interval flow.
The average basin precipitation for the PM S storm was 96 mm, the decrease from 106 mm
caused by the precipitation moving out of the Rogers Pass and into the valley. (It should be
noted that this storm was created in order to maximize precipitation for the Mica Dam basin,
and it therefore does not necessarily contain the maximum precipitation for any other basin.)
The topographic effect of the mountains was well represented in the precipitation plots from
the MC2-PMS model. The WMO method does not tend to concentrate the precipitation in
valleys and mountain passes, and therefore this method was an improvement to the

calculation of maximum precipitation.
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Figure 4-27 — 24-hour Precipitation from the Probable Maximum Storm derived by
MC2-PMS

The Probable Maximum Storm precipitation was compared to the precipitation from

the July 11-13, 1983 storm. The data for the 1983 storm were taken from the HRBL model
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precipitation estimates by Danard (1996b). In the three-day period from July 11 to 13, 1983,
the largest amounts of precipitation fell on July 11, 1983. Figure 4-28a shows a contour plot
of the historical precipitation for this date (adjusted with the precipitation adjustment factor
field described in Section 3.3.3). An average of 32.4 mm of precipitation fell over the Mica
Dam basin on this date (range: 0 to 76 mm). The difference between the PM S and the July
11, 1983 data was cal culated and plotted on a contour plot in Figure 4-28b. For most of the
Columbia River Basin domain, there was a greater amount of precipitation for the PMS
storm. There were small sections where the PMS storm was 0 to 20 mm less than the 1983
storm, but these were mainly outside of the MicaDam basin. Therefore, the Mica Dam basin

experienced greater precipitation during the PM S than it experienced during the 1983 storm.
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Figure 4-28 — a) Precipitation (in mm) from July 11, 1983 b) Difference (in mm)
between the precipitation for the Probable Maximum Storm and July 11, 1983
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Miller (1993) estimated the Probable Maximum Precipitation (PMP) for the
Columbia River Basin. The PMP estimate has not been officialy adopted by BCHydro and
istherefore confidential at thistime, so afull comparison between the PMP and the PM S
cannot be made. However, an average 24-hour precipitation of 73.4 mm over the Mica Dam
basin for the PMS was on the order of 50% of Miller’s PMP estimate for the Mica Dam
basin.

These comparisons show that the MC2-PM S estimate of the Probable Maximum
Storm islarger than the 1983 historical storm (and hence, is larger than all observed

historical storms), but lower than the PMP estimate.

7.1.5 Summary of the MC2-PMS method to develop precipitation events

The PM S was cal culated with the MC2-PM S model using physically-plausible
techniques, and was therefore a physically-based maximum storm within the range of
perturbations allowed in this study. The mountain topography was evident in the
precipitation of the PMS: the magjority of the precipitation occurred within the valleys and in
the mountain passes (e.g. Figure 4-23). Thisresult matched with research by Jarrett (1990a),
who found that significant precipitation events do not occur at high elevation (in Colorado,
no significant precipitation occurred above 2300 m, but this decreases at latitude increases to
become 1600m in Montana— Jarrett, 1990b). Other research by Jarrett and Costa (1988)
showed that storm transposition from aregion of low elevation to aregion of higher
elevation is not supported by hydrological, meteorological, or paleohydrologic data. The
mountain topography was not as easily discerned in the PMP precipitation plots (Miller,
1993), and significant precipitation occurred at high elevation. The PMP estimate for the

Columbia River Basin depends on storm transposition, and may be inaccurate. The WMO
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method cannot recommend a standard method for topographic regions because of the great
variation in the effects of topography upon precipitation (WMO, 1986, p. 139) and site-
specific analyses are often approximations of the topographic effect. In this research, the
magnitude of the PM S suggested that the WMO method may overestimate the true
atmospheric maximum storm. These results are very important for determining safety at
hydrologic structures (e.g. dams) in mountainous terrain.

These data suggest that the MC2-PM S model is suitable for estimating severe
precipitation events. However, the interna parameter settings within MC2 have not yet been
verified. A meteorological analysis should be performed to determine the appropriate
settings for severe precipitation events. The PM S estimate is subject to change, but the

preliminary results presented in this research indicate that the model is suitable for this use.

7.2 Generating the Floods caused by the Probable Maximum
Storm

Once the Probable Maximum Storm was found, it was necessary to convert the
precipitation into streamflow. In order to calculate the flood caused by the PMS, the storm
must be entered into a hydrological model. There were several reasons for using a
distributed, physically-based hydrological model, such asWATFLOOD/SPL. Firstly,
WATFLOOD/SPL was designed to accept the gridded output of an atmospheric model (such
as MC2), and the gridded precipitation could be used directly in the hydrological model.
Secondly, the PM S and PMP represent larger magnitude storms than any historical storm.
Physically based models are required when estimating flows that have not been observed in
the past (Refsgaard and Knudsen, 1996). Thirdly, the hydrological processes behave non-
linearly, and simple prediction techniques do not alow for accurate forecasting of runoff, as

shown in the research below. Finaly, the PMS must be combined with alarge snowpack and
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afast melting temperature sequence to form one scenario of the PMF. The snowpack and the
temperature sequence have not been historically observed. The combination must be
simulated together in a physically based manner, due to the interactions between the
antecedent conditions and the runoff from the storm. Therefore, the WATFLOOD/SPL
model was used to convert the PMSinto a flood.

The flood derived from the PM S is compared to a historical flood and to the

theoretica PMF.

7.2.1 Comparison of the PMS flood to the historical 1983 storm

The first comparison was between the historical 1983 storm and the flood from the
PMS. In Figure 4-29, there are three hydrographs. The grey trace shows the observed inflow
hydrograph for Mica Dam during the July 11-13 storm. The solid black traceis a calculated
hydrograph, based on using the 1983 data (Danard, 1996b) as forcing data for
WATFLOOD/SPL. There are some differences between these traces; in particular, the
WATFLOOD/SPL model overestimates the streamflow before the storm. However, during
the July 11-13 storm event, the traces were very similar and the WATFLOOD/SPL model
accurately predicted the volume of runoff. The dashed black trace used the HRBL model
datafor 1983 as forcing data for WATFLOOD/SPL, except that the data for July 11 were
replaced by the PM S precipitation (the datafor July 12 and July 13 were unchanged). A
comparison of the solid black and dashed black traces shows the volume of streamflow was

approximately doubled with the PMS on July 11 compared to the historical 1983 storm.
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Figure 4-29 — Comparison of Mica Dam inflow with the Historical Storm and the PM S

7.2.2 Comparison of the PMS flood to the traditional PMF estimate

The flood from the PM S was also compared to the PMF estimates. However, the
comparison was qualitative instead of quantitative because the PMF estimate has not been
officialy adopted by BCHydro and is therefore confidential at thistime.

One particular scenario for the PMF consists of a maximized snowpack and a
maximized melting temperature sequence, followed by the 3-day Probable Maximum
Precipitation (PMP). The 100-year snowpack for April 1 was used as the maximized

snowpack. The 100-year melting temperature sequence was derived for May 15 to June 4,
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and used in place of the maximized melting temperature sequence. Danard (1995) calculated
these variables. In addition, Danard (1995) also derived a distributed PMP, centered on the
Mica Dam basin, based on the Miller (1993) PMP estimates. The PMP was placed on one of
three different dates: May 15, June 1, and June 15. In addition, a“pre-storm” was also
calculated to ensure that the watershed would be wet prior to the PMP (i.e. soil moisture
egual to the porosity). The pre-storm was to begin two days before the PMP. The worst
possible date of these three dates was chosen for use in calculating the PMF.

In order to simulate the PMF from the Danard (1995) data, the WATFLOOD/SPL
model required continuous meteorological forcing datafrom April 1 (the date of the
maximized snowpack) until after the PMP ended. Therefore, the data were embedded inside
datafor another year (available from the Danard, 1996b, model). The year 1972 was chosen
because it was the wettest year since the Mica Dam was constructed, and sufficient data
existed to be able to create 6-hour estimates of precipitation and temperature.

Figure 4-30 shows four inflow hydrographs for MicaDam. The solid black lineisthe
unaltered 1972 data from the HRBL model, while the dashed black hydrograph is the 1972
data with the PMS storm on June 1. The dashed grey lineisthe PMF calculation with the
100-year snowpack on April 1, the 100-year melting temperature sequence from May 15 to
June 4, and the 1-day PMP on June 1 (the PMP was shortened to match with the length of the
PMS). The solid grey hydrograph is the same snowpack and melting temperature sequence,
but with the PM S storm on June 1 instead of the PMP. The effect of the maximized
snowpack and melting temperature sequences can be observed as the difference between the
two black lines (regular 1972) and the two grey lines (with snowpack and melting

temperatures). A comparison of the grey lines shows that the volume of runoff from the
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PMP (after subtracting base flow) was approximately eight times the volume of runoff from
the PM S (after subtracting base flow), while the peak flow for the PMP was twice the peak
flow of the PMS. These differences between the PMP and PM S are very large, which could

have significant implications for many dams.

| | ——— Normal 1972

'l = = = 1972 with PMS on June 1

|| ——— PMF Snow and Temp, PMS on June 1
. '~ - -~ PMF Snow and Temp, PMP on June 1

13-May 27-May 10-Jun 24-Jun 8-Jul
Figure 4-30 — Comparison of Mica Dam inflow with various PM F scenarios

Therefore, the flood caused by the PMS was larger than observed flood events, but
smaller than the PMF. These results were expected, since the PMS was larger than the 1983

historical storm, and smaller than the PMP.
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7.3 Summary of the MC2-PMS/WATFLOOD method to develop
storms and floods

The combined use of the MC2-PM S and WATFLOOD/SPL models appearsto be a
viable method to calculate the PMF.

The flood that was calculated from the PM S was larger than observed flood events,
but smaller than the PMF (calculated with the PMP). The WMO (1986) method does not
ensure that the PMP is physically possible, and the use of an overestimated PMP would cause
an overestimated PMF. In contrast, the PMS was developed in a physically-based manner,
and the use of the WATFLOOD/SPL model ensured that the resulting flood was also
physically-based. These resultsindicated that the PMF may have been overestimated.

However, before the MC2-PM S method can be used in practice, meteorol ogists must
carry out an in-depth analysis of the physical constraints set on the internal workings of the
numerical weather model MC2. For example, the following variables and processes will
need to be assessed with regard to the impact on the PM S (Pellerin, 2000):

Atmospheric energy

Sea surface temperature

Precipitation scheme

Grid resolution
The effects of these and other variables and processes should be examined to determine the
effect on the maximum precipitation. Nevertheless, the MC2-PM S approach promisesto

account directly for geographical features that can not be accounted for by the traditional

approach of transposing storms.
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5. Generating Improved Flood Frequency Curves

The flood frequency curve for the Mica Dam basin was estimated in order to alow
the return intervals of the floods from the PMS and PMP to be compared. The regiona
frequency analysis using L-moments (Hosking and Wallis, 1997) method was used to
calculate the frequency curves due to its robustness. This research used two sources of
streamflow data: observed streamflow and calcul ated streamflow from a hydrological model.
All of the analysis was performed with the annual maximum daily flows. The use of along
continuous time series of deterministically simulated streamflow for flood frequency curve
estimation is arelatively new concept that is not yet fully established (e.g. Lamb, 1999, and
Cameron, et al., 1999). This application of the concept is unique in that the deterministically
simulated streamflow time series was longer than the observed streamflow time series, and
therefore it was less prone to sampling errors. The time series for ssmulated streamflow was
96 years long (1899-1994), whereas the time series for the observed streamflow was an
average of 34 yearslong (with arange of 5 yearsto 91 years). Therefore, it was possible to
compare the frequency curves generated by each source, and so validate the concept. After
the concept was validated for this hydrological model and data set, the flood frequency curve
and its confidence limits were derived from the simulated streamflow. This chapter will
describe the validation of the use of simulated streamflow data, the derivation of the Mica
Dam basin flood frequency curve and the derivation of the confidence limits for the flood
frequency curve. Chapter 6 will compare the peak flows calculated in Chapter 4 to the flood

frequency curve computed in this chapter.
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7.1 Validation of the use of simulated streamflow data

The use of hydrological models to deterministically generate continuous streamflow
for along time seriesisrelatively new. Relatively few authors have been able to generate a
long time series of streamflow for flood frequency analysis, because of short observed
meteorological records. Lamb (1999) was able to generate continuous streamflow for 10
years, while Cameron, et al. (1999) were able to generate continuous streamflow for 21
years.

In this research, a 96-year continuous time series of distributed meteorol ogical
forcing datawere available. There were, however, severa differences between the Lamb
(1999) and Cameron, et al. (1999) studies and this study. The other studies compared the
frequency curves derived from observed and ssmulated data and found that the cal cul ated
data produced reasonable flood frequency curves. However, both used multiple parameter
sets, and parameter sets were accepted or rejected based on their ability to reproduce peak
streamflow estimates for a particular basin (in addition to a suitable hydrograph). In contrast,
the WATFLOOD/SPL model is adistributed physically-based hydrological model with a
single optimal parameter set that appliesto all sub-basins, and the calibration process focuses
on the generation of correct hydrological processes (not solely on the hydrograph and/or peak
flows). The High Resolution Boundary Layer (HRBL) model data (Danard, 1996b) was
available for the time period 1899 to 1994 (96 years), which islonger than the average of 34
years for the streamflow observation stations on the Columbia River (range from 5 to 91
years). A longer time record is beneficial for flood frequency analysis purposes and this was
one of the reasons for simulating the 96-year record. Although the modeled meteorological

datawere subject to modeling error, the model was based on observations, and thereis
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evidence that the synthesized streamflow was close to reality. However, the use of simulated
streamflow to generate a frequency curve must be validated with this data set and with this
model. In addition, although the WATFLOOD/SPL has been validated for many of its
hydrological processes (e.g. Bingeman, et al., 2001, Carlaw, 2000, Cranmer, et al., 2001,
Mousavi and Kouwen, 2000, Wong, 2000, and others), it has not been validated for the
purpose of frequency curve estimation.

