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                      Civil Engineering Department   -  CIVE 711 
 

        
 

CIV E 711 - COMPUTER-AIDED PROJECT ORGANIZATION & MANAGEMENT 
 
Instructor:  Dr. Tarek Hegazy,  CPH  2369CG, Ext.: 32174, E-mail: tarek@uwaterloo.ca   
       

Description: 
Application of traditional and Artificial Intelligence-based computerized tools for effectively managing 
the time, money, and resources of projects. It covers: review of the CPM method, project management 
software, optimization using Excel Solver, Expert Systems, Neural Networks, OOP programming, 
Genetic Algorithms, Fuzzy Logic, integrated project management tools, Asset Management Systems, 
various case studies and hands-on computer workshops. The course involves assignments, computer 
workshops, a project, and a final examination. 
 
 
Suggested Texts:  
(1)       Hegazy 2002, “Computer-Based Construction Project Management,” Prentice Hall. 
(2)       Negnevitsky, M. 2005 “Artificial Intelligence” A guide to intelligent systems, 2nd Ed., Addison 
Wesley. 
(3)       Hendrickson, C. and Au, T. “Project management for Construction: Fundamental Concepts for 

Owners, Engineers, Architects, and Builders,” Prentice Hall, 1989. 
(4)       Ahuja, H.N. “Construction Performance Control by Networks,” John Wiley & Sons, 1976. 
(5)       Clough, R.H. and Sears, E. “Construction Project Management,” Second Edition, John Wiley & 

Sons, Toronto, 1979. 
 

Tentative Content: 
Week Subject 

1 •   Introduction to Project Management.
2 •   Optimization using Excel Solver.
3 •   EasyPlan & Microsoft Project Software. 
4 •   Genetic Algorithms.
5 •   AI & Expert Systems.
6 •   Neural Networks. 
7 •  Fuzzy Logic.
8 •  Hybrid AI tools.
9 •  Asset Management.
10 •  Planning of repetitive projects.
11 •   Project control techniques & Earned-
12 •   Class presentations.
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 References on Project Management: 

• Books on Project Management and Construction Management;  

• Trade magazines (e.g., ENR);  

• International journals such as: 

o Construction Engineering and Management (ASCE);  

o Computing in Civil Engineering (ASCE);  

o Infrastructure Systems (ASCE); 

o Computer-Aided Civil and Infrastructure Engineering;  

o Automation in Construction;  

o Cost Engineering (AACE);  

o Construction Management and Economics;  

o Knowledge-Based Systems; 

o Quality in Maintenance & Engineering; and 

o Computers in Industry. 

 

• Databases such as "current contents" , "compendex" & "CISTI";  

• International organizations such as Project Management Institute (PMI) and American 
Association of Cost Engineers (AACE);  

• A lot of computer software programs;  

• Internet search;  

• News groups; and  

• Government publications such as statistics Canada, etc.  
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Interesting Project Management Proverbs: 

- If you fail to plan, you plan to fail.   

- There are no good project managers - only lucky ones. The more you plan the luckier you get.  

- Fast - cheap - good: you can have any two, not all three. 

- Be realistic. If it takes 1 person 1 hour to go to Toronto, it does not take half an hour from 2 people.  

- The person who says it will take the longest and cost the most is the most knowledgeable.  

- The most valuable and least used WORD in a project manager's vocabulary is "NO".  

- The most valuable and least used PHRASE in a project manager's vocabulary is "I don't know".  

- If it happens once it's ignorance, if it happens twice it's neglect, if three times it's policy.  

- You can get someone to commit to a strict deadline, but you cannot get him into meeting it.  

- A badly planned project will take three times than expected - a well planned project only twice. 

- The sooner you get behind schedule, the more time you have to make it up.  

- A problem shared is a buck passed.  

- Of several possible interpretations of a communication, the least convenient is the correct one.  

- If everything is going exactly to plan, something somewhere is going massively wrong.  

- Project management tools are used most for predicting, not preventing, cost & schedule overruns.  

- For a project manager, overruns are as certain as death and taxes.  

- Some projects finish on time in spite of project management best practices.  

- When the project’s paperwork weighs as much as the project itself, the project is complete.  

- If you can interpret project status in several different ways, the most painful will be correct.  

- A project ain't over until the fat cheque is cashed.  

- No project has ever finished on time, within budget, to requirement - yours won't be the first.  

- Good control reveals problems early - which means you'll have longer to worry about them.  

- If it can go wrong, it will - Murphy's Law.  

- Work expands to fill the time available for its completion - Parkinson's Law.  

- The common 7 phases of a project are: Wild enthusiasm; Disillusionment; Confusion; Panic; Search 

for the guilty; Punishment of the innocent; and Promotion of non-participants.
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CIVE 711- Current Research Areas 

 
Current Research Trends 
Journal of Computing in Civil Engineering, ASCE, 20(1), 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Titles of research papers as of 2005 
 
ASCE 

Computerized System for Efficient Delivery of Infrastructure Maintenance/Repair Programs 
Work Continuity Constraints in Project Scheduling 
Object-Oriented Scheduling for Repetitive Projects with Soft Logics 
Use of a WBS Matrix to Improve Interface Management in Projects 
Module-Based Construction Schedule Administration for Public Infrastructure Agencies 
Finance-Based Scheduling of Construction Projects Using Integer Programming 
Effective Practice Utilization Using Performance Prediction Software 
Flexible Work Breakdown Structure for Integrated Cost and Schedule Control 
Planning and Scheduling Highway Construction 
Accuracy of Highway Contractor’s Schedules 
Fuzzy Logic Approach for Activity Delay Analysis and Schedule Updating 
Critical Path Method with Multiple Calendars 
Quantifying Engineering Project Scope for Productivity Modeling 
Benchmarking of Construction Productivity 
Predicting Industrial Construction Labor Productivity Using Fuzzy Expert Systems 
Time-Cost Optimization of Construction Projects with Generalized Activity Constraints 
Method for Calculating Schedule Delay Considering Lost Productivity 
Delay Analysis Method Using Delay Section 
Impact of Change’s Timing on Labor Productivity 
Improved Measured Mile Analysis Technique 
MBF: Modified But-For Method for delay analysis 
Daily windows analysis method 

 
Computing in Civil Engineering 

Web-Vacuum: Web-Based Environment for Automated 
Methodology for the Integration of Project Documents in Model-Based Information Systems 
Framework for Managing Life-Cycle Cost of Smart Infrastructure Systems 
Optimum Bid Markup Calculation Using Neuro fuzzy Systems and Multidimensional Risk Analysis Algorithm 
Modeling and Predicting Biological Performance of Contact Stabilization Process Using Artificial Neural Networks 
Building Project Model Support for Automated Labor Monitoring 
Parallel Computing Framework for Optimizing Construction Planning in Large-Scale Projects 

 
Automation in Construction 

Applications of electronically facilitated bidding model to preventing construction disputes 
A formalism for utilization of sensor systems and integrated project models for active construction quality control 
Rapid, on-site spatial information acquisition and its use for infrastructure operation and maintenance 
Data modeling issues in simulating the dynamic processes in life cycle analysis of buildings 
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Content-Based Search Engines for construction image databases 
Object-oriented framework for durability assessment and life cycle costing of highway bridges 
Dynamic planning and control methodology for strategic and operational construction project management 
Planning gang formwork operations for building construction using simulations 
Application of integrated GPS and GIS technology for reducing construction waste and improving construction 
efficiency 
Maintenance optimization of infrastructure networks using genetic algorithms 
A computer-based scoring method for measuring the environmental performance of construction activities 
Model-based dynamic resource management for construction projects 
4D dynamic management for construction planning and resource utilization 
PPMS: a Web-based construction Project Performance Monitoring System 
Automated project performance control of construction projects 
A cooperative Internet-facilitated quality management environment for construction 
A process-based quality management information system 
System development for non-unit based repetitive project scheduling 
Simulation-based optimization for dynamic resource allocation 
A WICE approach to real-time construction cost estimation 

 
Construction Management and Economics 

Integrated maintenance management of hospital buildings: a case study  
 Web-based integrated project control system 
Service quality performance of design/build contractors using quality function deployment  
Safety and production: an integrated planning and control model  
Trends of 4D CAD applications for construction planning  
An integrated construction project cost information system using MS Access and MS Project 
Production arrangements by US building and non-building contractors: an update  
A typology for clients' multi-project environments  
Combining various facets of uncertainty in whole-life cost modeling  
Grey relation analysis of causes for change orders in highway construction  
Development of a model to estimate the benefit-cost ratio performance of housing  
Scheduling system with focus on practical concerns in repetitive projects  
Managing knowledge: lessons from the oil and gas sector  
Simulation of maintenance costs in UK local authority sport centers  
Project management decisions with multiple fuzzy goals  
Service life prediction of exterior cladding components under standard conditions  
Documentation, standardization and improvement of the construction process in house building  
Innovative construction technology for affordable mass housing in Tanzania, East Africa  
Selection of vertical formwork system by probabilistic neural networks models  
Project cost estimation using principal component regression  
Using linear model for learning curve effect on highrise floor construction  
Accelerating linear projects  
Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic 
algorithm (GA) techniques  
Forecasting the residual service life of NHS hospital buildings: a stochastic approach  
Using the principal component analysis method as a tool in contractor pre qualification  
The JIT materials management system in developing countries  
Use of information and communication technologies by small and medium sized enterprises (SMEs) in building 
construction   
Identifying management research priorities  
A linear discrete scheduling model for the resource constrained project scheduling problem  
Justification time management in the ready mixed concrete industries of Chongqing, China and Singapore  
A model for automated monitoring of road construction  
Improvement tools in the UK construction industry  
Time series forecasts of the construction labour market in Hong Kong: the Box Jenkins approach 
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Basics of Scheduling 
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Another Example 
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CIVE 711 – Scheduling Assignment 
 
1. For the following project: 
 

A. Manually draw the logic network and identify the critical path. 
B. Manually draw a “late” bar chart. 
C. What is the effect of delaying activity G by 6 days? 
D. Enter the project into EasyPlan, print the schedule, the network, and the cash flow chart. 