Hydrographs of the observed and simulated streamflow were presented in Figure 3-7
(Columbia River at Nicholson station) and Figure 3-8 (Mica Dam inflow). These showed
that the meteorological data could be used to generate reasonable streamflow time series.
However, the frequency curves were based on the annual maximafor each year. Therefore,
to further test the simulated streamflow data, the residuals of the peak flows for the station
with the longest time series (Columbia River at Nicholson, 90 years) were examined to
determine their characteristics. Figure 5-31 shows the observed and simulated peak flows
plotted against one another. Thereisasdlight biasin this Figure; the lower peak flows tended
to be overestimated, while the higher peak flows tended to be underestimated. However, the
peak flows were generally close to the 45° line. Figure 5-32 shows the histogram of the
differences between the simulated streamflow and observed streamflow peak flows. The
mean of the residuals was slightly negative (-3 m/s), and they had a slight negative skew.
However, the plot shows that the residuals were distributed around zero, indicating that there
was very little systematic error. The residuals were not correlated in time (the correlation
coefficient for a 1-year lag was 0.08), which also indicated that there was very little

systematic error.
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Figure 5-31 - Comparison plot of ssmulated and observed peak flowsfor Columbia
River at Nicholson station
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Figure 5-32 — Histogram of Residuals of Peak Flowsfor Columbia River at Nicholson
(90 data points)

Due to model spin-up errorsin WATFLOOD/SPL, it was not possible to use the
entire 96-year simulated streamflow time series. The model spin-up errors are caused by
starting the model with incorrect storage values (e.g. depression storage equals zero, soil
moisture equals the antecedent precipitation index (Viessman, et al., 1989), etc.). To
determine the length of time that spin-up errors affect the streamflow, the model is started in
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two different years, and the results compared to determine when the streamflow estimates
match. For the Columbia River domain, the spin-up period is approximately two years.
However, the following method may be used to decrease the model spin-up time. A typical
year may be used as alead-in year (the year 1971 was used). The lead-in year was used to
begin the 96-year simulation (1899-1994), and the first year (1899) of output was discarded.
In thisway, instead of starting with zero storage on January 1, 1899, the model starts with a
typical watershed condition. Only one year of data was discarded, so 95 years of smulation
were available for analysis (1900-1994). A brief sensitivity study was performed to
determine the effect of using alead-in year on the streamflow. When the streamflow data
calculated with alead-in year were compared to streamflow data cal culated without alead-in
year, the ssmulated annual peak streamflow was only dslightly affected for the years 1900 and
1901 (1899 was discarded). After these years, the peak streamflow with and without the
lead-in year wereidentical. Consequently, the frequency curves were not significantly
affected by the use of the lead-in year; however, the extra year of data would tend to increase
the accuracy of the curves.

In the HRBL model, there were non-random errorsin the regressions between
precipitation and horizontal convergence (see Section 3.3.3). There were very few
precipitation stations located at high elevation, and therefore the regressions did not represent
the precipitation at high elevation very well. Also, the use of horizontal convergence to
predict precipitation may also cause non-random error in the precipitation estimate.
Therefore, two simulations were carried out with the WATFLOOD/SPL model. Thefirst
pass used the unmodified HRBL model data, while the second pass used a precipitation

adjustment factor (PAF) field based on the errors from the first simulation (Kouwen, et al.,
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2000). The PAF field was generated from the errors in streamflow volume to correct
precipitation errorsin the HRBL model, and it had a greater effect on flow volumes than on
flow peaks. Thisanalysis compared the output from both runs to the observed frequency
curves. Inthisanalysis, the PAF field was generated with a single-pass correction of the
streamflow volume (see Section 3.3.3). In thisway, the bias was removed but the dispersion
was left unchanged. Itislikely that additional passes to correct the streamflow volume
would improve the frequency curves.

In order to perform the validation of the model’ s ability to reproduce frequency
curves, frequency curves were generated from the observed data and from the ssimulated data
for each station. The observed streamflow database included 32 streamflow stations from
Water Survey of Canada, and four B.C. Hydro dams, as described in Chapter 2. The 95-year
simulated streamflow series were “shortened” to match with the observed streamflow
database. The shortened data series were used to eliminate the possibility of introducing a
bias due to the longer historical time series. The 1910's and 1920’ swere afairly dry period,
while the 1960's and 1970’ s were wetter. The comparison of a short time series (which may
only include wetter (or drier) periods) to the full time series (which would include all
periods) would be inappropriate. For instance, the Incomappleux River near Beaton had
observed datain the years 1914-1915 and 1952-1995 (46 years) and so the data for these
same years (1914-1915, 1952-1994) were extracted from the 95-year ssimulated streamflow
data. The shortened data series are referred to as the “short series’ in thisresearch. Two
short series were extracted: the first series was the simulation that used the unmodified

HRBL model data, and the second series was the ssimulation that used a PAF field.

124



The L-moments (Hosking and Wallis, 1997) were used to generate the frequency
curves for the observed and simulated streamflow series. Individual frequency curves were
created for each station (regional analysis was not used at this point). The L-moments for
each station were calculated for the observed data, the short series without PAF field, and the
short series with PAF field.

Finally, a Wakeby distribution was fitted to each set of L-moments. The Wakeby
distribution was chosen because it is a five-parameter distribution and is therefore very
flexible and fits most data. Higher-order L-moments are much more robust than higher-order
conventional moments (Hosking and Wallis, 1997), and therefore it is possible to use a
greater number of the moments for distribution fitting than would typically be used in a
conventional analysis with central moments. In addition, it is easier to compare frequency
curvesiif they are generated with the same probability distribution, and atypical three-
parameter distribution may not fit al three sets of L-moments.

There was considerable variation in the frequency curves. For brevity, only five of
the larger sub-basins are discussed in detail. However, the frequency curves for al 36
stations are included in Appendix B.

The Columbia River near Fairmont Hot Springs station is an 891 km? basin in the
northwest arm of the Columbia River. The curves are plotted in Figure 5-33. The
WATFLOOD/SPL model consistently overestimated the streamflow at this station; the
suspicion of biasin the HRBL model data was partly based on the results of this station. The
frequency curves supported these results. The simulated curve overestimated the observed
frequency curve by afactor of about two at all probabilities. The simulated-with-PAF field

curve showed that the PAF field has over-corrected for this error somewhat. The PAF field
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improved the results; the simulated-with-PAF field frequency curve corresponded to the
observed frequency curve for high probabilities of exceedance. The average peak flows were
modeled correctly, but the shape of the peak flows was incorrect, and therefore the use of
simulated data to create a frequency curve was partially valid at this station.

160 —

Columbia River near Fairmont Hot Springs
~+ 08NA045
120 Legend

] 50 years ——C——— Observed
4 ——O——— Simulated, short series

————f——— Simulated with paf, short series

Flow (cms)
3

40

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Exceedance

Figure 5-33 — Frequency Curvesfor Columbia River near Fairmont Hot Springs

The Illecillewaet River at Greeley station isan 1170 km? basin in the western part of
the basin, below Mica. Its headwaters are located near Rogers Pass. The curves are plotted
in Figure 5-34. The simulated-with-PAF field curve followed the observed curve closdly;
they were coincident at most probabilities. This station experienced its 500-year flow from
the 1983 storm. The simulated streamflow data were able to match thisvalue. The PAF
field improved the estimate of the frequency curve, and the use of simulated data to create

the frequency curve was reasonable.
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Figure 5-34 — Frequency Curvesfor Illecillewaet River at Greeley

The St. Mary River near Marysville station is a 1480 km? basin that is not in the
Columbia River Basin, but is modeled due to its proximity to the Columbia River. The basin
is south of the headwaters of the Columbia River. The curves are plotted in Figure 5-35.

The curves showed that the observed and simulated frequency curves were similar in shape,
however the simulated curves underestimated the observed flood frequency curve. At this
station, the PAF field lowered the streamflow values, which increased the difference between
the observed and simulated flood frequency curves. There was a 20-25% error for the
simulated-with-PAF field frequency curve, and a 10-15% error for the simulated-without-
PAF field frequency curve. At this station, the PAF field did not appear reasonable, and
since the peaks were underestimated, the simulated streamflow data could not be used to
estimate the frequency curve. The reason for this discrepancy is the nearness of the St. Mary
River to watersheds above the Fairmont Hot Springs gauge, where the flows were greatly

overestimated (Figure 5-34). The overestimation at the nearby gauges caused an over-
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correction at the St. Mary gauge. This problem can be traced back to the single pass HRBL

model, where possibly too much emphasis was placed on “rubbersheeting” to all the rainfall

observations. This problem may be improved with the use of atwo- or three-pass PAF field.
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Figure 5-35 — Frequency Curvefor St. Mary'snear Marysville

The Columbia River at Nicholson station is a 6660 km? basin in the northwest arm of

the Columbia River, below Fairmont Hot Springs. Since this station is downstream of the

Fairmont Hot Springs station, it was also consistently overestimated, in part due to the

overestimation at Fairmont Hot Springs. This station is the oldest Columbia River Basin

station (91 years), and these data have been relied upon to verify the earlier years of the

HRBL model data. The curves are plotted in Figure 5-36. As expected, the ssmulated-

without-PAF field curve showed that the streamflow was overestimated. However, the PAF

field corrected the error, and the simul ated-with-PAF field curve was amost coincident with

the observed frequency curve. This result was very important, as it showed that the

WATFLOOD/SPL model was well calibrated, and cal culated the streamflow accurately for a
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period of 90 years. The simulated streamflow data could be used to develop the frequency

curve at this station.
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Figure 5-36 — Frequency Curvesfor Columbia River at Nicholson

Finally, the Mica Dam has a drainage area of approximately 20,000 km? and is
located at the northern end of the north-south arm of the Columbia River. The reservoir
inflow data for Mica Dam were calculated by B.C. Hydro. The curves are plotted in Figure
5-37. Thethree curves were coincident for most probabilities, and at high probabilities, the
simulated curves overestimated the observed curve. There was very little difference between
the ssmulated with and without PAF field curves, mainly because the Mica Dam drainage
area contained areas where precipitation was overestimated and other areas where it was
underestimated. The use of simulated streamflow to calculate the frequency curve was valid

at this station.
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Figure 5-37 — Frequency Curvesfor Mica Dam

In general, approximately two-thirds of the stations showed good agreement between
the observed curve and at least one of the simulated curves, where “good agreement” referred
to coincidence for some or all of the main part of the frequency curve. The errors ranged
from -50% to +100%, with the larger errors occurring at the stations with low streamflow.
This suggested that the frequency curves derived from simulated streamflow data were able
to model the observed frequency curves.

The ssimulated-without-PAF field and simulated-with-PAF field frequency curves
were compared to determine which curve was more accurate. Theresults are listed in Table
5-10. It was found that the simulated-with-PAF field curve was closer to the observed
frequency curve for 16 stations (six stations showed only marginal improvement). The
simulated-without-PAF field was closer for eight stations (two stations showed only marginal
differences). Twelve stations showed no improvement when the PAF field was used (it is

likely that these drainage basins contained areas that were overestimated and areas that were
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underestimated, and these cancelled). These data suggested that the PAF field was an
important adjustment, but further refinements could be made to improve the eight stations
where the PAF field worsened the results. A second or third pass to calculate the PAF field
may improve the results, or atopographical correction could be applied. In general, the PAF
field improved the estimation of peak flows, and consequently the PAF field adjustment was

adopted.

Table5-10—List of Which Simulated Curve Best Approximated the Observed Curve

Simulated with PAF field
was better

Simulated without PAF field
was better

Both were about equal in
accuracy

Columbia River near
Fairmont Hot Springs

Split Creek at the Mouth

Mather Creek below Houle
Creek

Kuskanax Creek at 1040 M
Contour

Lardeau River at Marblehead

Jordan River above Kirkup
Creek

Columbia River at Nicholson

Columbia River at Donald

Arrow Dam

Revelstoke Dam

Count: 10

Marginaly better:

Blaeberry River below
Ensign Creek

Illecillewaet River at Greeley

Incomappleux River near
Beaton

Kuskanax Creek near Nakusp

Duncan River below BB
Creek

Spillimacheen River near
Spillimacheen

Count: 6

Kicking Horse River at
Golden

Stitt Creek at the Mouth

Beaton Creek near Beaton

St. Mary River near
Marysville

Carney Creek below
Pambrun Creek

Fry Creek below Carney
Creek

Count: 6

Marginaly better:

Kirbyville Creek near the
Mouth

St. Mary River below Morris
Creek

Count: 2

Blaeberry River above
Willowbank Creek

Gold River above Palmer
Creek

Canoe River below Kimmel
Creek

Goldstream River below Old
Camp Creek

Barnes Creek near Needles

Kaslo River below Kemp
Creek

Keen Creek below Kyawats
Creek

Gold River above Bachelor
Creek

Lemon Creek above South
Lemon Creek

Cranberry Creek above
BCHydro Intake

Duncan Dam

Mica Dam

Count: 12
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It was also hecessary to evaluate the ability of the hydrological model to reproduce
the high-flow end of the frequency curves. Frequency curves are often used to predict the
magnitude of large flood events, and the large flows were of interest to this research. In
genera, the high-flow tails of the observed frequency curves were poorly estimated by the
simulated curves, but this was related to the length of observed record. Figure 5-38 shows the
simulated 100-year return interval flow divided by the observed 100-year return interval
flow, versus the number of years of record for each station. The ratios of the 100-year return
interval flow for the simulated without PAF data were plotted with black diamonds, while the
ratios of the smulated with PAF data were plotted with grey squares. In general, the
simulated with PAF data were closer to the ideal ratio (1.0) than the smulated without PAF.
The average error for the simulated without PAF data was 0.29, while the average error for
the smulated with PAF was 0.23. Thisindicated that the PAF field improved the estimation
of extreme peak flows. For the ssmulated with PAF data, stations with short records (less
than 30 years) had ratios that varied from 0.4 to 1.4. Stations with 40 or more years of data
showed improvement, with most stations between 0.6 and 1.2. Frequency curves derived
from short data records may be inaccurate, but the accuracy improves as the record length
increases. Inthis case, as the data record became longer, the simulated with PAF frequency
curve estimated the observed curve more accurately. When stations with short data records
were not included in the analysis, the data showed that the simulated with PAF data from

WATFLOOD/SPL were accurate for calculating frequency curves, even at the high-flow tail.
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Figure 5-38 — Comparison of 100-year return interval flowsversusthe number of years
of record

The natural variation within the observed data was used to determine whether the
errors in the Q100 ratios were reasonable. The comparison was only performed for the
simulated with PAF data (the simulated without PAF data were not compared because the
previous analysis indicated that the ssmulated with PAF data were superior for estimating
extreme peak flows). Figure 5-39 shows the results. The open grey boxes depict the natural
variation within the observed data. The data points were calculated by performing the
frequency analysis on continuous subsets of the data for each station. First, 10-year
sequences were removed from the observed time series, starting with the first data point, then
the second data point, and so on. Then, 11-year sequences were removed from the observed
time series, and so on until all data points for each observed time series were used. After
each frequency curve was calculated, the 100-year return interval flow was compared to the
100-year return interval flow using all of the observed data. The ratios for the simulated
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short data with PAF were superimposed upon the natural variation. It was found that most of
the stations could be classified as within the natural variation. Three stations were
significantly below the area of natural variation in Q100 estimation: Kuskanax Creek near
Nakusp (0BNEOO06), Incomappleux River near Beaton (08NEOO1), and Columbia River near
Fairmont Hot Springs (08BNA045). Thefirst two of these stations are located in an area
where the HRBL model underestimated precipitation, and the PAF was used to increase
precipitation. However, the other stations nearby prevented the PAF from fully correcting
the flows at these two stations. The shape of the ssmulated frequency curve for the Columbia
River at Fairmont Hot Springs station did not match the observed frequency curve. This
station was over-corrected by the PAF, which lowered the streamflows too much. The PAF
field could be improved to decrease the underestimation at these locations. These results
have demonstrated that the error in estimation of the high-flow end of the frequency curveis
within the natural variation of the observed data. Therefore, the model was able to estimate

the extreme flows on the frequency curves.
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Figure 5-39 — Ratio of Q100 for simulated series compared to variability in observed
Q100 ratio: the grey boxes arethe variability in observed data (Q100 for a short data
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compared to the Q100 observed estimate.