 
 

Activity 
 

Predecessors Duration 
(days) 

Cost 
(x$1000) 

 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

 
---- 
A 
A 
A 
B 
D 
B 
C, E 
F 
G, H, I 

 
4 
6 
4 
9 
3 
8 
10 
2 
4 
2 

 
5 
3 
4 
2 
4 
5 
2 
2 
4 
3 

 
 
2. Manually calculate the schedule for the following network. Enter the data into Microsoft Project and 

print the resulting schedule.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. In EasyPlan, use the “Web Tutorial” and load Pr7 (as discussed in the project management article). 

Solve the exercise and print your score and the optimum schedule. Note that the part of dealing 
with actual progress data is not part of the assignment. 

 

  

 

 

 A 

8 

4 

E 

6 

C 

6 

Y 

4 

X 

2 

Overlap between 
finish of X & start of 
Y 

3

Activity duration  
(Overlaps and durations in days) 

TF= TF= 

2 5 

 K

4 
TF= 

 H

7
TF= 

 F

8
TF= 

 D 

8 
TF= 

 B 

7 
TF= 

 J

3
TF= 

 I

9
TF= 

TF= 
 G

6
TF= 

Activity  
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Introduction to Artificial Intelligence 
 

 
-Take a minute to calculate the following manually: 
 
 45.32 (98.2 x123.59)12 / 27.2 = ?     
If not done, give it to a cheap $1 calculator. Who is smart now? 
 
 
 
- Consider the example of O.J. Simpson’s Trial and the conflicting evidence. How 
did the jury and judge make a decision? Can the judge explain the logic? 
Was any calculation involved? How much time needed?  
 
 
 
- Can you guess the age of this person by looking at 
the picture for only 2 seconds?  
 
Was any calculation involved? 
Can you explain your logic? 
Can your computer do that?  
 
 
 

 
************************************************************ 
      Can you read this ? 
 

       can uoy blveiee taht I cluod auclaly uesdnatnrd waht I was redanieg. The 

phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at Cmabrigde 

Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny 

iprmoatnt thing is taht the frist and lsat ltteer be in the rghit pclae. The rset can be 

a taotl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn 

mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. Amzanig huh? 

Yaeh and I awlyas tghuhot slpeling was ipmorantt!   

************************************************************ 
 
Who has more processing power: A supercomputer or the brain of a fly? 
Who is more intelligent? 
 
How to add intelligence to computers? 
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         Solving Optimization Problems: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Evolutionary Systems? 
 
 
Compromise between  
Local versus Global search strategies. 
 
 
 
 
 
 
 
 
 
 
 



CIVE 711 -  Dr. T. Hegazy 13

 
Optimization Using Excel Solver 

 
Solve the following two questions using Excel Solver 
 
Question 1: A concrete manufacturer is concerned about how many units of two types of concrete 
elements should be produced during the next time period to maximize profit. Each concrete element of 
type I generates a profit of $60, while each element of type II generates a profit of $40. 2 and 3 units of 
raw materials are needed to produce one concrete element of type I and II, respectively. Also, 4 and 2 
units of time are required to produce one concrete element of type I and II, respectively.  
If 100 units of raw materials and 120 units of time are available, how many units of each type of 
concrete element should be produced to maximize profit and satisfy all constraints? Use Excel solver 
for the solution. 
 

Question 2: A building contractor produces two types of houses: detached and semidetached. The 
customer is offered several choices of architectural design and layout for each type. The proportion of 
each type of design sold in the past is shown in the following table. The profit on a detached house 
and a semidetached house is $1,000 and $800 respectively. 
 

Design Detached 
Semidetach

ed 
Type A 
Type B 
Type C 

0.1 
0.4 
0.5 

0.33 
0.67 
----- 

 
The builder has the capacity to build 400 houses per year. However, an estate of housing will not be 
allowed to contain more than 75% of the total housing as detached. Furthermore, because of the 
limited supply of bricks available for type B designs, a 200-house limit with this design is imposed. Use 
Excel to develop a model of this problem and then use SOLVER to determine how many detached 
and semidetached houses should be constructed in order to maximize profits. State the optimum 
profit. 
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Example on Genetic Algorithms 
 
 
Problem: A square construction site is divided into 9 grid units. We need to use GAs to determine the best 

location of two temporary facilities A and B, so that: 
 

- Facility A is as close as possible to facility B. 
- Facility A is as close as possible to the fixed facility F. 
- Facility B is as far as possible to the fixed facility F. 

 
 
Step 1:      Problem Representation (how to define a facility location) 
 
 
 
         Option 1        Option 2 
 Using coordinates          Using location index 
 
 
 
 
 
 
A has X = 2 and Y = 1      A is in Location index 2 
B has X = 1 and Y = 3      B is in Location index 7 
 
 
Step 2:   Chromosome Structure 
The variables in our problem are the locations of facilities A & B. Then, the chromosome structure for each of 
the two options in Step 1 are as follows. Note that the genes of a chromosome are the variables. 
  
 
 
      4 Genes            2 Genes 
     (Values range from 1 to 3)            (Values range from 1 to 8) 
 
 
 
Step 3: Generate Population (50 to 100 is reasonable diversity & processing time) 
             (note: for this exercise, let’s consider option 1 representation and a population of 3) 
 
 
 
  P1        P2                                                   P3 
 
 
 
 
 
 
 
 
 
 

 A  
   
B  F 

x 

y 

 A  
   
B  F 

 

1         2          3 
 

4         5          6 
 

7         8          9 

X
A 

Y
A 

XB YB 

2 1 1 3

Inde
x A 

Inde
x B 

2 7 

X
A 

Y
A 

XB YB 

1 1 3 2

X
A 

Y
A 

XB YB 

2 1 1 3

X
A 

Y
A 

XB YB 

1 3 2 2

A   
  B 
  F 

 A  
   
B  F 

   
 B  
A  F 
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Step 4: Evaluate the Population  
             
       P1            P2         P3 
 
 
 
                Objective function  = Minimize site score  =  Minimum of  ∑ d . W  

     Score = dAB . WAB +   dAF . WAF +   dBF . WBF  
 

    Let’s consider the closeness weights (W) as follows (from past notes): 
      WAB =  100   (positive means A & B close to each other) 
      WAF =  100   (A & F close to each other) 
      WBF = -100   (negative means B & F far from each other) 

 
     Let’s also consider the distance (d) between two facilities as the number of  
     horizontal and vertical blocks between them. 

 
                 P1 Score = dAB . WAB + dAF . WAF + dBF . WBF = 3 . 100 + 4 . 100 + 1 . -100 = 600 
                 P2 Score = dAB . WAB + dAF . WAF + dBF . WBF = 3 . 100 + 3 . 100 + 2 . -100 = 400 
                 P3 Score = dAB . WAB + dAF . WAF + dBF . WBF =  2 . 100 + 2 .100 + 2 . -100 = 200 
 

 
 

Step 5: Calculate the Merits of Population Members 
             
        Merit of P1 =  (600+400+200) / 600   = 2 
        Merit of P2 =  (600+400+200) / 400   = 3 
        Merit of P1 =  (600+400+200) / 200   = 6     Notice the sum of merits = 11 
 

Notice that smaller score gives higher merit because we are interested in minimization. In case of 
maximization, we use the inverse of the merit calculation. 