Finally, the data were examined to determine if they were stationary intime. The
Columbia River at Nicholson station had 91 years of observed data available for analysis.
Ten-year consecutive sequences of annual maxima of both the observed data and the
simulated with PAF data were used to create frequency curves. The 100-year return interval
flow of each frequency curve was compared to the 100-year return interval flow of the
frequency curve calculated with the full time series of observed data. Thereisaslight
downward trend in 100-year return interval flow estimates (alinear trendline goes down 0.3
over 90 years). However, the slight downward trend is mainly due to the large
overestimation in the 1920's and 1930’s. A 10-year moving average of the observed data

reveals that the remainder of the variation is due to local high and low variations that
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correspond to the wetness or dryness of each ten-year sequence, with no downward trend.
Theloca high and low variations in the two data series corresponded very well. They
compare particularly well for the period when the LFM data were available for calculating
the meteorological data (1971-1994). Therefore, these data showed that the frequency curves
calculated with ssmulated data compared very well with the observed frequency curves, and

also that the data were mainly stationary over time.
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Figure 5-40 — Comparison of Stationarity: Q100 estimates from 10-year sequences of
observed and simulated data, divided by Q100 observed

In general, the use of simulated data to calculate frequency curves resulted in good
agreement between the simulated and observed curves. However, there was some
disagreement between observed and simulated frequency curves for high flow —low
probability events. The estimation of the probability of the PMF involves the high-flow —

low probability region of the frequency curve, and so the disagreement in this region was
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examined. Frequency curves made from short time series may be inaccurate, and so the
stations with longer records were examined. There was better agreement for stations with
longer time series; in particular, there was excellent agreement for the station with 91 years
of data. It appears that frequency curves derived from the long simulated time series (95
years) would improve the frequency curves derived from the observed data series for all
stations.

This comparison showed that the use of ssimulated data to calculate flood frequency
curvesisvalid. The emphasis during calibration of WATFLOOD/SPL was on ensuring that
the hydrological processes were reasonable and on obtaining the correct volume of runoff.
However, the model was also accurate for the peak flows, as evidenced by the agreement of
the frequency curves, although little effort was made to fit the peak flows.

The remainder of this research to derive improved flood frequency curves uses the
95-year simulated data, generated with the PAF field, except where noted. The curves are
compared to the observed frequency curves.

7.2 Derivation of the flood frequency curve

This section presents the derivation of the estimate of the frequency curve for Mica
Dam. Theregiona frequency analysis method was described in some detail in the literature
review in Section 3.4. The method contains four main steps: data screening, identification of
regions, choice of afrequency distribution, and estimation of the at-site frequency
distribution parameters. Thefirst of these steps was performed during model calibration and
validation.

The frequency curves were derived for two data sets: the observed streamflow data,

and the simulated streamflow data. The simulated streamflow was the 95-year time series of
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streamflow calculated by using the HRBL meteorological data (adjusted with the PAF field)
asforcing datafor WATFLOOD/SPL. For the 32 streamflow stations and 4 B.C. Hydro
dams, there were atotal of 1073 years of observed streamflow, and 3420 years of smulated

streamflow.

7.2.1 Identification of Regions and Choosing Appropriate Distributions

The identification of homogeneous regions is an important step in regional analysis.
The ability to fit a frequency distribution depends on having homogeneous regions. There
were two sets of data (observed streamflow and simulated-with-PAF streamflow) used in this
analysis, and it was decided to use the same regions for both sets of streamflow, so that
comparisons between the frequency curves could be made. This placed agreater restriction
on the choice of regions. they must be homogeneous (or possibly homogeneous) for two
different data sets. The 36 streamflow stations and dams were grouped with the Burn, et al.
(1997) clustering agorithm.

This algorithm (described in Section 3.4.3.2) uses the Canberra dissimilarity metric to
calculate the distance between any two stations and form clusters. The Canberra
dissimilarity metric was calculated with all fifteen physiographic and climatic variables
(described in Section 3.4.4). Several trials with various values of the weighting coefficient
between 0.1 and 0.9 were performed. Visual inspection of the clusters was used to select a
satisfactory distance weighting coefficient.

The algorithm generated four clusters with a weighting coefficient of 0.3 (observed
data) or 0.4 (simulated data). The variation occurred because of the use of different data sets.
These results compared well with the weighting coefficient of 0.3 used by Burn, et al.

(1997). The boundaries of the clusters remained relatively constant for the two data sets.
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Some stations near the boundaries shifted between regions for different data sets. The nearly
constant division between the regions showed that the data sets were similar, further
validating the use of ssmulated data to derive frequency curves. Where differences between
the data sets existed, the two sets of clusters were modified until both data sets had identical
homogeneous (or possibly homogeneous) clusters.

The four clusters obtained from the algorithm are shown in Figure 5-41. Two stations
were not placed into a cluster (they are marked with a star). Ellipses were placed around the
clustersfor illustrative purposes (the program does not calculate ellipsoidal regions). The
two stations that were not placed in aregion were originally placed into regions by the
program; however, to alow the clustersto be identical for both data sets, the stations were
removed from their regions. One of these stations was outside the Columbia River basin (but
ismodeled due to its proximity), and the second station was Revelstoke Dam. The clusters
showed a high degree of geographic continuity, and they generally corresponded to west and
east basins, for high and low elevations. These four regions were significantly different
meteorol ogically (due to the locations of the mountains). Since streamflow is affected by
meteorology, it follows that streamflow clusters also show these meteorol ogical regions.
Streamflow stations within each region were not independent, since a given storm could
occur over several watersheds. A lack of independence does not affect the clustering
process, but it lowers the effectiveness of the regional frequency analysis method by reducing
the effective amount of data. Thisisacommon problem in regional frequency anaysis,
however, Hosking and Wallis (1988) found that intersite dependence had little effect on the

estimated quantiles of the frequency curves, but the variance of the estimates increased.
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Figure 5-41 — Final Clustering of Streamflow Stations

The four clusters were tested for homogeneity. Hosking and Wallis (1997) provided
three tests of homogeneity (Equations 3-22, 3-23, and 3-24). They recommended that all
three homogeneity criteria should be less than one, in order for the cluster to qualify as
homogeneous. It was found that if the limit of the homogeneity criteria was set to one, then
the clustering algorithm was unable to find suitable clusters. However, if values up to two
were allowed, then clusters were formed. Schaefer (1997) offers a possible solution to this
problem: since variability exists in meteorological data due to local site changes through time

(e.0. land use changes), the homogeneity limit should be increased to two. Therefore, the
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limit for the homogeneity criteria was increased to two, and the clusters were assumed

homogeneous for distribution fitting. Table 5-11 shows the results of the homogeneity test.

MicaDam islocated in thefirst cluster. The clusters for both data sets were homogeneous

according to the Schaefer (1997) definition, and possibly heterogeneous according to the

Hosking and Wallis (1997) definition. These clusters were accepted for the regional

frequency analysis.

Table 5-11 — Results of Homogeneity Test

ClusterfNumber of| Location Total Observed Streamflow:| Simulated (with PAF field)
Stations Y ears of Homogeneity Criterion Streamflow: Homogeneity|
Record Criterion
1* 6 Northwest 136 0.81/-1.35/-0.88 0.54/-0.09/-0.74
2 8 Northeast 341 0.73/0.68/0.35 059/-1.62/-1.51
3 9 Southeast 276 0.46/-1.06/-1.71 -1.44/0.13/-0.24
4 11 Southwest 320 1.68/-0.52/-0.54 1.83/-0.41/-0.89
* This region contains Mica

Hosking and Wallis (1997) also provided atest to determine which frequency

distributions fit the data (Equation 3-28). This test assumes that the clusters are

homogeneous. The results of the test for acceptable distributions for each region and data set

arelisted in Table 5-12. The distributions are listed in the order of most acceptable to least

acceptable. Thistable shows some differences between the two data sets. To allow

comparisons between the frequency curves, the same frequency distribution was used for

both data sets. For Region 2, it was not possible to use a simple three parameter distribution

for the data (no distributions fit both data sets). For each of the other regions, one or more

distributions were acceptable for both data sets. The choice of distribution therefore

depended upon the region.
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Table 5-12 — Acceptable Distributions for Each Region

Cluster;  Location Observed Streamflow: Simulated (with PAF field)

Valid Distributiong Streamflow: Valid Distributions

1 Northwest GLO, GEV, GNO P3, GEV, GNO

2 Northeast P3, GNO, GEV GLO

3 Southeast GEV, GNO, P3 GNO

4 Southwest GEV, GNO, GLO GNO, GEV, P3
Cluster 1 contains the inflow to Mica Dam

GLO = Generalized Logistic, GEV = Generalized Extreme Vaue, GNO =

Generalized Normal, P3 = Pearson Type 3

7.2.2 Calculating the Frequency Distributions for Mica Dam

This research used two methods to develop the frequency curves. The first method
(Hosking and Wallis, 1997) cal culates the weighted average of the L-moments for aregion
and usesit to fit the regional frequency curve. This method resultsin discontinuitiesin the
frequency domain between regions. Runoff varies smoothly between regions in the same
way that precipitation varies smoothly. The second method (Schaefer, 1990) derives
regression relationships between the L-moments and other non-statistical variables. Schaefer
(1990) derived regression relationships for homogeneous sub-regions. In thisresearch, the
regression relationships were performed for the network of 36 stations and dams. The
network could be used because the entire network (with L-moments calculated from the
simulated streamflow data) was only possibly heterogeneous according to the Schaefer
(1997) definition (Table 5-13), and therefore, the use of a single region was possible. The
regressions were used to calculate regional L-moments that were then used to fit the
frequency distribution. The regressions varied smoothly across all regions, avoiding the
discontinuity problem, however a single frequency distribution that can fit all of the regions

isrequired. Thisresearch used the Wakeby distribution, since there were no three-parameter
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distributions that fit al four regions for both data sets. The estimated L-moments from the

regressions were used to fit the frequency distributions.

Table 5-13 - Heterogeneity statisticsfor the entire network of 36 stations and dams for
the smulated streamflow (95 year s) data.

Heterogeneity | Statistic | Hosking and Wallis Schaefer (1997)
measure (1997) Conclusion Conclusion

H1 (Eq. 3-22) 2.78 Heterogeneous Possibly Heterogeneous
H2 (Eq. 3-23) -0.30 | Homogeneous Homogeneous

H3 (Eq. 3-24) -0.95 | Homogeneous Homogeneous

The first method, Hosking and Wallis (1997), used the data from the six stationsin
Region 1 to create the frequency curves, atotal of 136 years for the observed data and 570
years for the simulated data. Table 5-12 shows that both the Generalized Extreme Vaue and
the Generalized Normal distributions were acceptable for both data sets for this region.
However, the Wakeby distribution was used to calculate the frequency curves, in order that
the frequency curves could be compared with the curves calculated by the second method.

The observed and simulated regional frequency curves are shown in Figure 5-42.
Generally, the smulated frequency curves underestimated the observed frequency curves, but
there was reasonabl e agreement for the probabilities of exceedance of 0.2 to 0.6. However,
there were significant differences outside of thisregion. This research was mainly interested
in high-flow, low-probability events (such asthe PMF). At a probability of exceedance of
0.001, the simulated curve underestimated the observed curve by more than 2000 m*/s, or
approximately 30% (see Figure 5-42). One possible reason for this result was that the six
stations that were included with Mica Dam in region 1 all had short time series (21-23 years),
and therefore the accuracy of the observed frequency curve was questionable. The single

station analysis indicated that the simulated streamflow data estimated the high-flow, low-
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probability streamflow poorly when the time series was short (see Section 7.1). Thelarge
discrepancy between the observed and simulated frequency curves was likely dueto a
combination of errorsin the observed curve and errorsin the ssmulated curve. The amount

of error in the simulated frequency curve was therefore unknown.
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Figure 5-42 — Comparison of Frequency Curvesfor Mica Dam calculated using
Regional Frequency Analysis (regular Hosking and Wallis 1997 method): the observed
curve used the observed data records, the smulated curve used the 95-year smulated
streamflow data.

The second method (Schaefer, 1990) was also used to estimate the regional L-
moments. This method used the datafrom all 36 stations by calculating the relationships
between the L-moments and physiographic parameters. The regressions were created from a
total of 1073 years of observed data, or 3420 years of simulated data. Therefore, since this
method used a larger data set, it was not as susceptible as the regular Hosking and Wallis
(1997) method to errorsin the individual station L-moments.

The relationships between the L-moments and the physiographic and climatic
variables were examined with linear regressions. It was found that a large number of
parameters were required to obtain a suitable fit. However, there were only 36 stations
available for the regression, and 15 variables. A subset of these variables, 11 variables, was
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required to obtain regressions with an R? greater than 50%. An R? coefficient of 50%
implied that the regression explained 50% of the variation in the dependent variable (the L-
moment). The regressions for the observed L-moments, L-CV (t), L-skew (t3), L-kurtosis
(tz), and the fifth L-moment (ts), are presented in Table 5-14. Similarly, the regressions for
the simulated L-moments are presented in Table 5-15. These two tableslist the best
regressions with aset of 11 variables. A comparison of these tables shows that the parameter
sets that gave the best regressions for the four L-moments and the two data sets were slightly

different.