 
 
 
Step 6: Calculate the Relative Merits of Population Members 
             
        RM of P1 =  merit * 100 / Sum of merits  = 2 . 100 / 11 = 18 
        RM of P2 =  merit * 100 / Sum of merits  = 3 . 100 / 11 = 27 
        RM of P3 =  merit * 100 / Sum of merits  = 6 . 100 / 11 = 55 
 
 
 
 
Step 7: Randomly Select Operator (Crossover or Mutation) 
             
         Crossover rate = 96%   (marriage is the main avenue for evolution) 

 Mutation rate    = 4%     (genius people are very rare) 
        
             To select which operator to use in current cycle, we generate a random number  
             (from 0 to 100). If the value is between 0 to 96, then crossover, otherwise, mutation. 
 
 
 
 
 
Step 8: Use the Selected Operator (Assume Crossover) 

A   
  B 
  F 

 A  
   
B  F 

   
 B  
A  F 
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       8.a) Randomly select two parents according to their relative merits of Step 6 
    
 
 
  0         18        45                                       100 
 
                       Relative merits on a cumulative horizontal scale. 
 
    For first parent, we generate a random number (0 to 100). According to its value,  
              we pick the parent. For example, assume value is 76, then P3 is selected. 
 
   For the 2nd parent, get a random number (0 to 100). Assume 39, Then P2 is picked. 
 
 
       8.b) Let’s apply crossover to generate an offspring    
 
 
              P3 
 
        
              P2 
 
 
 
Step 9: Evaluate the Offspring  
                         Offspring 1 
 
 

     Notice that Offspring 2 is invalid because both facilities A & B are at same  
                coordinates (x = 2 and Y = 3) and this is not allowed 

 
                Offspring Score = dAB.WAB + dAF.WAF + dBF.WBF = 1.100 + 4.100 + 3. -100 = 200 
 
 
 
Step 10: Compare the Offspring with the Population (Evolve the Population)  
             
Since the offspring score = 200 is better than the worst population member (P1 has a score of 600), then the 
offspring survives and P1 dies (will be replaced by the offspring).  
 

Accordingly,  P1 becomes:  
 
 

At the end of this step, we GOTO STEP 4 , repeating the process thousands of times  
until the best solution is determined. One of the top solutions is as follows:  
 

 
Score = 0  

 
 
 

P1         P2                               P3 

    
2 1 1 3 

    
1 3 2 2 

    
2 3 2 3 

    
1 1 1 2 For the crossover 

range, we get 2 
random numbers, 
say 2 and 3 

Offspring 1 
 
 
Offspring 2 (Invalid) 

A   
B   
  F 

  B 
  A 
  F 

    
1 1 1 2 
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Comparison among five evolutionary-based optimization algorithms 
by  

Emad Elbeltagi; Tarek Hegazy; and Donald Grierson 

ABSTRACT: Evolutionary algorithms are stochastic search methods that mimic the natural biological evolution and/or the 
social behavior of species. Such algorithms have been developed to arrive at near-optimum solutions to large-scale 
optimization problems, for which traditional mathematical techniques may fail. This paper compares the formulation and 
results of five recent evolutionary-based algorithms: genetic algorithms, memetic algorithms, particle swarm, ant colony 
systems, and shuffled frog leaping. A brief description of each algorithm is presented along with a pseudocode to facilitate 
the implementation and use of such algorithms by researchers and practitioners. Benchmark comparisons among the 
algorithms are presented for both continuous and discrete optimization problems, in terms of processing time, 
convergence speed, and quality of the results. Based on this comparative analysis, the performance of evolutionary 
algorithms is discussed along with some guidelines for determining the best operators for each algorithm. The study 
presents sophisticated ideas in a simplified form that should be is beneficial to both practitioners and researchers involved 
in solving optimization problems. 
 
1. Introduction 
The difficulties associated with using mathematical optimization on large scale engineering problems have contributed to 
the development of alternative solutions. Linear programming and dynamic programming techniques, for example, often 
fail (or reach local optimum) in solving NP-hard problems with large number of variables and non-linear objective functions 
[1]. To overcome these problems, researchers have proposed evolutionary-based algorithms for searching near-optimum 
solutions to problems. 
 
Evolutionary Algorithms are stochastic search methods that mimic the metaphor of natural biological evolution and/or the 
social behavior of species. Examples include how ants find the shortest route to a source of food and how birds find their 
destination during migration. The behaviour of such species is guided by learning, adaptation, and evolution [1]. To mimic 
the efficient behaviour of these species, various researchers have developed computational systems that seek fast and 
robust solutions to complex optimization problems. The first evolutionary-based technique introduced in the literature was 
the Genetic Algorithms, [2]. Genetic Algorithms (GAs) were developed based on the Darwinian principle of the “survival of 
the fittest” and the natural process of evolution through reproduction. Based on its demonstrated ability to reach near-
optimum solutions to large problems, the GAs technique has been used in many applications in science and engineering 
[e.g.,3,4,5]. Despite their benefits, GAs may require long processing time for a near-optimum solution to evolve. Also, not 
all problems lend themselves well to a solution with GAs [6].  
 
In an attempt to reduce processing time and improve the quality of solutions, particularly to avoid being trapped in local 
optima, other Evolutionary Algorithms (EAs) have been introduced during the past 10 years. In addition to various GA 
improvements, recent developments in EAs include four other techniques inspired by different natural processes: memetic 
algorithms [7], particle swarm optimization [8], ant colony systems [9], and shuffled frog leaping [10]. A schematic diagram 
of the natural processes that the five algorithms mimic is shown in Fig. 1.  
 
In this paper, the five EAs presented in Fig. 1 are reviewed and a pseudocode for each algorithm is presented to facilitate 
its implementation. Performance comparison among the five algorithms is then presented. Guidelines are then presented 
for determining the proper parameters to use with each algorithm. 
 
2. Five evolutionary algorithms  
In general, EAs share a common approach for their application to a given problem The problem first requires some 
representation to suit each method. Then, the evolutionary search algorithm is applied iteratively to arrive at a near-
optimum solution. A brief description of the five algorithms is presented in the following subsections.  

2.1. Genetic algorithms 
Genetic algorithms (GAs) are inspired by biological systems’ improved fitness through evolution [2]. A solution to a given 
problem is represented in the form of a string, called “chromosome”, consisting of a set of elements, called “genes”, that 
hold a set of values for the optimization variables [11].  
 
GAs work with a random population of solutions (chromosomes). The fitness of each chromosome is determined by 
evaluating it against an objective function. To simulate the natural “survival of the fittest” process, best chromosomes 
exchange information (through crossover or mutation) to produce offspring chromosomes. The offspring solutions are then 
evaluated and used to evolve the population if they provide better solutions than weak population members. Usually, the 
process is continued for a large number of generations to obtain a best-fit (near-optimum) solution. More details on the 
mechanism of GAs can be found in Goldberg [11] and Al-Tabtabai and Alex [3]. 
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Fig. 1. Schematic diagram of natural evolutionary systems 
 
A pseudocode for the GAs algorithm is shown in Appendix I. Four main parameters affect the performance of GAs: 
population size, number of generations, crossover rate, and mutation rate. Larger population size (i.e., hundreds of 
chromosomes) and large number of generations (thousands) increase the likelihood of obtaining a global optimum 
solution, but substantially increase processing time.  

Crossover among parent chromosomes is a common natural process [12] and traditionally is given a rate that ranges from 
0.6 to 1.0. In crossover, the exchange of parents’ information produces an offspring, as shown in Fig. 2. As opposed to 
crossover, mutation is a rare process that resembles a sudden change to an offspring. This can be done by randomly 
selecting one chromosome from the population and then arbitrarily changing some of its information. The benefit of 
mutation is that it randomly introduces new genetic material to the evolutionary process, perhaps thereby avoiding 
stagnation around local minima. A small mutation rate less than 0.1 is usually used [11].  

The GA used in this study is steady state (an offspring replaces the worst chromosome only if is better than it) and real 
coded (the variables are represented in real numbers). The main parameters used in the GA procedure are population 
size, number of generations, crossover rate and mutation rate. 

 
 

 

 

 

 

 

Parent gene (A) 
 
 
 
Parent gene (B) 
 
         Generate random range     (e.g., 3 – 5) 
 

 Offspring A2 B3 B4 B5 A6 AN.  .  .A1

B2 B3 B4 B5 B6 BN.  .  .B1 

A2 A3 A4 A5 A6 AN.  .  .A1

a) Genetic algorithms: Survival of the   
genetically fittest (i.e., tallest)

d) Ant colony: Shortest path to food source c) Particle swarm: Flock migration 

e) Shuffled Frog Leaping: Group search for food

b) Memetic algorithms: Survival of the 
genetically fittest and most experienced 

Destination

Migration  
path 

Local search  
Nest 

FoodA B 
Selected 
path 

Food

Search space: each group 
performing local search, then 
they change information with 
other groups. 