Table 5-14 — Regression Parametersfor Observed L-moments

L-moment Parameters R°

L-CV (t) | Constant, area, Julian date of peak, azimuth, slope, DTO-SE, 0.584
DTO-SW, SHE-NE, SHE-SW, BH-NE, BH-NW, BH-SW

L-skew (t3) | Constant, azimuth, slope, DTO-NE, DTO-SE, DTO-SW, SHE- | 0.615
NE, SHE-SW, BH-NE, BH-SE, BH-SW

L-kurtosis (t4) | Constant, Julian date of peak, slope, DTO-NE, DTO-SE, DTO- | 0.571
SW, SHE-NE, SHE-SW, BH-NE, BH-NW, BH-SE, BH-SW

t5 | Constant, ratio of peak flow to mean flow, azimuth, slope, 0.643
DTO-NE, DTO-SE, DTO-SW, SHE-NE, SHE-SW, BH-NE,
BH-SE, BH-SW
Table 5-15 — Regression Parametersfor Simulated L-moments
L-moment Parameters R*
L-CV (t) | Constant, Julian date of peak, ratio of peak to mean flow, 0.582

azimuth, slope, DTO-NE, DTO-NW, DTO-SE, SHE-NE,
SHE-SW, BH-SE, BH-SW

L-skew (t3) | Constant, area, Julian date of peak, ratio of peak to mean flow, 0.604
DTO-NE, DTO-NW, DTO-SW, SHE-NE, BH-NE, BH-NW,
BH-SE, BH-SW

L-kurtosis (t4) | Constant, area, Julian date of peak, ratio of peak to mean flow, 0.642
slope, DTO-NE, DTO-NW, DTO-SE, DTO-SW, SHE-SW,
BH-NW, BH-SE

t5 | Constant, area, ratio of peak to mean flow, azimuth, slope, 0.608
DTO-NE, DTO-NW, DTO-SE, SHE-SW, BH-NE, BH-NW,
BH-SW
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The results of the regressions for the observed and simulated L-CV regressions are

shown in Figure 5-43 and Figure 5-44. These Figures show that the regressions captured the

variation in observed and simulated L-CV very well.
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Figure 5-44 — Predicted L-CV versus Simulated L-CV, showing results of regression

In general, the regressions for the simulated L-moments had similar regression

coefficients to the regressions for the observed L-moments. The Schaefer (1990) algorithm

depends on suitable rel ationships between the L-moments and the other non-statistical

variables. The agorithm allows for the at-site L-moments to contain error, and the error may

be different for each data set. Therefore, the best regressions for each parameter were used,
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even though they were different for both sets of data. In thisway, the regressions that were
most indicative of the regional pattern of L-momentsin the data were found. The use of
regression allows the regional estimate of the L-moment to be set according to regional
variationsin the at-site L-moments. The regional estimates will be “close” to the at-site L-
moments, but “corrected” with the regional variation.

The observed and simulated flood frequency curves were calculated and compared in
Figure 5-45. The difference between the frequency curves was significantly smaller with the
Schaefer (1990) method. As before, the simulated frequency curve underestimated the
observed frequency curve dlightly. Inthe normal range of probabilities (approximately 0.4 to
0.8), the two frequency curves agreed well with each other and with the Hosking and Wallis
(1997) curves (compare Figure 5-42 and Figure 5-45). The main difference between the
Figures occurred for high-flow, low probability events. For a probability of exceedance of
0.001, the simulated frequency curve underestimated the observed frequency curve by
approximately 100 m*/s (compared to a 2000 m*/s difference for the Hosking and Wallis,
1997, method). The use of the regressions allowed the estimation of the regional L-moments
to take advantage of longer time series stations. Errorsin the observed L-moments for the
six stationsin Region 1 were minimized when aregression was performed with other stations
that had longer time series, and there was less overestimation. Similarly, the underestimation
in the simulated data was minimized when regressions were formed with stations that were
not underestimated. Thus the simulated streamflow data may be used with the Schaefer

(1990) method to generate flood frequency curves.
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Figure 5-45 — Comparison of Frequency Curvesfor Mica Dam calculated using
Regional Frequency Analysis (Schaefer 1990 method): the observed curve used the
observed data recor ds, the simulated curve used the 95-year simulated streamflow data.

7.2.3 Discussion of Flood Frequency Curves

This section derived an improved regional flood frequency curve. The regional
frequency curve was based on the 95-year smulated streamflow time series calculated by the
WATFLOOD/SPL model. The Hosking and Wallis (1997) regionalization method generated
afregquency curve that underestimated the observed frequency curve; however, this problem
was aleviated with the use of the Schaefer (1990) algorithm. The 95-year simulated regional
frequency curve was compared to the observed regional frequency curve, and reasonable
agreement was found.

Thefinal issue in the use of simulated data to derive frequency curves was the
derivation of confidence limits. A regiona flood frequency curve based on observed data
contains uncertainty due to observational error and due to the regionalization process.
Hosking and Wallis (1997) presented a Monte Carlo method to derive confidence limits for
frequency curves. The Monte Carlo simulation calculated multiple realizations of
streamflow data for each station from a distribution fitted to the original data. Using the
same regions, the regional frequency curves were re-calculated for each realization, and the
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95% confidence limits were found. However, this method was unsuitable for use with
simulated data, since ssmulated data also contain uncertainty due to the model(s). The model
uncertainty was likely to be greater than the uncertainty due to observational error and
regionalization. Model uncertainty would not be included in the Monte Carlo simulation
described above. The next section describes the analysis to calculate confidence limits for

the frequency curve derived from simulated data.

7.3 Derivation of the confidence limits for the flood frequency
curve

One goal of this research was to determine accurate flood frequency curves. In
general, the accuracy of aflood frequency curve improves with the use of alonger time
series. Thisresearch used a 95-year simulated time series of streamflow to derive the
frequency curve. However, although these data increased the accuracy of the frequency
curve, they also caused the confidence limits to grow wider because of model uncertainty in
the smulated data. This section focuses on defining the confidence limits for the flood
frequency curve.

The Hosking and Wallis (1997) method to develop confidence limits for regional
flood frequency curves was inappropriate due to the parameter uncertainty in the model.
This method accounts only for uncertainty due to measurement error or errorsin region
definition. However, simulated streamflow data contain parameter uncertainty, and
therefore, a Monte Carlo analysis was performed to develop the confidence limits.

There were two problems with performing a classical Monte Carlo analysis. First, the
calibration philosophy of WATFLOOD/SPL differs from that of other authors who have

performed Monte Carlo analyses. Other authors (e.g. Binley, et al., 1991) have used multiple
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parameter sets to develop a mean and standard deviation for each parameter, which are then
used to describe the parameter distribution. This method of devel oping the parameter
distributions would not represent the WATFLOOD/SPL parameter space appropriately, since
WATFLOOD/SPL does not use multiple parameter sets. The calibration philosophy of
WATFLOOD/SPL (Kouwen, et al., 2000) assumes that the calibrated parameter values are
close to optimum (i.e. at or near the peak of the optimum multi-dimensional hill on the
objective function). The limits of the parameters should be set small enough that all of the
simulations occur on a single multi-dimensional hill and do not “jump” onto another hill,
since thiswould represent an invalid parameter set for WATFLOOD/SPL. Thus, the
parameter distributions were set according to the calibration philosophy of
WATFLOOD/SPL, and not according to the methods established in the literature. Secondly,
aMonte Carlo based on the full 95-year time series of simulated streamflow would require
too much computer smulation time. Therefore, the Monte Carlo was based on afive-year
time series (1981-1985), and variation in the five-year time series was used as an analogue
for the 95-year time series variation. This assumption was tested after the analysis was
complete; the 95% confidence limits from the five-year runs and the 95-year runs were
compared.

Therefore, this analysis presents a method for devel oping confidence limits for the
flood frequency curves that agrees with the calibration philosophy of WATFLOOD/SPL.
The following subsections present: the examination of the shape of the objective function, the
parameter distributions for the Monte Carlo analysis, the conversion of the five-year Monte
Carlo confidence limitsto 95-year confidence limits, and the regional estimates of the

confidence limits.
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7.3.1 Investigation of the Objective Function

The multi-dimensional “hill” of the objective function of WATFLOOD/SPL near the
optimum parameters was difficult to define. However, the limits of the “hill” were required
to help define the parameter distributions. There were 70 different parametersinvolved in
the Monte Carlo analysis (Table 3-2). Very little was known about the physically possible
parameter space of WATFLOOD/SPL, except for the calibrated parameters and the
physically possible ranges for the parameters (Table 3-2). It was known that there were
inter-rel ationships between certain parameters (for instance, the melt factor and base
temperature parameters are both used in the snowmelt algorithm), however, these inter-
relationships were complex and poorly defined. In addition, the limits that are used represent
the limitsthat are physically possible for each parameter. It is possible that the “ physically
probable” limits (likely parameter values) are smaller than the “ physically possible” limits
(determined from textbook values).

To help determine the limits of the “hill,” the parameters were varied one at atime.
Thiswould give an approximate description of the “smoothness” of the objective function,
and the approximate extent of the multi-dimensional “hill” of the objective function.
Secondly, when the one-at-a-time analysis indicated that the objective function was not
smooth, two parameters were varied simultaneously to define interactions between variables.

The first step of investigating the objective function was to modify one parameter at a
time. The physically possible range was available for each parameter. Each variable varied
between its minimum and maximum, in eleven steps: the first used the minimum value, the
eleventh used the maximum value, and the other simulations used values ranging between the

minimum and maximum.
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The results of the analysis were compared in two different ways. Firstly, the one
variable analysis was used to calculate the relative sensitivity of the model to each parameter,
to determine which parameters affect peak flows. Secondly, the analysis was used to
evaluate the smoothness of the objective function.

The automatic “fine tuning” step of the calibration process minimized the root-mean-
square error between observed and simulated streamflow. However, this statistic was not the
ideal statistic for analyzing the objective function shape for two reasons:

Flood frequency analysisis based on the peak flows each year. The peak flows should
also be used in evaluating the objective function shape.

The root-mean-square statistic is aways positive, and information regarding over- or
under-estimation islost. Thisinformation is useful for developing confidence limits.

The statistic was therefore based on the average difference between the peak flows
for the ssmulation and the peak flows for the calibrated parameters (reference). This statistic
was positive when the model overestimated the peak flows, and was negative when the
model underestimated the peak flows. The 5-year time period of 1981-1985 (with the years
of 1979 and 1980 used as a spin-up time) was used. The statistic was therefore:

statistic = Average Peakgmulation - AVErage Peak cference - rererreerrerenens (5-29)

The reference peak flows were calculated using the calibrated parameter values. The
calibrated parameter values were accepted as the best possible parameters, and therefore the
flows resulting from these parameters were accepted as “ perfect.” Some authors use a Monte
Carlo analysisto assist with calibration by using the observed flows as the reference (e.g. A.
Mailhot, et al., 1997). However, this analysis was not used to alter the calibrated parameter

values, because doing so would alter the calculation of the water balance inside the
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hydrological model. Therefore, it was acceptable to use the simulated peak flows as the
reference (instead of the observed peak flows).
The statistic in Equation 5-1 was used to calculate the relative sensitivity of the model

to each parameter, according to the equation (Filho, 1995):

i<sti arameter
Sensitivity = —S2ustic P e e (5-30)

Dparameter  average peakieference

Therelative sensitivity is dimensionless, and invariant to the magnitude of the
average peak flow or to the parameter value. Therefore, it was used to evaluate the relative
importance of the various parameters to the generation of peak flows. Table 5-16 presents

the range of relative sengitivity for each parameter.

Table 5-16 — Summary of Relative Sensitivitiesfor each parameter

Parameter; Parameter Name Relative Rank of
Sensitivity Rangeimportance
A5 Unsaturated Zone Moisture Coefficient -0.01t0 0.05 13
AK Surface Permeability -0.08 t0 0.00 11
AKfs Surface Permeability under snow -0.14 t0 0.00 9
REC Interflow storage-discharge coefficient -0.04t00.32 7
R3 Overland flow conveyance parameter 0.00 15
R3fs | Overland flow conveyance parameter under snow 0.00 15
RETN Sail retention coefficient -0.0310 0.02 14
AK2 Upper to lower zone drainage coefficient -0.12t0 0.01 10
AK2fs | Upper to lower zone drainage coefficient under -0.68t0 0.30 3
snow

LZF Lower zone drainage function -0.13t0 0.39 5
PWR Lower zone drainage function exponent -0.1910 3.64 1
R2 River roughness coefficient -0.10to 0.50 4
MF Melt factor -0.55101.10 2
BASE Base temperature -0.38t00.15 6
FPET Potential Evapotranspiration Factor -0.0510 0.05 12
FTALL Evapotranspiration Factor for Tall Vegetation -0.23t00.20 8

The most important parameters for peak flow generation were the baseflow

parameters (LZF, PWR), the snowmelt parameters (MF, BASE), river roughness (R2), the
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interflow coefficients (REC), and the drainage from upper to lower zone under snow
(AK2fs). These parameters are hydrologically signficant for peak flows. Base flow can bea
large portion of a hydrograph, and as the baseflow rate increases, the peak flow will tend to
decrease. The ColumbiaRiver basinisan alpine river basin, and therefore the peak flows are
often associated with snowmelt events. Increasing the river roughness will tend to decrease
peak flows. Increasing interflow will tend to increase peak flows since the flow can reach
the river more quickly, while increasing the drainage from interflow to baseflow will lower
peak flows since the flow will take longer to reach the river.

Some parameters were not important for the generation of peak flows. Inforested
areas, the overland flow parameters (R3, R3fs) have little effect because overland flow rarely
occurs. These parameters describe the roughness of the ground and affect mainly the rate of
runoff. However, alarge precipitation event generates enough runoff to overcome
depression storage. The unsaturated zone moisture coefficient (A5), the soil retention
coefficient (RETN), and the potential evaporation (FPET) generally apply during dry weather
processes (periods of low flow) and affect only the initial rise of the hydrograph. Therefore,
they only moderately affect the peak flows. Therefore, the lack of sensitivity of the
simulated peak flows to these parameters made hydrological sense.

The relative sensitivity could not be used to examine the shape of the objective
function, since it wasin relation to the amount of change in the parameter value. Therefore,
it would tend to remain constant as distance from the calibrated value increases, since the
greater change in average peak flow would be matched by a greater change in the parameter.

Therefore, the difference between the averages of the peak flows for the simulation and the
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reference was used directly to examine the shape of the objective function. The statistic was
converted to a percent by calculating:

% Statistic = —— NG 400 e (5-31)
average peak flow

The percent statistic was plotted against the parameter value for each parameter. A
monotonically increasing (or decreasing) curve indicated that the objective function shifted
smoothly from under- to over-estimation (or vice-versa). A convex or concave curve
indicated that the objective function came to a maximum or minimum near the optimized
parameter value. In both cases, the absolute value of the statistic would be small near the
calibrated value of the parameter, and larger on both sides of the calibrated value. Therefore,
the objective function would be optimal near the parameter value, and error would increase
away from the calibrated value. Acceptable objective function shapes are shown in Figure 5-
46. An acceptable objective function shape indicates two important characteristics of the
variable:

The variable can be optimized, as only one optimum existsin the physically possible

range. (A second optimal parameter value does not exist within the range.)

The entire physically possible rangeis located on asingle “hill” of the objective function.

(The objective function does not approach a second optimal parameter value within the

range.)
Any other shaped curve was examined closely to determine how far it deviated from an ideal
curve. Such deviation may affect the parameter distributions. Small deviations were

allowed, where the deviations were less than 1% of the average streamflow.
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Figure 5-46 — Acceptable Shapesfor the Objective function (error increases as distance
from the calibrated value incr eases)

The variation in the statistic around the calibrated values of each variable is included

in Table 5-17. The table also includes the range in the objective function statistic. The plots

of the objective function statistics at Mica Dam for each of the 70 variables are included in

Appendix C. A more detailed description of the objective function shape for each parameter

isalsoincluded in Appendix C.

Table5-17 — Summary of Objective Function I nvestigation

Variable|# of Range of Flow  |Shape Conclusion
Classes|(% of average)
A5 1 -0.01% — 0.06% Not a significant parameter for peak
flows
AK 5 -0.26% —10% |Monotonic Smooth objective function
AKfs |5 -0.01% — 14% Monotonic Smooth objective function
REC 5 -54% — 34% Monotonic Smooth objective function
(deviations <1%)
R3 5 -0.16% — 0.14% Not a significant parameter for peak
flows
R3fs 5 0% Not a significant parameter for peak
flows
RETN |5 -3.1% —-5.5% Monotonic Not significant for most land classes
(deviations<1%) |and stations. Smooth objective function
for the rest.
AK2 5 -19% — 19% Monotonic Smooth objective function
(deviations <1%)
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AK2fs |5 -39% — 107% Monotonic Generally smooth objective function.
(deviationsupto |Variationsfrom desired curvesin land
3%) class #5.

LZF 3 -53% — 87% Monotonic Smooth objective function
(deviations <1%)

PWR |3 -78% — 177% Monotonic Smooth objective function
(deviations <1%)

R2 3 -40% — 12% Monotonic or Generally smooth objective function.
Concave/Convex |Some variations from desired curves
(deviationsupto |(al river classes).
5%)

MF 5 -100% — 54% Monotonic or Mainly smooth objective function.
Concave/Convex |Some large variations from desired
(most deviations  |results.
<10%)

BASE |5 -56% — 57% Monotonic or Second mode visible on some traces.
Concave/Convex |Severa large variations from desired
(large deviations) |curves (land classes #1, #3, #5in

particular).
FPET |5 -0.60% — 0.62% Not a significant parameter for peak
flows

FTALL |5 -2% — 3% Monotonic Smooth objective function

(deviations <1%)

The range of several parameters (A5, R3, R3fs, and FPET) was very small, between

-1% and 1% of the average flow for all basins. These parameters also ranked low in relative

sengitivity. Therefore, these parameters did not affect the generation of the peak flows.

For each of the remaining parameters, some combinations of land classes and

streamflow stations were not significantly affected by the variation. The range of flow for

these land class and streamflow station combinations remained between —1% and 1% over

the entire physically possible range of the variable. These combinations of land class and

streamflow station were not included in the description of the shape of the objective function.

The simulations showed that the objective function was mainly smooth near the

calibrated values of the parameters. Most of the remaining parametersin Table 5-17 had

traces where the absol ute value of the statistic increased as the distance from the calibrated
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value of the parameter increased (an ideal objective function shape). Deviations from the
ideal objective function shapes that were less than 1% of the average peak flow for the
particular station were assumed insignificant. For instance, occasionally a curve trended
generally monotonically upwards from negative to positive, yet at one parameter value the
statistic went down by 0.5% before continuing the upwards trend. Such adeviation (less
than 1%) was considered insignificant. A deviation larger than 1% was recorded in the table.

Several parameters showed a region of sengitivity to the parameter, followed by a
region where the effect of the parameter change was insignificant. Thiswould indicate that
the peak flows were no longer affected by the value of the parameter above or below a
certain value (i.e. the hydrological process no longer affected peak flows). It indicated that
there was a“ridge” on the objective function. From a physical perspective, these ridges may
be caused by parameters such as saturated conductivity that reach values beyond which water
either al infiltrates or ponds. This behaviour was considered acceptable, since this analysis
was performed to determine if there was another “hill” on the objective function within the
physically possible range of the parameters.

Two parameters had deviations from the ideal curves of more than 1% and less than
5%: AK2fsand R2. The AK2fs parameter (upper to lower zone drainage coefficient under
snow) had some deviations from the ideal curves. The deviations were up to 3% of the
average peak flow for astation. These large deviations occurred at two streamflow stations
for the low elevation, light forest class. The R2 parameter (river roughness coefficient) also
had significant deviations from the ideal curves; the deviations were up to 5% of the average
peak flow for astation. Again, however, the number of stations with large deviations was

relatively small (1 station for river class 1, 5 stations for river class 2, and 4 stations for river
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class 3). Therefore, for these two variables, the objective function was assumed to be mainly
smooth, and it was assumed that the “hill” extended over the physically possible range for the
parameters.

Two other parameters had large deviations from the ideal curves. MF and BASE.
The MF parameter (melt factor) had one deviation of 16% from the ideal curve, and the rest
of the deviations were less than 10% from the ideal curve. The BASE parameter (base
temperature) was the most erratic parameter. The BASE parameter sets the temperature at
which the snow in WATFLOOD/SPL beginsto melt. For the high elevation forests and for
the barren areas, there were large deviations from normal in the objective function (up to
30% of the average peak flow). In many cases, a second “ideal” BASE parameter value was
visible, where the peak flows would not change if the base temperature were set to this value.
Although a second optimal parameter value for peak flow generation may exist, using this
value would significantly alter the hydrograph, as the timing of the snowmelt would change.
The peak flows remained the same because the melt began sooner, and the same peak flow
resulted. Because of the large deviationsin the MF and BASE parameters, it was decided to
perform atwo-parameter analysis for the MF and BASE parameters. In addition, the effect
on the hydrograph was also examined during the two-parameter analysis for MF and BASE.

Therefore, the investigation of the objective function showed that, for most
parameters, the objective function was smooth, and the “hill” extended over the entire
physically possible range. For most parameters, the response statistic was small near the
calibrated value of the parameter, and larger as the distance from the calibrated value
increased (or the response statistic remained constant as distance increased). However, the

snowmelt parameters (MF and BASE) did not follow this pattern. The peak flows were
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highly affected by the snowmelt parameters, particularly by the BASE parameter. For these
parameters, the objective function investigation indicated that there may be additiona “hills’
within the physically possible range for the parameters.

A two-parameter analysis was performed to determine the types of interaction
between the two snowmelt parameters. For each landcover combination of MF and BASE, a
set of 36 five-year simulations were performed. Since there were five landcovers, there were
25 combinations of MF and BASE. A grid pattern with six values of the BASE parameter on
the vertical axis and six values of the MF parameter on the horizontal axis was used to
describe the effect of the two parameters. The six values for each parameter ranged from the
lower end to the upper end of the physically possible range. An example of the variation in
average difference between the five-year peak flows for Mica Dam is shown in Figure 5-47.
This Figure used the Barren landclasses for both the MF parameter and the BA SE parameter
(Appendix D contains similar Figures for all combinations of landclasses for the MF and
BASE parameters for MicaDam). The Figure shows that there was aline where the average
difference was equal to zero, and the difference was negative on one side of the line and
positive on the other. Theline indicated that several combinations of MF and BASE were
optimum for peak flow generation. The Figure was similar for other streamflow stations,
indicating a general pattern in the parameters. Thisindicated that the objective function
contained a single optimal “ridge,” and only asingle “hill.” The calibrated parameter values
(indicated with adiamond symbol) are the optimum parameters (in hydrological terms) for
snowmelt and accumulation. Therefore, the two parameter variation of the snowmelt

parameters indicated that a single hill existed in the physically possible range for both
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parameters, however, there was aridge on the hill where the two parameters interacted with

one another to produce equal peak flows.

,Base Temperature

-5 T \
0.05 0.1 0.15 0.2 0.25
Melt Factor

Figure 5-47 — Aver age differ ence between 5-year peaks (as per cent of peak) for Mica
Dam for the Barren classes of the Melt Factor and Base Temper atur e parameters

Figure 5-47 shows that an optimal “ridge” of combinations for the snowmelt
parameters exists in the objective function, where the peak flows are unaffected by changes
in the snowmelt parameters. Although the peak flows were unaffected, the shape of the
hydrograph was significantly altered by changes in the snowmelt parameters. Several
combinations of snowmelt parameters along the optimal ridge were chosen, and the root-
mean-sgquare (RMS) error for the Mica Dam basin was calculated. The average difference

between the peak flows from the simulation and the peak flows from the calibration was also
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calculated. The average difference was close to zero for al of the simulations (they were not
exactly zero because the ridge in Figure 5-47 was calculated by interpolation and was not in
the exact location). The RMS error shows that, although the peak flows were very similar
with each simulation, the hydrograph was incorrect. The RMS was increased by changesin
the snowmelt parameters, indicating that the simulated hydrograph was a poorer fit (than the
hydrograph calculated with the calibrated parameter values). For the last smulation (BASE
= 4°C, MF = 0.219 mm/°C), the RMS error decreased dightly (approx. 5 cms). The
hydrograph for this ssmulation was compared to the hydrograph calculated with the
calibrated parameters. The hydrographs were very similar to each other, and each ssmulation
was a better match for the observed hydrograph for different parts of the hydrograph. The
RMS errors for other streamflow stations showed that these two simulations were similar,
with some stations having larger RMS error for the calibrated parameters and some stations
having larger RMS error for the last simulation (BASE = 4°C, MF = 0.219 mm/°C).
Therefore, in general, the RMS errorsindicated that, although various combinations of
snowmelt parameters can be used to generate the peak flows, the calibrated parameter values

(or nearby) lead to the best hydrographs in terms of RMS error.

Table 5-18 — Calculation of RM S Error with several combinations of MF and BASE
located on the optimal ridge (valuesfor Mica Dam)

BASE | MF Average difference | RMS error 1981-1985 (compared
in peaks (%) to observed streamflow) (m°/s)
-3 0.158 -0.01 255.7
-3 0.088 -0.50 234.1
-2 0.088 -0.03 224.5
-1 0.088 0.34 212.8
0.104 2.79 213.4
1 0.117 2.73 206.9
2 0.142 3.46 202.6
3 0.165 | O (calibrated value) 191.2
4 0.219 2.78 186.4
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The objective function analysis indicated that the objective function contained a
single“hill” for al of the parameters, with the exception of the snowmelt parameters. There
was asingle “ridge” of optimum parameter combinations for the snowmelt parameters. This
anaysis aso indicated that the use of asingle indicator of model calibration can be very
misleading. It isstated in Section 3.3.2 that to consider amodel calibrated, every possible

indicator of model performance should be evaluated.

7.3.2 Choice of the Parameter Distributions

The parameter distributions were chosen based on the available information, the
calibration philosophy of WATFLOOD/SPL and the results of the examination of the
objective function. This section presents the parameter distributions.

Very little information was available regarding the distributions of the parameters.
The results of the objective function analysis and the optimized value of each parameter were
available, but inter-relationships between variables were not available. The parameters were
therefore assumed independent for the purpose of thisanalysis. This assumption was known
to beincorrect (e.g. the values of the snowmelt parameters depend on each other), however,
the dependencies between variables were not clearly defined and therefore this assumption
was used. Itislikely that this assumption increased the variation in the model. Dependent
variables would vary together in a pattern, whereas independent variables would vary across
the entire range of physical possibility. This assumption, therefore, overestimated the
parameter uncertainty. The information available for each parameter consisted of the results

of the objective function investigation and the optimum parameter value.
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The objective function analysis was used to determine how much of the physically
possible range should be used in the distribution, to ensure that the Monte Carlo parameter
sets remained on one “hill” of the objective function. The results showed that, with the
exception of the snowmelt parameters, only one optimum parameter value existed within the
physical limits of each parameter in terms of generating peak flows. In general, the objective
function was smooth near the calibrated value, and either the absolute error increased as
distance from the calibration point increased, or the absolute error remained constant as
distance from the calibration point increased. For the snowmelt parameters, a“ridge’ of
optimum combinations of MF and BASE parameters existed, and as distance from the
“ridge” increased, the absolute error increased. Therefore, the analysis indicated that asingle
multi-dimensional “hill” existed around the calibrated parameter values. Therefore, the
entire physically possible range of each parameter was used in the distributions, since all
combinations of the parameters were valid.

The calibrated parameter values are good estimates of the optimum parameter values,
assuming that the full calibration and validation process of WATFLOOD/SPL has been
performed. The calibrated parameters may vary somewhat from the optimum values due to
uncontrollable uncertainties in the input data, such as variationsin the quality of temperature
and precipitation data, and therefore do contain some uncertainty. However, the optimum
parameter values are the most likely values to be obtained from the calibration process.
Therefore, the calibrated parameter values may be used as an estimate of the most likely
parameter values, or the mode.