Group 1
Group 2

Group 3 

Group 4

Group 5
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Fig. 2. Crossover operation to generate offspring 
 
2.2. Memetic algorithms 
Memetic algorithms (MAs) are inspired by Dawkins’ notion of a meme [13]. MAs are similar to GAs but the elements that 
form a chromosome are called memes, not genes. The unique aspect of the MAs algorithm is that all chromosomes and 
offsprings are allowed to gain some experience, through a local search, before being involved in the evolutionary process 
[14]. As such, the term MAs is used to describe GAs that heavily use local search [15]. A pseudocode for a MA procedure 
is given in Appendix II.  
 
Similar to the GAs, an initial population is created at random. Afterwards, a local search is performed on each population 
member to improve its experience and thus obtain a population of local optimum solutions. Then, crossover and mutation 
operators are applied, similar to GAs, to produce offsprings. These offsprings are then subjected to the local search so that 
local optimality is always maintained.  
 
Merz and Freisleben [14] proposed one approach to perform local search through a pair-wise interchange heuristic (Fig. 
3). In this method, the local search neighborhood is defined as the set of all solutions that can be reached from the current 
solution by swapping two elements (memes) in the chromosome. For a chromosome of length n, the neighborhood size for 
the local search i: 
 

N = ½ . n . (n - 1)                                  (1) 
 

 

  

 

 

 

Fig. 3. Applying local search using pair-wise interchange 
 
The number of swaps and consequently the size of the neighborhood grow quadratically with the chromosome length 
(problem variables). In order to reduce processing time, Merz and Freisleben [14] suggested stopping the pair-wise 
interchange after performing the first swap that enhances the objective function of the current chromosome. The local 
search algorithm, however, can be designed to suit the problem nature. For example, another local search can be 
conducted by adding or subtracting an incremental value from every gene and testing the chromosome’s performance. 
The change is kept if the chromosome’s performance improves; otherwise, the change is ignored. A pseudocode of this 
modified local search is given in Appendix III. As discussed, the parameters involved in MAs are the same four parameters 
used in GAs: population size, number of generations, crossover rate, and mutation rate in addition to a local search. 
  
2.3. Particle swarm optimization 
Particle swarm optimization (PSO) was developed by Kennedy and Eberhart [8]. The PSO is inspired by the social 
behavior of a flock of migrating birds trying to reach an unknown destination. In PSO, each solution is a “bird” in the flock 
and is referred to as a “particle”. A particle is analogous to a chromosome (population member) in GAs. As opposed to 
GAs, the evolutionary process in the PSO doesn’t create new birds from parent ones. Rather, the birds in the population 
only evolve their social behavior and accordingly their movement towards a destination [16].  
 
Physically, this mimics a flock of birds that communicate together as they fly. Each bird looks in a specific direction, and 
then when communicating together, they identify the bird that is in the best location. Accordingly, each bird speeds towards 
the best bird using a velocity that depends on its current position. Each bird, then, investigates the search space from its 
new local position, and the process repeats until the flock reaches a desired destination. It is important to note that the 
process involves both social interaction and intelligence so that birds learn from their own experience (local search) and 
also from the experience of others around them (global search).  
 
The pseudocode for the PSO is shown in Appendix IV. The process is initialized with a group of random particles 
(solutions), N. The ith particle is represented by its position as a point in a S-dimensional space, where S is the number of 
variables. Throughout the process, each particle i monitors three values: its current position (Xi); the best position it 
reached in previous cycles (Pi); and its flying velocity (Vi). These three values are represented as follows:  
  

        Current position  Xi = (xi1, xi2, ……………………....., xiS)     
 Best previous position  Pi = (pi1, pi2, ...................................., piS)    (2) 

       Flying velocity   Vi = (vi1, vi2, …………………….…, viS) 

A2 A5 A4 A3 A6 AN
.  .  . A1 

A2 A3 A4 A5 A6 AN
.  .  . A1 

Chromosome A 
(before local search) 

 
 
 

Chromosome A’ 
(after local search) 
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In each time interval (cycle), the position (Pg) of the best particle (g) is calculated as the best fitness of all particles. 
Accordingly, each particle updates its velocity Vi to catch up with the best particle g, as follows [16]: 
 

New Vi = ω . current Vi + c1 . rand() x (Pi – Xi) + c2 . Rand() х (Pg – Xi)     (3) 
 
As such, using the new velocity Vi, the particle’s updated position becomes: 

 
New position Xi = current position Xi + New Vi ;  Vmax ≥ Vi ≥ - Vmax      (4) 
 

where c1 and c2 are two positive constants named learning factors (usually c1= c2= 2); rand() and Rand() are two random 
functions in the range [0, 1], Vmax is an upper limit on the maximum change of particle velocity [8], and ω is an inertia 
weight employed as an improvement proposed by Shi and Eberhart [16] to control the impact of the previous history of 
velocities on the current velocity. The operator ω plays the role of balancing the global search and the local search; and 
was proposed to decrease linearly with time from a value of 1.4 to 0.5 [16]. As such, global search starts with a large 
weight and then decreases with time to favor local search over global search [17].  
 
It is noted that the second term in Eq. 3 represents “cognition”, or the private thinking of the particle when comparing its 
current position to its own best. The third term in Eq. 3, on the other hand, represents the “social” collaboration among the 
particles, which compares a particle’s current position to that of the best particle [18]. Also, to control the change of 
particles’ velocities, upper and lower bounds for velocity change is limited to a user-specified value of Vmax. Once the new 
position of a particle is calculated using Eq. 4, the particle, then, flies towards it [16]. As such, the main parameters used in 
the PSO technique are: the population size (number of birds); number of generation cycles; the maximum change of a 
particle velocity Vmax; and ω. 
 
2.4. Ant colony optimization 
Similar to PSO, Ant colony optimization (ACO) Algorithms evolve not in their genetics but in their social behavior. ACO was 
developed by Dorigo et al. [9] based on the fact that ants are able to find the shortest route between their nest and a 
source of food. This is done using pheromone trails, which ants deposit whenever they travel, as a form of indirect 
communication. 
 
As shown in Fig. 1-d, when ants leave their nest to search for a food source, they randomly rotate around an obstacle, and 
initially the pheromone deposits will be the same for the right and left directions. When the ants in the shorter direction find 
a food source, they carry the food and start returning back, following their pheromone trails, and still depositing more 
pheromone. As indicated in Fig. 1-d, an ant will most likely choose the shortest path when returning back to the nest with 
food as this path will have the most deposited pheromone. For the same reason, new ants that later starts out from the 
nest to find food will also choose the shortest path. Over time, this positive feedback (autocatalytic) process prompts all 
ants to choose the shorter path [19]. 
 
Implementing the ACO for a certain problem requires a representation of S variables for each ant, with each variable i has 
a set of ni options with their values lij, and their associated pheromone concentrations {�ij}; where i = 1, 2,….S, and j = 1, 
2,…ni. As such, an ant is consisted of S values that describe the path chosen by the ant as shown in Fig. 4 [20]. A 
pseudocode for the ACO is shown in Appendix V. Other researchers use a variation of this general algorithm, 
incorporating a local search to improve the solution [21].  
 
 

 

 

 

 

 
 
 
 

Fig. 4. Ant representation 
 
In the ACO, The process starts by generating m random ants (solutions). An ant k (k=1, 2, …., m) represents a solution 
string, with a selected value for each variable. Each ant is then evaluated according to an objective function. Accordingly, 
pheromone concentration associated with each possible route (variable value) is changed in a way to reinforce good 
solutions, as follows [9]:  
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        (5) 
 
where T is the number of iterations (generation cycles); �ij(t) is the revised concentration of pheromone associated with 
option lij at iteration t;�ij(t-1) is the concentration of pheromone at the previous iteration (t-1); ��ij = change in pheromone 
concentration; and � = pheromone evaporation rate (0 to 1). The reason for allowing pheromone evaporation is to avoid 
too strong influence of the old pheromone to avoid premature solution stagnation [22]. In Eq. 5, the change in pheromone 
concentration ��ij is calculated as [9]:   

                   
     (6) 

 
 
where R is a constant called the pheromone reward factor; and  fitnesskis the value of the objective function (solution 
performance) calculated for ant k. It is noted that the amount of pheromone gets higher as the solution improves. 
Therefore, for minimization problems, Eq. 6 shows the pheromone change as proportional to the inverse of the fitness. In 
maximization problems, on the other hand, the fitness value itself can be directly used.   
 
Once the pheromone is updated after an iteration, the next iteration starts by changing the ants’ paths (i.e., associated 
variable values) in a manner that respects pheromone concentration and also some heuristic preference. As such, an ant k 
at iteration t will change the value for each variable according to the following probability [9]:  
 
                   
              (7) 
  
 
where Pij(k,t) = probability that option lij is chosen by ant k for variable i at iteration t; �ij(t) = pheromone concentration 
associated with option lij at iteration t; ηij = heuristic factor for preferring among available options and is an indicator of how 
good it is for ant k to select option lij (this heuristic factor is generated by some problem characteristics and its value is 
fixed for each option lij); and α and β are exponent parameters that control the relative importance of pheromone 
concentration versus the heuristic factor [20]. Both α and β can take values greater than zero and can be determined by 
trial and error. Based on the previous discussion, the main parameters involved in ACO are: number of ants m; number of 
iterations t; exponents α and β; pheromone evaporation rate �; and pheromone reward factor R. 
 