Lel and Schilling (1994) compared several parent distributions for parameters, and

found that the parent distribution had little influence on the output of the Monte Carlo

164



analysis. Therefore, it was decided to use a simple distribution that only required the user to
define the limits and the mode. The beta-1 distribution (e.g. Y evjevich, 1972) was used. The

probability density function

f(x):%, B(a,b):M (5-32)

Qo ) r———
isabeta-1 distribution with boundaries zero and one. (The distribution was shifted and
expanded to match the physical limits of each parameter.) The parametersa and b are used
to define the shape of the distribution. To obtain a distribution with a mode and a probability
of zero at both boundaries, a and b must both be greater than or equal to two. One of a and
b must be defined, and the second can then be calculated from the mode. Since there was no
other information to define the distribution, the values of a or b were chosen so that the
largest possible standard deviation resulted. The probability density function requires that if

the mode is between the lower limit and the midpoint, then a must be equal to 2.0 and b must

be solved with the equation

Similarly, if the mode is between the midpoint and the upper limit, then b must be equal to
2.0, and a is calculated from the above equation. With these values of a and b, the
frequency distribution gave the widest possible distribution that had a defined mode at the
calibrated value. Thismay result in an overestimation of the confidence limits, since some of
the parameters are suspected to have alower variance than the variance that is cal culated
with this equation. However, the probability distribution for each parameter has not been

guantified, and therefore the widest possible distribution was used.
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Some examples of the beta-1 distribution are shown for the BASE parameter in
Figure 5-48. Three landclasses with different modes were selected. The calibrated value of
the BASE parameter for the barren class was 3.0 °C; for the High Elevation Dense Forest
classit was 1.0 °C; and for the Low Elevation Dense Forest classit was—2.0 °C. The
distributions showed a mode at the calibrated value of the parameter, and the frequency
dropped to zero at the physically possible limits. This distribution used all of the available
information regarding the parameter distribution, but it did not add extrainformation. This
parameter is an example of overestimation of the confidence limits due to alower variance in
the parameter than was used in the Monte Carlo. The BASE parameter values are not based
on calibration but smply on the fact that (within one grid) the barren elevation is greater than
the high elevation forest, which is greater than the low elevation forest. However, asingle
temperature value is used for the entire grid, and the base temperature represents the lapse
rate to differentiate between the elevation bands within one grid. Therefore, the use of the
entire range in the BASE temperature is an overestimation, but a more appropriate

distribution has not yet been established.
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Figure 5-48 — Examples of histograms of the 10,000 values for BASE temperature,
generated from the Beta-1 distribution (the modeisindicated with ared square). The
three parametersare: a) BASE, Barren Class (mode = 3); b) BASE, High Elevation
Dense Forest Class (mode = 1); BASE, Low Elevation Dense Forest Class (mode = -2)

7.3.3 Calculating the 95-year Confidence Limits

The Monte Carlo analysis was based on afive-year time series of streamflow.

However, 96 years of meteorological input for WATFLOOD/SPL were available (one year
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of datawas discarded, yielding 95 years of simulated streamflow data. The large amount of
computer simulation time (approximately three to four hours for one 95-year simulation on
one CPU of an Origin 200 computer) forced the use of the smaller, five-year time series. The
variation in the five-year time series was used as an analogue for the variation in the full time
series. This section presents the method to convert the five-year confidence limits into 95-
year confidence limits.

The Monte Carlo analysis was based on 10,000 runs of the hydrological model.
According to Crosetto, et al. (2000), 100 runs per input factor are sufficient (as arule of
thumb) for aMonte Carlo. Since there were 70 parameters, a minimum of 7,000 simulations
was required. Therefore, 10,000 sets of parameters were randomly chosen from the beta-1
distributions.

The hydrological model WATFLOOD/SPL was run for each of the 10,000 parameter
sets. The meteorological datawas the same for each run: the seven-year period from 1979-
1985. These years were chosen because they represent arange of hydrological conditions
from wet to dry. In addition, the largest observed storm occurred in 1983. The first two
years (1979-1980) were discarded from the analysis, due to possible model spin-up errors.
Therefore, the five years from 1981 to 1985 were used in the analysis. The maximum
streamflow in each year of the five-year ssmulations was stored, so that the variation in peak
flowswas found. Therefore, for each streamflow station and B.C. Hydro dam inside the
Columbia River Basin, a set of five peak flows for each of the 10,000 runs was available for
anaysis.

The 10,000 ssimulations were used to create 10,000 flood frequency curves (each

made from five points). Figure 5-49 shows the results of the Monte Carlo for Mica Dam,
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where the five peak flows of each simulation were ordered, and histograms were cal culated
for each ranking (plotted as scaled-down histograms at each probability level on Figure 5-
49). The histogramsfor all of the probability levels were positively skewed. The skewness
suggests that hydrological processes limit the lower boundary of the flood frequency curve,
while the upper boundary is more difficult to define. The range for extremely low peak
flows was smaller than the range for extremely high peak flows. This result was expected,
since predictions of extremely high peak flows contain more uncertainty than predictions of
low peak flows (Beven, 1993). In addition, the 2.5%, 50%, and 97.5% flow values of the
histograms for each ranking were found (plotted as flood frequency curves on Figure 5-49).
The behaviour of the histograms for each of the other 35 streamflow stations and B.C. Hydro

dams was similar to the behaviour for Mica Dam.

0.9
0.8 M
0.7

0.6 1
0.5
0.4 -
0.3 - /]/

0.2 - M

0.1 1

Frequency

0 1000 2000 3000 4000 5000 6000 7000

Peak Flow (cms)

Figure 5-49 — Histograms of the 10,000 flood frequency curvesfor Mica Dam

Some parameter sets generated low peak flows, while others generated high peak
flows. A particular smulation did not generate both extremely low peak flows and

extremely high peak flows for a particular station. Thisindicated that a particular set of
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parameters (one simulation) would only generate peak flowsin asmall range. The consistent
behaviour of the hydrological model made it plausible to use the variation in the five-year
frequency curves as an analogue for the 95-year frequency curves. The upper and lower
frequency curves plotted on Figure 5-49 represent the values at 2.5% and 97.5% of the
histogram for each peak flow (not asingle ssmulation). Most simulations were entirely
above or below these lines, but several simulations crossed these lines (i.e. some of the five
peak flows were below the line, while others were above the line). The number of
simulations that crossed a particular line formed from the histogram varied with the line
chosen on the histograms (e.g. the 2.5% line versus the 97.5% line). The number of
simulations that crossed the histogram lines varying from 1% to 99% was calculated and
plotted in Figure 5-50 for Mica Dam. Relatively few simulations crossed a particular
histogram line at the extreme flows, while alarger number crossed at medium flows. There
were two possible reasons for this curve shape. First, there are many valid hydrological ways
to calculate medium flows, but relatively few ways to calculate extreme flows (since several
hydrological processes must all be at extreme values and co-operate together). Second, the
parameter distributions specified that most of the simulations would occur near the calibrated
parameter values. At Mica Dam, 203 of the 10,000 simulations crossed the 2.5% histogram
line, while 362 crossed the 97.5% histogram line. Most of the other streamflow stations and
B.C. Hydro dams also had more simulations crossing their 97.5% histogram line than their
2.5% histogram line. The shape of the curve for all 36 streamflow stations and B.C. Hydro
damswas similar to the curve in Figure 5-50. Very few simulations crossed the histogram
lines at the upper and lower probabilities, and alarger number of simulations crossed the

histogram lines at the middle probabilities.
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Figure 5-50 — Per cent of 10,000 simulations whose flood frequency curves cross lines of
the histogram for Mica Dam

The simulations that crossed the 2.5% or the 97.5% lines represented a set of
parameters that generated extreme flows (either low or high) for the five-year time period
from 1981 to 1985. For instance, each of the 203 simulations that crossed the 2.5% line
represented a set of parameters that generated extremely low peak flow estimates. Likewise,
each of the 362 simulations that crossed the 97.5% line represented a set of parameters that
generated extremely high peak flow estimates. It was assumed that these same parameter
sets could be used to generate extreme flows for the full 95-year time series. Therefore, the
simulations that crossed the 2.5% or 97.5% histogram lines were found for all 36 streamflow
stations and B.C. Hydro dams. Frequently, a simulation would cross the 2.5% line (or the
97.5% line) for several stations, further indicating that a particular set of parameters
generated consistently low flows (or high flows). Intotal, 3464 simulations crossed either
the 2.5% line or the 97.5% line at one or more of the 36 streamflow stations and B.C. Hydro
dams. Comparatively few simulations (14 out of 3464) generated high flows at one station

and low flows at another station. The 95-year simulated streamflow time series were
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generated with the WATFLOOD/SPL model for each of the 3464 sets of parameters. There
were 96 years of meteorological data available, however, the hydrological model has spin-up
issues for the first two years. To allow 95 years of data to be used, the model was first run
for anormal year (1971) so that the model would begin the 96-years with a normal watershed
condition. Then thefirst year (1899) was discarded, leaving 95-years for analysis (1900 to
1994).

Since several simulations were performed for each station, there were several
simulations available to represent the limits for each station. Therefore, it was necessary to
develop “overall” confidence limits for each station. The 95-year ssimulated streamflow time
series were used to generate frequency curves for each simulation for each station. The
Wakeby distribution was used because it was also used to develop the regional flood
frequency curve. Therefore, for each station, the 95-year frequency curves that corresponded
to each of the simulations that crossed the 2.5% (or the 97.5%) histogram line were
calculated. These frequency curves were aggregated to form an overall estimate of the upper
and lower confidence limits.

The lower confidence limit was found as the average of all of the frequency curves
for the station. This method was chosen because al of the simulations represent a set of
parameters that generate peak flows near the 2.5% line of the histogram for that station, and
therefore, they are al valid estimates of the lower confidence limits. For instance, 203
simulations crossed the 2.5% histogram line for MicaDam. The 203 frequency curves
generated from the 95-year simulation were averaged to obtain the lower confidence limit for
Mica Dam. Figure 5-51 shows a comparison of the two estimates for the lower confidence

l[imit for MicaDam. The five points from the 2.5% histogram line of the Monte Carlo
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anaysis are compared with the average of the frequency curves calculated from the 203 95-
year smulations. The two estimates nearly overlapped one another, and therefore the

average of the frequency curves was able to extend the 2.5% histogram line.
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Figure 5-51 — Comparison of Lower Confidence Limitsfor Mica Dam calculated with
the Monte Carlo and asthe aver age of the 95-year ssimulations

For the upper confidence limit, the average of the frequency curves did not match the
97.5% histogram line from the Monte Carlo analysis (Figure 5-52). The average of the
frequency curves was approximately 700 m*/s too low (17% error at a probability of 0.5).
However, the maximum of the frequency curves matched the 97.5% histogram line (Figure
5-52). There were two possible reasons why it was necessary to use the maximum of the
frequency curvesinstead of the average of the frequency curves. The mean of the five-year

peak flows was (on average) slightly higher than the mean of the 95-year peak flows. The
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mean peak flow for 1981-1985 for Mica Dam was 10% larger than the mean peak flow for
1990-1994. A second reason is due to the fact that predictions of extremely high peak flows
contain more uncertainty than predictions of low peak flows (Beven, 1993). The histograms
created from the 10,000 simulations of the Monte Carlo analysis were positively skewed, and
more simulations crossed the 97.5% line as opposed to the 2.5% line. Some of these
simulations may have crossed the 97.5% line due to the larger variation, although they did
not truly represent parameter sets that generated peak flows in the 97.5% range. These two
factors together may have caused the average of the frequency curves to be lower than the

97.5% line of the histogram.
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Figure 5-52 — Comparison of Upper Confidence Limitsfor Mica Dam calculated with
the Monte Carlo and asthe average and maximum of the 95-year simulations
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The comparisons between the 2.5% and 97.5% histogram lines and the overall
confidence limitsfor all of the stations are included in Appendix E. In most cases, the
frequency curves derived from the 95-year simulations were coincident with the histogram
lines. The 95-year simulations were able to “fill-in" the parts of the frequency curve not
calculated by the Monte Carlo. This further indicated that the variation in the five-year

simulations was a suitable analogue to determine the variation in the 95-year smulations.

7.3.4 Calculating the Regional Confidence Limits

The previous sections have described the devel opment of 95% confidence limits for
each individual streamflow station and B.C. Hydro reservoir. However, since the flood
frequency curve (from simulated streamflow data, Section 7.2.2) was calculated with a
regional flood frequency method (Hosking and Wallis, 1997), it was appropriate to also
calculate aregional estimate of the confidence limits. The regionalization was based on
regressions between the physiographic data (Solomon, 1968) and the individual frequency
curves, using amethod similar to that of Schaefer (1990).

The L-moments of the aggregated frequency curve, if they were calculated, would be
fictitious L-moments, since they would not represent asingle set of data. Therefore, the
regionalization was based on the frequency curves for each station. The flow value for a
probability of 0.5 was used to normalize the frequency curves for each station. The
regressions were formed between the normalized confidence limit curves and the basin
characteristics. The physiographic variables from Solomon (1968) were used for this
purpose.

There were 36 upper confidence limit curves and 36 lower confidence limit curves

(one for each streamflow station or B.C. Hydro dam). Each curve was calculated at discrete
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probabilities of exceedance. Therefore, for each confidence limit, regression was required
for each probability level. However, to reduce the possibility of regiona confidence limits
that appeared “jagged,” asingle regression was chosen for al probabilities of exceedance.
Therefore, the best regression was the regression that had the best fit at al of the probability
levels. Note that regression for the probability level of 0.5 was not required since this
probability was used for normalizing, and the frequency was equal to one by definition.