2.5. Shuffled frog leaping algorithm 
The shuffled frog leaping (SFL) algorithm, in essence, combines the benefits of the genetic-based memetic algorithms and 
the social behavior-based particle swarm optimization algorithms. In the SFL, the population consists of a set of frogs 
(solutions) that is partitioned into subsets referred to as memeplexes. The different memeplexes are considered as 
different cultures of frogs, each performing a local search.  Within each memeplex, the individual frogs hold ideas, that can 
be influenced by the ideas of other frogs, and evolve through a process of memetic evolution. After a defined number of 
memetic evolution steps, ideas are passed among memeplexes in a shuffling process [23]. The local search and the 
shuffling processes continue until defined convergence criteria are satisfied [10]. 
 
As described in the pseudocode of Appendix VI, an initial population of “P” frogs is created randomly. For S-dimensional 
problems (S variables), a frog i is represented as Xi = (xi1, xi2, ......, xiS). Afterwards, the frogs are sorted in a descending 
order according to their fitness. Then, the entire population is divided into m memeplexes, each containing n frogs (i.e., P = 
m ×  n). In this process, the first frog goes to the first memeplex, the second frog goes to the second memeplex, frog m 
goes to the mth memeplex, and frog m+1 goes back to the first memeplex, etc.  
 
Within each memeplex, the frogs with the best and the worst fitnesses are identified as Xb and Xw, respectively. Also, the 
frog with the global best fitness is identified as Xg. Then, a process similar to PSO is applied to improve only the frog with 
the worst fitness (not all frogs) in each cycle. Accordingly, the position of the frog with the worst fitness is adjusted as 
follows: 
 

Change in frog position (Di) = rand() . (Xb – Xw)      (8) 
New position Xw = current position Xw + Di;   Dmax ≥ Di ≥ - Dmax     (9) 
 

where rand() is a random number between 0 and 1; and Dmax is the maximum allowed change in a frog’s position. If this 
process produces a better solution, it replaces the worst frog. Otherwise, the calculations in Eqs. 8 and 9 are repeated but 
with respect to the global best frog (i.e., Xg replaces Xb). If no improvement becomes possible in this case, then a new 
solution is randomly generated to replace that frog. The calculations then continue for a specific number of iterations [10]. 
Accordingly, the main parameters of SFL are: number of frogs P; number of memeplexes; number of generation for each 
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memeplex before shuffling; number of shuffling iterations; and maximum step size. 

3. Comparison among evolutionary algorithms’ results 
All the EAs described earlier have been coded using the Visual Basic programming language and all experiments took 
place on a 1.8 GHz AMD Laptop machine. The performance of the five evolutionary algorithms is compared using two 
benchmark problems for continuous optimization and a third problem for discrete optimization. A description of these test 
problems is given in the following. 
 
3.1. Continuous optimization  
Two well-known continuous optimization problems are used to test four of the EAs: F8 (Griewank’s) function and the F10 
function. Details of these functions are as follows: 
F8 (Griewank’s function): The objective function to be optimized is a scalable, non-linear, and non-separable function that 
may take any number of variables (xi s), i.e., 
 
  
 
 
The summation term of the F8 function (Eq. 10) includes a parabolic shape while the cosine function in the product term 
creates waves over the parabolic surface. These waves create local optima over the solution space [24]. The F8 function 
can be scaled to any number of variables N. The values of each variable are constrained to a range (-512 to 511). The 
global optimum (minimum) solution for this function is known to be zero when all N variables equal zero.  
 
F10 Function: This function is non-linear, non-separable, and involves two variables x and y., i.e., 
 
To scale this function (Eq. 11) to any number of variables, an extended EF10 function is created using the following 
relation, [24], 
 
 
 
Accordingly, the extended F10 function is:  
 
 
 
 
 
 
 
Similar to the F8 function, the global optimum solution for this function is known to be zero when all N variables equal zero, 
for the variable values ranging from -100 to 100. 
 
3.2. Discrete optimization 
In this section, a time-cost trade-off (TCT) construction management problem is used to compare among the five EAs with 
respect to their ability to solve discrete optimization problems. The problem relates to an 18-activity construction project 
that was described in [25]. The activities, their predecessors, and durations are presented in Table 1 along with five 
optional methods of construction that vary from cheap and slow (option 5) to fast and expensive (option1). The 18 activities 
were input to a project management software (Microsoft Project) with activity durations being set to those of option 5 (least 
costs and longest durations among the five options). The total direct cost of the project in this case is $99,740 (sum of all 
activities’ costs for option 5) with the project duration being 169 days (respecting the precedence relations in Table 1). The 
indirect cost of $500/day was then added to obtain a total project cost of $184,240.  
 
With the initial schedule exceeding a desired deadline of 110-days, it is required to search for the optimum set of 
construction options that meet the deadline at minimum total cost. In this problem, the decision variables are the different 
methods of construction possible for each activity (i.e., five discrete options, 1 to 5, with associated durations and costs). 
The objective function is to minimize the total project cost (direct and indirect) and is formulated as follows: 

               
           (14)   
 
 
where n = number of activities; Cij  = direct cost of activity i using its method of construction j; T = total project duration; and 
I = daily indirect cost. To facilitate the optimization using the different EAs, macro programs of the 5 EAs were written using 
the VBA language that comes with the Microsoft Project software. The data in Table 1 were stored in one of the tables 
associated with the software. When any one of the EA routines is activated, the evolutionary process selects one of the 
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five construction options to set the activities’ durations and costs. Accordingly, the project’s total cost (objective function) 
and duration changes. The evolutionary process then continues to attempt to optimize the objective function.  
 
Table 1: Test problem for discrete optimization 

Option 1 Option 2 Option 3 Option 4 Option 5 

Activity No.Depends 
On 

Duratio
n 

(days) 

Cost 
($) 

Duratio
n 

(days)

Cost 
($) 

Duratio
n 

(days)

Cost 
($) 

Duratio
n 

(days) 

Cost 
($) 

Duratio
n 

(days)

Cost 
($) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

- 
- 
- 
- 
1 
1 
5 
6 
6 
2, 6 
7, 8 
5, 9, 10 
3 
4, 10 
12 
13, 14 
11, 14, 15 
16, 17 

14 
15 
15 
12 
22 
14 
9 
14 
15 
15 
12 
22 
14 
9 
12 
20 
14 
9 

2 400 
3 000 
4 500 

45 000 
20 000 
40 000 
30 000 

220 
300 
450 
450 

2 000 
4 000 
3 000 
4 500 
3 000 
4 000 
3 000 

15 
18 
22 
16 
24 
18 
15 
15 
18 
22 
16 
24 
18 
15 
16 
22 
18 
15 

2 150 
2 400 
4 000 

35 000 
17 500 
32 000 
24 000 

215 
240 
400 
350 

1 750 
3 200 
2 400 
3 500 
2 000 
3 200 
2 400 

16 
20 
33 
20 
28 
24 
18 
16 
20 
33 
20 
28 
24 
18 
— 
24 
24 
18 

1 900 
1 800 
3 200 

30 000 
15 000 
18 000 
22 000 

200 
180 
320 
300 

1 500 
1 800 
2 200 

— 
1 750 
1 800 
2 200 

21 
23 
— 
— 
30 
— 
— 
21 
23 
— 
— 
30 
— 
— 
— 
28 
— 
— 

1 500 
1 500 

— 
— 

10 000 
— 
— 

208 
150 
— 
— 

1 000 
— 
— 
— 

1 500 
— 
— 

24 
25 
— 
— 
— 
— 
— 
24 
25 
— 
— 
— 
— 
— 
— 
30 
— 
— 

1 200
1 000

— 
— 
— 
— 
— 

120 
100 
— 
— 
— 
— 
— 
— 

1 000
— 
— 

 
 
3.3. Parameter settings for evolutionary algorithms  
As discussed earlier, each algorithm has its own parameters that affect its performance in terms of solution quality and 
processing time. To obtain the most suitable parameter values that suit the test problems, a large number of experiments 
were conducted. For each algorithm, an initial setting of the parameters was established using values previously reported 
in the literature[Emad, list the source references here]. Then, the parameter values were changed one by one and the 
results were monitored in terms of the solution quality and speed. The final parameter values for the five EAs are:  
 
Genetic Algorithms: The crossover probability (CP) and the mutation probability (MP) were set to 0.8 and 0.08, respectively. 
The population size was set at 200 and 500 offsprings. The evolutionary process was kept running until no improvements 
were made in the objective function for 10 consecutive generation cycles (i.e., 500 * 10 offsprings or the objective function 
reached its known target value, whichever comes first.   
 
Memetic Algorithms: MAs are similar to GAs but apply local search on chromosomes and offsprings. The standard pair-
wise interchange search does not suit the continuous functions F8 and F10, and the local search procedure in Appendix III 
is used instead. For the discrete problem, on the other hand, the pair-wise interchange was used. The same values of CP = 
0.8 and MP = 0.08 that were used for the GAs are applied to the MAs. After experimenting with various values, a 
population size of 100 chromosomes was used for the MAs.  
 
Particle Swarm Optimization: Upon experimentation, the suitable numbers of particles and generations were found to be 
40 and 10000, respectively. Also, the maximum velocity was set as 20 for the continuous problems and 2 for the discrete 
problem. The inertia weight factor ω was also set as a time-variant linear function decreasing with the increase of number 
of generations where, at any generation i,  
 

ω = 0.4 + 0.8 * (number of generations – i) / (number of generations – 1)          (15) 
 
such that ω =1.2 and 0.4 at the first and last generation, respectively. 
 
Ant Colony Optimization: As the ACO algorithm is suited to discrete problems alone, no experiments were done using it for 
the F8 and F10 test functions. However, the TCT discrete problem was used for experimentation with the ACO. After 
extensive experimentation, 30 ants and 100 iterations were found suitable. Also, the other parameters were set as follows: 
α = 0.5; β = 2.5; � (pheromone evaporation rate) = 0.4; and R (reward factor depends on problem nature) = 10. 
 
Shuffled Frog Leaping: Different settings were experimented with to determine suitable values for parameters to solve the 
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test problems using the SFL algorithm. A population of 200 frogs, 20 memeplexes, and 10 iterations per memeplex were 
found suitable to obtain good solutions.  
 
3.4. Results and discussions 
The results found from solving the three test problems using the five evolutionary algorithms, which represents a fairly wide 
class of problems, are summarized in Tables 2 and 3, and Fig. 5 (the Y axis of Fig. 5 is a log scale to show long computer 
run times). It is noted that the processing time for solving the EF10 function was similar to that of the F8 function and 
follows the same trend as shown in Fig. 5.  
 
Twenty trial runs were performed for each problem. 
The performance of the different algorithms was 
compared using three criteria: 1) the percentage of 
success, as represented by the number of trials 
required for the objective function to reach its known 
target value; 2) the average value of the solution 
obtained in all trials; and 3) the processing time to 
reach the optimum target value. The processing 
time, and not the number of generation cycles, was 
used to measure the speed of each EA because the 
number of generations in each evolutionary cycle is 
different from one algorithm to another.  In all 
experiments, the solution stopped when one of two 
following criteria was satisfied: 1) the F8 and EF10 
objective functions reached a target value of 0.05 or 
less (i.e., to within an acceptable tolerance of the 
known optimum value of zero), or 110 days for the 
TCT problem; or 2) the objective function value did not improve in ten consecutive generations. To experiment with 
different problem sizes, the F8 test function in Eq. (10) was solved using 10, 20, 50, and 100 variables, while the EF10 test 
function in Eq. (13) was solved using 10, 20, and 50 variables (it becomes too complex for larger numbers of variables).  
 
Table 2 - Results of the continuous optimization problems  

Number of variables 
F8 EF10 Comparison 

criteria Algorithm 
10 20 50 100 10 20 50 

 
% Success 
 
 

GAs (Evolver) 
MAs 
PSO 
ACO 
SFL 

50 
90 
30 
- 
50 

30 
100 
80 
- 
70 

10 
100 
100 
- 
90 

0 
100 
100 
- 
100 

20 
100 
100 
- 
80 

0 
70 
80 
- 
20 

0 
0 
60 
- 
0 

Mean 
solution 

GAs (Evolver) 
MAs 
PSO 
ACO 
SFL 

0.060 
0.014 
0.093 
- 
0.080 

0.097 
0.013 
0.081 
- 
0.063 

0.161 
0.011 
0.011 
- 
0.049 

0.432 
0.009 
0.011 
- 
0.019 

0.455 
0.014 
0.009 
- 
0.058 

1.128 
0.068 
0.075 
- 
2.252 

5.951 
0.552 
2.895 
- 
6.469 

 
 
Table 3 - Results of the discrete optimization problem 

Algorithm Minimum Project 
Duration (days) 

Average Project 
Duration (days) 

Minimum 
Cost  ($) 

Average 
Cost ($) 

% Success 
Rate  

Processing 
Time (second) 

GAs 
MAs 
PSO 
ACO 
SFL 

113 
110 
110 
110 
112 

120 
114 
112 
122 
123 

162 270 
161 270 
161 270 
161 270 
162 020 

164 772 
162 495 
161 940 
166 675 
166 045 

0 
20 
60 
20 
0 

16 
21 
15 
10 
15 

 
Surprisingly, the GA performed more poorly than all the other four algorithms. In fact, it was found to perform more poorly 
than even that reported in Whitley et al. [24] and Raphael and Smith [26] when using the CHC and Genitor genetic 
algorithms, while it performed better than the ESGAT genetic algorithm version. A commercial GA package, Evolver [27], 
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was used to verify the results. Evolver is an add-in program to Microsoft Excel, where the objective function, variables 
(adjustable cells), and the constraints are readily specified by highlighting the corresponding spreadsheet cells. Evolver 
performed almost the same way as the VB code with slight improvement. The results of using Evolver are reported in 
Table 2. The difference in Evolver’s results compared to those of the other EA algorithms may in part be because Evolver 
uses binary rather than real coding.  
 
As shown in Table 2 for the F8 function, the GA was able to reach the target for 50% of the trials with 10 variables, and the 
number of successes decreased as the number of variables increased. Despite its inability to reach the optimum value of 
zero with the larger number of 100 variables, the GA was able to achieve a solution close to the optimum (0.432 for the F8 
function with 100 variables). Also, it is noticed from Fig 5 that as the number of variables increased, the processing time to 
reach the target also increased (from 5min:12sec with 10 variables to 40min:27sec with 50 variables). As shown in Table 2 
for the EF10 test function, the GA was only able to achieve 20% success using 10 variables, and that the solution quality 
decreased as the number of variables increased (e.g., the objective function = 5.951 using 50 variables). Using the GA to 
solve the TCT problem, the minimum solution obtained was 113 days with a minimum total cost of $162,270 and the 
success rate for reaching the optimum solution was zero, as shown in Table 3. 
 
Upon applying the MA, the results improved significantly compared to those obtained using the GA, in terms of both the 
success rate (Table 2) and the processing time (Fig. 5). Solving the F8 function using 100 variables, for example, the 
success rate was 100% with a processing time of 7min:08 sec. Even for the trials with less success rate, as shown in 
Table 2, the solutions were very close to the optimum. That is to say, the local search of the MA improved upon the 
performance of the GA. When applying the MA to the TCT problem, it was able to reach the optimum project duration of 
110 days and a total cost of $161,270, with a 20% success rate and an average cost that improved upon that of the GA 
(Table 3). It is to be noted that the local search module presented in Appendix III was applied for the F8 and EF8 functions, 
while the pair-wise interchange local search module was applied to the TCT problem.  
 
The PSO algorithm outperformed the GA and the MA in solving the EF10 function in terms of the success rate (Table 2), 
the processing time (Fig. 5), while it was less successful than the MA in solving the F8 function. Also, the PSO algorithm 
outperformed all other algorithms when used to solve the TCT problem, with a success rate of 60% and average total cost 
of $161,940, as shown in Table 3.  
 
The ACO algorithm was applied only to the TCT discrete optimization problem. While it was able to achieve the same 
success rate as the GA (20%), the average total cost of the 20 runs was greater than that of all other algorithms (Table 3). 
This is due to the scattered nature of the obtained results (minimum duration of 110 days, and maximum duration of 139 
days) caused by premature convergence that happened in some runs. To avoid premature convergence, the pair-wise 
inter-change local search module was applied and the results obtained were greatly improved with a success rate of 
100%, but the average processing time increased from 10 to 48 seconds.  
When solving the F8 and EF10 test functions using the SFL algorithm, it was found that the success rate (Table 2) was 
better than the GA and similar to that for PSO. However, it performed less well when used to solve the EF10 function. As 
shown in Fig. 5, the SFL processing times were the least among all algorithms. Interestingly, it is noticed from Table 2 that 
as the number of variables increased for the F8 function, the success rates for SFL, MA and PSO all increased. This is 
because the F8 function becomes smoother as its dimensions increase [2]. As opposed to this trend, the success rate 
decreased for the GA as the number of variables increased. The same trend for the GA was also reported in [24] and [26] 
when used to solve the F8 function. Also, using the SFL algorithm to solve the TCT problem, the minimum duration 
obtained was 112 days with minimum total cost of $162,020 (Table 3). While the success rate for the SFL was zero, its 
performance was better than the GA. 