The regressions were calculated, and 11 variables were required in order to obtain
suitable regressions. They explained 50% or more of the variation in the normalized
frequency curves across al 36 streamflow stations and B.C. Hydro dams (Table 5-19 and
Table 5-20). Two regressions were not able to explain 50% or more of the variation in the
normalized frequency curves; they were both regressions for low flows of the upper
confidence limit and were of less interest than the regressions for high flows. The
regionalization altered the flow values for extreme drought and flood probabilities. In both
cases, the confidence limits were not significantly changed in the mid-probability range, but
there were small changes at the extreme tails of the confidence limits. The low flows were
decreased and the high flows were increased for the lower confidence limit. For the upper
confidence limit, the low flows were decreased, while the high flows remained unchanged.
For instance, at areturn interval of 1 in 1000, the lower confidence limit increased from 1832
m>/sto 1947 m%/s (Table 5-19), while the upper confidence limit decreased from 10413 m%/s
to 10355 m*/s (Table 5-20). These changes in the extreme tails of both confidence limits

caused the 95% confidence limits to become 2% narrower at areturn interval of 1 in 1000.
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Table 5-19 — Regression Resultsfor Lower Confidence Limit at Mica Dam

Probability of R Individual Regional Variables
exceedance m>/s | Normalized | Normalized| m’/s
0.001 0.74 |1832 2 2.12 | 1947 |Average Julian Date of Peak
0.01 0.79 |1520] 166 1.73 | 1585 |Ratio of Peak to Mean
0.1 0.85 |1191 13 134 | 1232 |Azimuth
0.2 0.85 |1082| 118 121 | 1111 |DTO-NW
0.3 0.86 |1014 1.11 1.13 1032 |[DTO-SE
0.4 0.86 | 962 1.05 1.06 g71 |DTO-SW
0.5 N/A | 917 1 1 917 |SHE-NE
0.6 0.88 | 875 0.95 0.94 866 |SHE-SW
0.7 0.89 | 831 0.91 0.89 g13 [BH-NE
0.8 09 | 782 0.85 0.82 752 |BH-NW
0.9 088 | 719| 0.78 074 | 676 |BH-SW
0.99 081 | 637 0.69 0.63 576
0.999 0.77 | 623 0.68 0.59 541
Table 5-20 — Regression Resultsfor Upper Confidence Limit at Mica Dam
Probability of R Individual Regional Variables
exceedance M>/s | Normalized | Normalized| m®/s
0.001 0.81 |10413] 255 254 |10355|Area
0.01 069 |8311| 204 1.86 | 7572 |Average Julian Date of Peak
0.1 067 |5931| 145 143 | 5811 |Ratio of Peak to Mean
0.2 069 |5152| 126 126 | 5153 |AZzimuth
0.3 0.7 | 4687 1.15 1.16 4724 |DTO-NE
0.4 0.67 | 4347 1.07 1.07 4377 |DTO-SW
0.5 N/A | 4077 1 1 4077 |SHE-NE
0.6 07 |3855 0.95 093 | 3772 |SHE-SW
0.7 0.74 | 3651 0.9 0.84 | 3444 |BH-NW
0.8 0.77 | 3433| 084 0.76 | 3093 |BH-SE
0.9 076 |3120| 0.77 064 | 2622 |BH-SW
0.99 059 |2657| 065 056 | 2283
0.999 053 |2630| 064 056 | 2286

The regionalized confidence limits (Table 5-19 and Table 5-20) were combined with

the frequency curves shown in Figure 5-45 to create Figure 5-53. In general, the confidence

interval widened as the return interval increased. This was expected, because the Monte

Carlo histograms were positively skewed and the range of high peak flows was much larger

than the range of low peak flows. Thisindicated that the model parameterization contained
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greater uncertainty for higher peak flows. This agreed with the findings of Beven (1993),

who found that uncertainty increased for peak flows.
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Figure 5-53 — Regional Frequency Curve (Schaefer, 1990, method) for Mica Dam
Combined with the Regional Confidence Limits Determined from the Monte Carlo

Analysis

The confidence limits compared well with other parameter uncertainty studies.
Relative to the simulated frequency curve, the flows of the lower confidence limit were one-
third to one-half of the magnitudes of the frequency curve. The upper confidence limit
varied from approximately 1.5 to three times the magnitude of the frequency curve. One
parameter uncertainty study by Beven (1993) cal culated 5% and 95% confidence limits for
TOPMODEL on asmall watershed (3.5 km?). Beven (1993) found that the upper confidence
limit was approximately twice the observed peak streamflow, while the lower confidence
limit was approximately 80% of the observed peak streamflow. Similarly, Binley, et al.

(1991) calculated 5% and 95% confidence limits for IHDM on a 3.9 km? watershed and
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found that the upper confidence limit was approximately 1.5 times the observed peak
streamflow, while the lower confidence limit overestimated the observed peak streamflow.

In both of these studies, the probability of exceedance of the peak streamflow in the
simulated time series was not reported, and therefore cannot be compared to the present
study. Therefore, the upper confidence limit derived for the frequency curve calculated with
simulated streamflow data from WATFLOOD/SPL was similar in magnitude to other studies
by other authors. The lower confidence limit, however, was lower than those presented in
literature.

The ssimulated data were derived from a hydrological model that was subject to
parameter uncertainty. The confidence limits are wider than those that would be cal culated
for frequency curves derived from observed data, and indicate large uncertainty (particularly
for extremely large flows). Although the model was properly calibrated to ensure good
streamflow prediction, the parameter uncertainty remained significant. The confidence limits
may in fact overestimate the parameter uncertainty of WATFLOOD/SPL, due to the use of
the widest-possible distribution for each parameter. However, A. Mailhot, et al. (1997), also
found that parameter uncertainty remained large even after calibration. Some of this
uncertainty may be due to the model parameterization, and not the parameters. For instance,
the equation for modeling snowmelt has uncertainty, and at some point, greater accuracy in
the parameters will no longer decrease the model uncertainty. The model parameterization is
an important factor to remember during analysis to decrease parameter uncertainty. The
parameter uncertainty for this model may be lowered mainly through reducing the width of
the physical limits of each parameters. Therefore, the physically-based limits for the

parameters should be examined to determine if they might be altered to lower the parameter
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uncertainty. One landcover may have different parameter limits from another, for instance.
One method for this would be to use the “physically probable’ parameter limits (the limits
for the parameters that are likely to occur), instead of the “physically possible” limits.
Alternately, when the certainty of the calibrated value of the parameter warrants it, the beta-1
distribution could be altered so that the dispersion decreases. Some effort should be
performed to lower the parameter uncertainty of WATFLOOD/SPL.

It was known that certain parameters have narrower distributions than those used in
the Monte Carlo. For instance, the BASE parameter should have a narrow distribution, since
the base temperature accounts for the within-grid el evation range between the different
landcover elevations. This, in turn, sets the value of the MF parameter. The establishment of
more narrow distributions for these parameters would lower the parameter uncertainty by up
to 25%, as determined from a separate Monte Carlo analysis. A 1000-run Monte Carlo
anaysisthat varied only these 10 parameters (5 landcovers for each of MF and BASE) was
performed. The same 5-year analysis was performed, and the 2.5% and 97.5% histogram
lines were determined. The 2.5% and 97.5% histogram lines were added to Figure 5-53 to
create Figure 5-54. The snowmelt parameters accounted for approximately 25% of the
variation around the calibrated value. This represented a significant amount of the overall
width of the confidence interval, and suggested that the distributions of these two parameters

should be the first to quantify to reduce the parameter uncertainty.
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Figure 5-54 — Regional Frequency Curve for Mica Dam, showing Confidence Limits
and amount of variation due to snowmelt parameters (MF and BASE)

7.4 Chapter Summary

This chapter has explored the use of along continuous historical series of simulated
streamflow data to develop frequency curves. This application was the first to use a
simulated streamflow time series that was longer than the observed record of streamflow.
Meteorological data over the Columbia River basin was available for a 96-year period from
1899 t0 1994. The distributed physically-based hydrological model WATFLOOD/SPL was
used to develop ssimulated streamflow data.

The output from the WATFLOOD/SPL model was validated for the production of
frequency curves. It was found that the model produced reasonable estimates for mid-range

probabilities, but relatively poor estimates for the high-flow, low-probability range.
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However, there was better agreement for streamflow stations with longer time series, which
indicated that the observed frequency curves may be in error for short time series stations.
Therefore, the output from the WATFLOOD/SPL was suitable for use in predicting flood
frequency curves. In addition, the longer time series data could potentialy improve the
accuracy of frequency curves, especially for short time series stations.

The ssimulated streamflow data were used with regional frequency analysisto
generate afrequency curve for the Mica Dam basin. The Schaefer (1990) method for
modifying the Hosking and Wallis (1997) method generated the best frequency curves.

Finally, the 95% confidence limits for the frequency curve due to the parameter
uncertainty of WATFLOOD/SPL were calculated with a Monte Carlo method. The method
was developed specifically for the WATFLOOD/SPL model. The parameters within
WATFLOOD/SPL are robust and are known to be hydrologically correct. Most Monte Carlo
methods use a normal distribution for the parameters, which would be inappropriate for the
WATFLOOD/SPL model. Therefore, the parameter distributions were set up so that only
combinations of parameters that were hydrologically possible were used. The method also
allowed a shorter time series to be used instead of the full time series. The parameter
uncertainty was quite large, but within the range of other hydrological models. Establishing
tighter boundaries on the parameter distributions would decrease the uncertainty. Severa of
the parameters are known to have a narrower dispersion than what was used in the Monte
Carlo.

Chapter 6 will use the frequency curve developed in this chapter to compare the

floods from Chapter 4.
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6. Comparing the Probabilities of the Floods

This research has been used to develop a physically-based flood (Chapter 4) and an
improved frequency curve using simulated streamflow data (Chapter 5). These two pieces of
information are important tools for safety analysis and risk-based analysis of dams.
However, in this section, the frequency curve is used to compare the floods generated by the
two estimates of maximum precipitation. The return intervals of the floods were used as a
validity check to determineif the floods were in the presumed size range of a PMF.

The Probable Maximum Precipitation (PMP) was cal culated with the World
Meteorological Organization method (WMO, 1986). The Probable Maximum Storm (PMYS)
was calculated with the MC2-PMS model. The two storms were used with various
antecedent conditions to produce floods (Figure 4-15). In all cases, the PM S flood was
significantly less than the flood from the PMP. Instead of comparing the magnitudes of the
floods, however, the return intervals of the floods were used to compare the floods.

According to Smith (1998), the return period of the Probable Maximum Flood (PMF)
may range from 10,000 to 1,000,000 years (Annual Exceedance Probability, AEP, of 10° to
10). Thelarge range of presumed AEP for the PMF is due to widespread disagreement over
correct methods of calculating the PMF, and possible errors in frequency curve extrapolation.

The frequency curve in Figure 5-23 was used to calculate the Annual Exceedance
Probability (AEP) of the peak flow from the different floods in Figure 4-15. The AEP are
compared in Table 6-21. The frequency curve and its confidence limits were extrapolated
out to a probability of 107, This value was chosen because the desired PMF range was 10™
to 10°®, and extrapolation to 10”7 would allow evaluation of flood peaks in the PMF range.

Further extrapolation was considered unreasonable.
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Table 6-21 — Comparing the Probabilities of the Different Floods (Streamflow on June 1
for each simulation)

Simulation# | Flood AEP 95% Range

1 1972 0.72 0.001 to >0.99

2 1972 with PMS 0.02 10°* t0 0.56

3 PMF scenario(with PMP): 100-yr snowpack, | <<10" | <<10"to 10°”
100-yr melt temperatures, and PMP

4 PMF scenario(with PMS): 100-yr snowpack, | <107 | <<10"to 0.005
100-yr melt temperatures, and PMS

The AEP of the floods for the two simulations that used the regular 1972 meteorology
(smulations 1 and 2) could be calculated with no extrapolation of the frequency curves. The
AEP of the flow on June 1, 1972 was sightly below the mean (72% chance of exceedance).
The range of AEP for the June 1, 1972 streamflow indicated that 1972 was well within the
“normal” range (simulation 1). After the PM S storm was added to June 1, 1972 (simulation
2), the probability of the streamflow dropped to a 2% chance of exceedance (but it may be as
high as a 56% chance of exceedance). The 1972 data with the PM S was not within the
desired range of the PMF, however, the data indicated that the flood was close to the desired
range. Although the hydrograph was not shown in Figure 4-15, the PMP storm was also
added to June 1, 1972. The PMP caused a streamflow on June 1, 1972 that had a probability
of exceedance of less than 107 (with arange up to 1039). These dataindicated that the PMP
storm may be overestimated, since “wet” antecedent conditions were not required to generate
streamflow that was higher than floods in the PMF range. The PMS, however, wasin asize
range that required slightly “wetter” antecedent conditions (than the conditions that occurred
in 1972) and/or some snowmelt to generated aflood in the probability range of the PMF. In
addition, the PMS presented in Chapter 4 is preliminary, and further study into the
assumptions of the PM'S module and the MC2 model is recommended. Therefore, the PMS
may increase, and result in aflood in the size range of a PMF.
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The AEP of the floods for the two simulations that used the 100-year snowpack and
the 100-year melt temperatures (ssmulations 3 and 4) could not be calculated, even after
extrapolation of the frequency curves. The use of the 100-year snowpack and 100-year
temperature sequence aone resulted in a streamflow on May 31 that had a probability of
exceedance of 10> (may be as high as a 9% chance of exceedance). When the PMP was
added to the antecedent conditions (simulation 3), the probability was much less than 107 (up
to 10° chance of exceedance), whereas when the PM'S was added to the antecedent
conditions (simulation 4), the probability was somewhat less than 10 (up to 0.5% chance of
exceedance). The addition of the PMP to the antecedent conditions resulted in streamflow
that had avery low probability (the 95% confidence limits were just above the desired range
for aPMF). Since the confidence limits presented in Chapter 5 may represent an
overestimation of the parameter variation within WATFLOOD/SPL (due to the assumptions
regarding the variance in the parameters), these results indicate that the combination of PMP
and antecedent conditions may fall entirely outside the desired range of probability for a
PMF. However, the addition of the PM S resulted in a more suitable flood hydrograph: the
probability was still very low (<10°), but not as low as the flood calculated with the PMP.
The combination of the PM S and the 100-year snowpack and 100-year melting temperatures
may also be an overestimate of the PMF, but its upper confidence limit may fall within the
PMF range after the overestimation in the confidence limits was corrected.

The relative probabilities of the floods indicated that the PM S was able to generate
floods that were somewhat larger than a reasonable size range for a PMF, but which may be

appropriate given the modeling uncertainty. However, the PMP generated floods that were
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much larger than a reasonable size range for a PMF (even when the modeling uncertainty

was taken into account).
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7. Conclusions

The method presented in this research for devel oping the Probable Maximum
Precipitation (PMP) was to use the MC2-PM S model to develop a physically-based PMP
(called the PMS). Thisresearch determined that an atmospheric maximum precipitation does
in fact exist, and that it can be calculated with the model. The method isless subjective than
the World Meteorological Organization (WMO) method, and accounts implicitly for
topography. The precipitation occurred mainly in valleys and mountain passes, and very
little precipitation occurred at higher elevations. The maximum precipitation event was
lower than the PMP, and therefore the WM O method may overestimate the PMP in
mountainous terrain. In addition, the flood produced by the PM S was significantly lower
than the flood produced by the PMP. This difference in magnitude may affect the design of
safety structures for dams.

The WATFLOOD/SPL model calculated along simulated streamflow time series that
was able to generate reasonable frequency curves. Theincreased time series length
decreased the sampling uncertainty associated with the frequency curve. However, the
frequency curve became subject to modeling uncertainty.