It is interesting to observe that the behavior of each optimization algorithm in all test problems (continuous and discrete) 
was consistent. In particular, the PSO algorithm generally outperformed all other algorithms in solving all the test problems 
in terms of solution quality (except for the F8 function with 10 and 50 variables). Accordingly, it can be concluded that the 
PSO is a promising optimization tool, in part due to the effect of the inertia weight factor ω. In fact, to take advantage of the 
fast speed of the SFL algorithm, the authors suggest using a weight factor in Eq. (3) for SFL that is similar to that used for 
PSO (some preliminary experiments conducted by the authors in this regard have shown good results).  
 
4. Conclusions  
In this paper, five evolutionary-based search methods were presented. These include: genetic algorithm (GA), memetic 
algorithm (MA), particle swarm optimization (PSO), ant colony optimization (ACO), and shuffled frog leaping (SFL). A brief 
description of each method is presented along with a pseudocode to facilitate their implementation. Visual Basic programs 
were written to implement each algorithm. Two benchmark continuous optimization test problems were solved using all but 
the ACO algorithm, and the comparative results were presented. Also presented were the comparative results found when 
a discrete optimization test problem was solved using all five algorithms. The PSO method was generally found to perform 
better than other algorithms in terms of success rate and solution quality, while being second best in terms of processing 
time.  
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Appendix I. Pseudocode for a GA Procedure 
Begin; 
 Generate random population of P solutions (chromosomes); 
 For each individual i є P: calculate fitness (i); 
   For i = 1 to number of generations; 
    Randomly select an operation (crossover or mutation); 
    If crossover;  
     Select two parents at random ia and ib; 
     Generate on offspring ic = crossover (ia and ib); 
    Else If mutation; 
     Select one chromosome i at random; 
     Generate an offspring ic = mutate (i); 
    End if; 
    Calculate the fitness of the offspring ic; 
    If ic is better than the worst chromosome then replace the worst chromosome by ic; 
   Next i; 
 Check if termination = true; 
End; 
 
 
 
Appendix II. Pseudocode for a MA Procedure 
Begin; 
 Generate random population of P solutions (chromosomes); 
 For each individual i є P: calculate fitness (i); 
 For each individual i є P: do local-search (i); 
   For i = 1 to number of generations; 
    Randomly select an operation (crossover or mutation); 
    If crossover;  
     Select two parents at random ia and ib; 
     Generate on offspring ic = crossover (ia and ib); 
     ic = local-search (ic); 
    Else If mutation; 
     Select one chromosome i at random; 
     Generate an offspring ic = mutate (i); 
     ic = local-search (ic); 
    End if; 
    Calculate the fitness of the offspring; 
    If ic is better than the worst chromosome then replace the worst chromosome by ic; 
   Next i; 
 Check if termination = true; 
End; 
 
 
 
 
 
 
Appendix III. Pseudocode for the Memetic Local Search 
Begin; 
 Select an incremental value d= a * Rand ( ), where a is a constant that suits the variable values;  
 For a given chromosome i є P: calculate fitness (i); 
 For j = 1 to number of variables in chromosome i; 
   Value (j) = value (j) + d; 
   If chromosome fitness not improved then value (j) = value (j)-d; 
   If chromosome fitness not improved then retain the original value (j); 
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 Next j; 
End; 
 
 
 
 
Appendix IV. Pseudocode for a PSO Procedure  
Begin; 
 Generate random population of N solutions (particles); 
 For each individual i є N: calculate fitness (i); 
 Initialize the value of the weight factor, ω; 
   For each particle; 
    Set pBest as the best position of particle i; 
    If fitness (i) is better than pBest; 
    pBest (i) = fitness (i); 
   End; 
   Set gBest as the best fitness of all particles;  
   For each particle; 
    Calculate particle velocity according to Eq. 3; 
    Update particle position according to Eq. 4; 
   Update the value of the weight factor, ω; 
 Check if termination = true; 
End; 
 
 
Appendix V. Pseudocode for an ACO Procedure 
Begin; 
 Initialize the pheromone trails and parameters; 
  Generate population of m solutions (ants); 
  For each individual ant k є m: calculate fitness(k); 
  For each ant determine its best position; 
  Determine the best global ant; 
  Update the pheromone trail; 
 Check if termination = true; 
End; 
 
 
Appendix VI. Pseudocode for a SFL Procedure 
Begin; 
 Generate random population of P solutions (frogs); 
 For each individual i є P: calculate fitness (i); 
 Sort the population P in descending order of their fitness; 
  Divide P into m memeplexes; 
   For each memeplex; 
    Determine the best and worst frogs; 
    Improve the worst frog position using Eqs. 4 or 5; 
    Repeat for a specific number of iterations; 
   End; 
   Combine the evolved memeplexes;  
   Sort the population P in descending order of their fitness; 
 Check if termination = true; 
End; 
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Knowledge-Based Expert Systems 
Why?       

 

Components?     

 

Sources of Knowledge? 

 

Inference Mechanisms? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to Build a KBES? 

  Knowledge Acquisition 

  Inference Engine 

  Consultation 

 

Challenges? 

Variations? 

Case-Based Systems 
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Artificial Intelligence Tools 
Artificial Neural Networks 
Why?      

Components & Benefits? 

Model Development Cycle?     _________________________________________________     

Does training work?  

Purpose of Training is: _________________________________________________ 

Learning Rule:              _________________________________________________  

Example 
 Design a simple ANN that takes the coordinates of a point 

 and accordingly will be able to tell if the point is on the top  

 or the bottom surface. Train the ANN on a number of cases. 

 Training rule is:    Wnew =  Wold   ±  Error (∆) . X 

 

 

 

 

 

 

   Desired Actual     

0 

1 

0 

0 

 

1 

0 

1 

0 

1 

0 

0 

1 

 

1 

0 

0 

1 

     

  Can we write Equation? Comparison with regression? 

Challenges? 

 Design parameters? 

 Generalization versus over-training? 

 

Variations? Optimization? Sensitivity? Integration? 

Computer Implementation? 

 

Three Important References (Please print them): 
 Adeli, H. (2001) “Neural Networks in Civil Engineering; 1989-2000,” Computer-Aided Civil and Infrastructure 

Engineering, Vol. 16, pp. 126-142 
 
 Hegazy, T., Fazio, P., and Moselhi, O., (1994) "Developing Practical NN Applications Using Backpropagation," 

Journal of Microcomputers in Civil Engineering, Vol. 9, No. 2, pp. 145-159. 
  
 Hegazy T. and Ayed, A., (1998)  "A Neural Network Model for Parametric Cost Estimation of Highway Projects," 

Journal of Construction Engineering and Management, ASCE, Vol. 24, No. 3, pp. 210-218. 
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Exercise 
Develop an ANN to estimate the cost per square foot for one-story homes. Enter data for 40 houses but use only 30 
training cases and 10 test cases. After you enter the data, erase or initialize the weights. Then, use solver to obtain an 
average error of 10% and add a constraint that each individual case has only 15% error. Test the accuracy of the ANN on 
the 10 test cases. If you train the 30 cases on an error level of 20%, what is the impact on the error of the test cases? 

 



CIVE 711 -  Dr. T. Hegazy 39

 

 
Exercise 
 
For the above ANN, develop and sensitivity analysis sheet with 100 scenarios that are have ± 5% random variability (as 
done in class. Also, develop an Excel sheet for an ANN with an input buffer, 2-hidden layers, and an output layer. The 
layers have 7, 4, 3, and 2 elements, respectively. Consider bias elements as in the ANN template on the course web site. 
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Fuzzy Sets & Fuzzy Logic 
1965   Lotfi Zadeh – Fuzzy Sets (Loose Boundaries)   i.e., everything is a matter of degree not True/False. 

 

   

   

 

 
              14                   70             13    18             55    65              100 
 
Other Shapes: 
 
 
                
 
Membership Functions: 
                 Height 
 
Young: X: ( 0, 13, 18);  

 µ: ( 1,   1 , 0)  = Degree of membership 
 

             Set = X / µ = ( 0 / 1,  13 / 1 , 18 / 0 ) 
   
             
Middle:  (                                                     ) 
          
Old:      (                                                     ) 
            
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Operations of Fuzzy Sets: 
 
AND     OR       NOT 
 
Example….Paper 

100% = 1 

Young       Middle

100% = 1 

Young       Middle        Old 

1 
 
 

 
0 

Karate    Baseball   Volleyball 

Young      Middle        Old

X

1 
 
 

 
0 

µ 

13    18             55    65              100
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1973 Fuzzy Logic (Linguistic variables):  
 

Fuzzy Logic =  Precisation of approximate reasoning.  
 

 

 

 

 

- Car driving; Understanding language 

- In Engineering, it is better to be approximately right than precisely wrong. Does it make sense to say that our project 

will cost from $780,412.6 to $816,764.9? 

- Many practical applications on machines and systems involving linguistic variables 

- Natural language applications +  Better web search engines based on Perception. 