An investigation into the behavior of the hydrologic model showed that there was
only one multi-dimensional hill within the limits of the parameter space, with the calibrated
parameters near the peak of the hill. Therefore, the parameters within WATFLOOD/SPL are
robust and the calibration process leads to the true optimum parameter values. The
parameter distributions used the physically possible boundaries for limits, and the calibrated
parameter values as the mode. A Monte Carlo analysis was performed to determine the

parameter uncertainty within the model.
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The confidence limits for the flood frequency curve grew wider as the return period
increased. Although the width of the confidence limits was large and consequently an
analysis of the return intervals of the floods was difficult, the width was within the range of
published values for confidence limits. Approximately 25% of the variation was due to the
snowmelt parameters, indicating that these parameters may be most significant for reduction
of the variation within the model.

The Annual Exceedance Probability of the different floods indicated that the
antecedent conditions (100-year snowpack and 100-year melt temperature sequence) may
overestimate the PMF. In addition, the addition of the PMP to the antecedent conditions
resulted in very large estimates of the PMF, with avery low probability of exceedance. The
addition of the PM S resulted in a more reasonable estimate of the PMF, and the flood
produced by the PM S was closer to the desired range for a PMF.

7.1 Contributions

This research has contributed in two major areas. Thefirst areawasin the
development of a physically-based maximum precipitation. The second areawasin the
development of frequency curves and their associated confidence limits with simulated
streamflow data. To summarize, the contributions are:

Procedures for use of the MC2-PM S model for the development of extreme precipitation
events and determining that a maximum precipitation event does exist. Thisapproachis
an improvement over the traditional method of estimation of the PMP.

Demonstration that the maximum storm and flood (from physically-based techniques)
were smaller than the PMP and PMF, supporting the view that the traditional techniques

for PMP and PMF estimation are flawed in mountainous regions.
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Validating the use of along simulated streamflow time series from WATFLOOD/SPL
model for the development of frequency curves and using these data to develop aregional
frequency curve.

Development of an efficient method to derive confidence limits for flood frequency
curves that are based on streamflow data generated by a hydrologic model with alarge
number of parameters.

Application of the methods to assess the effect of parameter uncertainty on the range of

output for extreme events for WATFLOOD/SPL.
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8. Recommendations for Further Research

The MC2 model has been shown capable of developing a maximum atmospherically
possible precipitation. However, further research to check the atmospheric assumptions
within MC2 is needed to ensure that they are suitably conservative for calculation of
maximum precipitation. In addition, the characteristics of the storm should be examined
further; the storm type, the date that the storm is embedded into, and other variables such as
sea temperature should all be examined to ensure the true maximum precipitation is being
developed.

The use of along continuous simulated streamflow time series improved the estimate
of the frequency curve by decreasing the sampling uncertainty. Meteorological data can be
derived with atmospheric models over much of the world, which can be converted into
streamflow. Thiswould lengthen the time series for both gauged and ungauged areas, and
increase the accuracy of the frequency curves. Further research is needed to develop the
meteorological data with atmospheric models, and convert it to streamflow using physically-
based hydrological models that require only minimal calibration.

However, simulated streamflow data contain uncertainty due to the hydrological
model (and/or the meteorological model). Therefore, the parameters within the hydrological
models should be examined to determine their behavior, and to minimize the width of the
confidence interval wherever possible. For the WATFLOOD/SPL model, more accurate
descriptions of the parameters’ behavior should be devel oped to better represent the

information that is known about them.
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This research should be expanded by comparing the frequency characteristics of the
volume of inflow at MicaDam. The traditional PMF should be compared to the new method
of developing the PMF, in terms of the probability of exceedance for the inflow volume.

Finally, other methods to test and/or validate the findings in this research should be

performed. For instance, paleohydrology would help determine the largest historic flood.
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Appendix A

This appendix contains atime series of geopotential height plots, obtained from
MC2-PMS. (Thisstorm was calculated at the original location, with parameters ax=15,
bx=15, s=10.) The plotswere obtained every three hours for the first 48 hours of the storm
simulation. Thefirst plot, at 0 hours, shows the pressure wave of the perturbation. The fifth
plot, at 12 hours, shows a developed cyclone with a depression of 32 mb, just to the west of
Vancouver Island. The storm dissipates over the next 18-24 hours. The low pressure “arm”
of the storm passes over the Columbia River Basin between hours 6 and 30. This
corresponds to the time period where the most rainfall occurred. (Note: since three hours at
the beginning of the simulation are lost with each “ cascade’, the 24 hours of precipitation

referred to in the text corresponds to hours 6 to 30 in this time series of plots.)
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiguette: MC2 V47

Prevasion 03 henres walide 02:002 le 13 jollet 1983

Figure A-56 — Geopotential Height (m) at Hour 3
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GZ (Geopotential Height)
Mivean: 1000 mb - Etiguette: MC2 W47 - Intervalle: [-30,-45,-40,-35,-20,...] * 1 0e+00 meters

Prevasion 12 henres walide 12:002 le 13 juillet 1983

Figure A-59 — Geopotential Height (m) at Hour 12
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Preaision 15 hewres valide 15:002 le 13 juillet 1983

Figure A-60 — Geopotential Height (m) at Hour 15
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiguette: MC2 V47

Prevasion 18 henres walide 18:002 le 13 jollet 1983

Figure A-61 — Geopotential Height (m) at Hour 18
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiquette: MC2 V4 7

Prevision 24 henres walide 00:002 le 14 jullet 1983

Figure A-63 — Geopotential Height (m) at Hour 24
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiquette: MC2 V4.7

Prevision 27 henres walide 03:002 1e 14 jullet 1983

Figure A-64 — Geopotential Height (m) at Hour 27
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiquette: MC2 V4.7

Prevision 33 henres walide 09002 le 14 jullet 1983

Figure A-66 — Geopotential Height (m) at Hour 33
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Figure A-67 — Geopotential Height (m) at Hour 36
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GZ (Geopotential Height)

Mivean: 1000 mb - Etiquette: MC2 V4 7

Prevision 42 henres walide 18:002 le 14 jullet 1983

Figure A-69 — Geopotential Height (m) at Hour 42
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Figure A-70 — Geopotential Height (m) at Hour 45
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Figure A-71 — Geopotential Height (m) at Hour 48
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Appendix B

This appendix contains a series of Figures that compare the frequency curves
calculated from observed data and frequency curves calculated from simulated data
(shortened to match the observed time series). Each figure is labeled with the station name
and number, and the number of years of datafor the curves. A frequency curve was
calculated for each individual station, using the L-moments for that station, and the Wakeby
distribution. The line marked “Observed” refers to the frequency curve calculated from the
observed streamflow time series (from WSC or B.C. Hydro). The lines marked “ Simulated,
short series’ and “ Simulated with paf, short series’ refer to the ssmulated streamflow time
series calculated by WATFLOOD/SPL (with the HRBL data as forcing data), without and
with the Precipitation Adjustment Factor (PAF) field correction, respectively. The simulated
streamflow time series was shortened to match with the observed time series, so that the

same years were used in both analyses.
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Appendix C

This appendix contains a series of 16 Figures, which show the response surface

curves for each parameter for the MicaDam Basin. Brief descriptions of each Figure are

included above the Figure. If the percent response remained below 1% for the entire range of

the parameter, the value of the parameter was assumed to be insignificant in the generation of

the peak flows. The meaning of each parameter can be found in the following table.

Code |Full Name Algorithm it isused in
A5 Unsaturated Zone Moisture Coefficient Infiltration
AK Surface Permeability Infiltration
AKfs | Surface Permeability under snow Infiltration
REC | Interflow storage-discharge coefficient Interflow
R3 Overland flow conveyance parameter Surface Runoff
R3fs | Overland flow conveyance parameter under snow Surface Runoff
RETN | Soil retention coefficient Evaporation
AK2 | Upper to lower zone drainage coefficient Groundwater recharge
AK2fs | Upper to lower zone drainage coefficient under snow Groundwater recharge
LZF |Lower zone drainage function Groundwater flow
PWR | Lower zone drainage function exponent Groundwater flow
R2 River roughness coefficient River Routing
MF | Melt factor Snowmelt
BASE |Basetemperature Snowmelt
FPET | Potential Evapotranspiration Factor Evaporation
FTALL |Evapotranspiration Factor for Tall Vegetation Evaporation

The order of the landcovers and river classes can be seen in the following table.

Landcover |Name 7.2 River |Name
Class
1 Barren 1 Valley
2 High Elevation, Dense Forest 2 High Elevation Mountain
3 Low Elevation, Dense Forest 3 Low Elevation Mountain
4 High Elevation, Light Forest
5 Low Elevation, Light Forest
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The A5 and AK parameters were both insignificant for peak flow generation at Mica
Dam. The A5 parameter was insignificant for all of the streamflow stations, while the AK
parameter was significant for some stations. Where the AK parameter was significant, the
response surface curves had similar shapes to the ones below (with different magnitudes). A
value of AK greater than 10 mm/hour does not change the flow because the precipitation

would only rarely be larger than 10 mm/hour.
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% response
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Figure C-81 — Response Curve Shapefor A5 and AK
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The AKfs parameter was significant for the barren landcover, but not significant for
the others. The barren areas are at higher elevations where snow cover lasts longer, and
therefore, infiltration can control peak flows. Beyond a certain value, however, the peak
flows are unaffected, because the precipitation would only rarely be larger than 10 mm/hour.
Similar results were found for other streamflow stations. The REC parameter was significant
for al landcovers. A monotonically increasing curve was found, indicating that asingle

correct value of the parameters may be found. Other streamflow stations were similar.
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Figure C-82 — Response Curve Shape for AKfsand REC
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The R3 and R3fs parameters were both insignificant for generation of peak flows at
Mica Dam, and the other streamflow stations. The roughness of the ground did not affect

peak flows, since the roughness affects mainly very large amounts of surface runoff.
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Figure C-83 — Response Curve Shape for R3 and R3fs
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The RETN parameter was significant for two of the landcovers (low elevation dense
and light forests), and insignificant for the others. When the parameter was significant (for a
combination of landcover and streamflow station), the response surface was generally
monotonically decreasing. The AK2 parameter was significant in generating the peak flows
for al landcovers, and most streamflow stations. The parameter was generally
monotonically decreasing, showing that as greater drainage to the lower zone occurred, there

was less peak flow.
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Figure C-84 — Response Curve Shape for RETN andAK?2
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The AK2fs parameter was significant for most combinations of landcover and
streamflow. The curve monotonically decreased for three of the landcovers, but increased
for the other two (low elevation forests). The hydrological behaviour changes between high
and low elevation drainage to the lower zone. The LZF parameter was most significant for
the high elevation mountain river class, and mildly significant for the other two classes: the
LZF valley parameter was insignificant for most of the stationsin the valley class. The

surface was monotonically increasing for al three river classes.
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Figure C-85— Response Curve Shapefor AK2fsand LZF
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The PWR parameter was most significant for the high elevation mountain river class,
and somewhat significant for the other two. The PWR parameter for the valley river class
was insignificant for most stations. The PWR parameter was monotonically increasing. The
R2 parameter for the valley river class was also insignificant for most stations (but not Mica
Dam Basin), indicating that most stations have very little valley river, which is accurate. The
R2 parameter was monotonically decreasing for some stations, and convex for others, when
significant.
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Figure C-86 — Response Curve Shape for PWR and R2
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The MF parameter, like the AK 2fs parameter, shows a change in hydrological
behaviour between high and low elevation. For high elevations, the peak flow increases as
the parameter increases, but the opposite istrue for low elevations. Curves vary in shape
(concave, convex, and monotonic), and there are some large deviations from “ideal” curves.
The BASE parameter had various shapes of response curves. Generally, the high-elevation
landcovers had non-ideal response curves, while most of the low-elevation response curves

were acceptable.
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Figure C-87 — Response Curve Shapefor MF and BASE
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The FPET parameter was insignificant for generation of peak flows for all

combinations of streamflow stations and landcovers. The FTALL parameter was

insignificant for many combinations of streamflow stations and landcovers, and was

monotonically decreasing for combinations that were significant.
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Figure C-88 — Response Curve Shapefor FPET and FTALL
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Appendix D

This appendix contains a series of 25 figures, which show the two variable interaction
between the MF and BA SE parameters for the Mica Dam. Each figure was generated from
36 simulations that were performed with different combinations of the MF and BASE
parameters. The parameters were varied in agrid with six values of the BASE parameter on
the vertical axis and six values of the MF parameter on the horizontal axis. The average
difference between the five peak flows for each simulation and the reference peak flows was
calculated and used to create the figure. One figure was generated for each combination of
landcovers for the MF and BASE parameter (five landcovers for each parameter). Each
figure shows a smooth variation in the objective function with a single line where the average
difference equaled zero. The line indicated that several combinations of MF and BASE were
optimum for peak flow generation. Only one such line existed, forming a“ridge” on the
multi-dimensional hill of the objective function. The figuresindicated that only one “hill”
existed within the physically possible range. The calibrated parameter values are indicated
on each figure with a diamond symbol. As expected, the calibrated parameter values were on
the zero line for each figure (interpolation effects caused the diamond to be slightly off the

line in some figures).
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Appendix E

This appendix contains a series of figures that compare the confidence limits
calculated by the two methods in this research. The first method was to use the Monte Carlo
anaysis. The Monte Carlo analysis allowed all of the parametersto vary simultaneously in
10,000 simulations. The five-year peaks for each simulation were ordered and five
histograms were calculated (one for each peak). The 2.5% and 97.5% points of each
histogram were found and connected to form an estimate of the 95% confidence limits. The
second method was to refine the estimate of the confidence limits by calculating the full 95-
year time seriesin WATFLOOD/SPL for the simulations that crossed the 2.5% and 97.5%
histogram lines. The average of the frequency curves calculated by the 95-year simulations
is plotted in the figures (scaled by the average peak flow for the 2.5% curve, and scaled by
the maximum peak flow for the 97.5% curve). The figures show that the two estimates for

the confidence limits were very similar.
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Figure E-99 — Comparison of Confidence Limits—Part 4
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Figure E-100 — Comparison of Confidence Limits—Part 5
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Figure E-101 — Comparison of Confidence Limits—Part 6
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Figure E-102 — Comparison of Confidence Limits—Part 7
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Figure E-103 — Comparison of Confidence Limits—Part 8
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Figure E-104 — Comparison of Confidence Limits—Part 9
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