- In Google, How many horses got Ph.D. from the UW? 

-  What is the distance between the largest city in Spain and the largest city in France? 

- Fuzzy Logic process: Fuzzification – IF-THEN rules – Defuzzification  

-   Example on Fuzzy Logic: Layout of Temporary Facilities 

 
Code Facility Name A (M2) Type 

 
11 
8 
9 
3 
10 
6 
12 
5 
1 
7 
2 
4 
 

 
Machine Room 
Parking Lot 
Tank 
Information and Guard 
Long Term Laydown Yard 
Cement Warehouse 
Scaffold Storage Yard Rebar 
Fab/Storage Yard  
Offices 
Testing Laboratory 
First Aid 
Toilet on Site 

 
60 
60 
40 
20 
400 
320 
220 
60 
40 
40 
20 
20 
 

 
Fixed 
Fixed 
Fixed 
Fixed 

Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

 
 
 
 
 
 
 

Men are mortal 
Joe is a man 
Then, Joe is Mortal 

Most Sweeds are tall 
Joe is Sweed 
Then, Joe is likely to be tall 
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   Fuzzy Decision Rules 

 

Rule no. Work 
Flow 

Safety/Environmental 
Concerns User's Preference Closeness 

 Rating 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Low (L) 
Low (L) 
Low (L) 
Low (L) 
Low (L) 
Low (L) 
Low (L) 
Low (L) 
Low (L) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
Medium (M) 
High (H) 
High (H) 
High (H) 
High (H) 
High (H) 
High (H) 
High (H) 
High (H) 
High (H) 

Low (L) 
Low (L) 
Low (L) 
Medium (M) 
Medium (M) 
Medium (M) 
High (H) 
High (H) 
High (H) 
Low (L) 
Low (L) 
Low (L) 
Medium (M) 
Medium (M) 
Medium (M) 
High (H) 
High (H) 
High (H) 
Low (L) 
Low (L) 
Low (L) 
Medium (M) 
Medium (M) 
Medium (M) 
High (H) 
High (H) 
High (H) 

Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium (M) 
High (H) 
Low (L) 
Medium(M) 
High (H) 

Ordinary (O) 
Important (I) 
Especially Important (E) 
Unimportant (U) 
Ordinary (O) 
Important (I) 
Undesirable (X) 
Unimportant (U) 
Ordinary (O) 
Important (I) 
Especially Important (E) 
Absolutely Important (A) 
Ordinary (O) 
Important (I) 
Especially Important (E) 
Unimportant (U) 
Ordinary (O) 
Important (I) 
Especially Important (E) 
Absolutely Important (A) 
Absolutely Important (A) 
Important (I) 
Especially Important (E) 
Absolutely Important (A) 
Ordinary (O) 
Important (I) 
Especially Important (E) 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
   C.O.G = Σ (µ.x) / Σ µ 
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Hybrid Applications:  
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Infrastructure Asset Management 
 
While the civil infrastructure is the foundation for economic growth, 
a large percentage of its assets are rapidly deteriorating due to 
age, aggressive environment, and insufficient capacity for 
population growth. In 2003, the American Society of Civil 
Engineers released a report card on the infrastructures in the USA 
that gave failing grades to many infrastructure systems, and 
identified the need for $1.6 trillion (US) to bring the assets to 
acceptable condition (ASCE 2003). Similarly, the environmental, 
social, and transportation infrastructure systems in Canada 
require huge investments that amount to approximately $10 billion 
(US) annually for 10 years (Federation of Canadian Municipalities 
1999). Since the environmental, social, and transportation sectors 
represent about 25% of the Canadian infrastructure expenditures 
(Figure1, Statistics Canada 1995), it can be assumed that the 
infrastructure system as whole requires an investment of about 
$40 billion per year for ten years. Despite of this large need, the 
Infrastructure Canada Program allocated only $2 billion (US) for 
the year 2000 to all infrastructure sectors (Federation of Canadian 
Municipalities 2001), thus covering only about 5% of the need. 
With the non-residential buildings being largest sector of the infrastructure (approximately 40%), such sector is 
expected to suffer the largest shortfall in expenditures on rehabilitation and repair.  
 
 

 

 

 

 

 

 

Average yearly expenditures by type of infrastructure 

Important Questions: 

- What assets do you own? 
- What is it worth of each asset? 
- What is its current condition of asset components? 
- What is the remaining service life of the asset? 
- What is the predicted condition in the future? 
- What do you fix first? 
- How do you fix it? 
- What is the condition after the repair? 
- How will you execute the many repairs? 

 
 
Important references: Please download from the course web page. 
 

     a) USA                                                          b) Canada 

Marine 1%

Non- 
Residential 

Buildings 40%
 

Other 5%

Oil and Gas 21%

Communication 4%

Electric 10% 

Transportatin
14%

Water 2% 
Sewage 3% 

Transportation 
14% 

Non- 
Residential 

Buildings 63% 

Other 8%

Oil and Gas 2%
Communication   4% 

Water 2% 
Sewage 3% 

Electric 4% 
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- Problems with CPM & PDM 
- Resource-Driven Scheduling 
- Crew Work Continuity  
- Learning Phenomenon 

 
Integrated CPM & LOB Calculations: 

 
New Representation:   

 
 
 
 
 
 
 
 
 
 
 
 

 
Crew Synchronization Calculations: 

 
 
 
 
 

Crews (C) =  (D)  x  (R) 
 
     
 
 
 

 
 

 Calculating a Desired  

 Progress Rate (R): 
 

 
 
 
 
 
 

Scheduling Repetitive  
& Linear Projects 

Time 

n

.

.

.

2

 
1

U
ni

ts
 

R 
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Example: 

For this small project, the work hours and the number of workers for each activity are shown. if you are to construct these 
tasks for 5 houses in 21 days, calculate the number of crews that need in each activity. Draw the schedule and show 
when each crew enters and leaves the site;  

 
 
 
 
 
 
 
 
 
 
 
 Step 1: CPM Calculation 
 

Step 2: LOB Calculations      Deadline TL = 21;     T1 = ___ ;      n = 5 
 

 
Activity 

Duration 
(D) 

Total Float 
(TF) 

Desired Rate (R) 
(n-1) / (TL-T1+TF) 

Min. 
Crews 

(C) = D x R 

Actual 
Crews 

(Ca) 

Actual 
Rate  

(Ra) = Ca / D 
A       

B       

C       

D       

E       

F       

 
 Step 3: Draw the Chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Excavation 
48 hrs, 3 W 
 

C. Footing 1 
64 hrs, 2 W 
 

E. Wall 1 
72 hrs, 3 W 
 

F. Wall 2 
72 hrs, 3 W 
 

B. Sanit. Main
48 hrs, 3 W 
 

D. Footing 2 
64 hrs, 2 W 
 

                         
                         
                         
                         
                         
                         

         1     2     3      4    5      6     7     8     9    10    11   12  13    14   15   16   17   18   19   20   21   22   23   24   25 

                         
                         
                         
                         
                         
                         

         1     2     3      4    5      6    7      8    9     10   11   12   13   14    15   16  17   18   19   20   21   22   23    24  25 

Assume: 
 

- Same no. of Crews 
 
- Activity A in unit 2 has 
  double the duration 
 
- Unit 4 does not need  
  excavation. 

Draw the critical path 
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More Advanced Linear scheduling Model 
 
Flexible features for scheduling the activities include: color-coded or pattern-coded crews; varying 
quantities; productivity impact; crew interruption time; crew staggering; crew work sequence; and 
activities’ progress speeds (slopes of lines). It is noted that the schedule is efficiently arranged with crew 
work continuity maintained. Also, overlapping is avoided by simply showing the activities of each path in 
the work network separately. In addition: 

 
1. Activities are not necessarily repeated at all sections.  

2. Activities can proceed in an ascending or descending flow. This provides work flow flexibility and 

provides for a way to fast-track projects; 

3. Each activity has up to 3 methods of construction (e.g., normal work, overtime, or subcontractor) with 

associated time, cost, and crew constraints. The model can then be used to select the proper 

combination of methods that meet the deadline, cost, and crew constraints; 

4. Activities can have non-standard durations and costs at selected sections;  

5. Work interruption (layoff period) can be specified by the user at any unit of any activity; and 

6. Conditional methods of construction can be specified by the user.  

 
 
 

 

 

 

 

 

 

 

 
 

Top crew 
works from 

station 9 to 5, 
while bottom 
crew works 

from station 1 
to 4. 

U
N

IT
 N

O
.

TIME
1 

4 

5 

3 

6 

2 

9 

8 

7 

Crew 3 

Crew 2 

 

No work at 
station 8. 

Small quantity at 
Station 4. 

Low productivity at 
Station 2 (Large 

duration).Crew 1 

Crew 2 

Crew 1 

Crew 1 

Crew 3 

Work proceeds 
from station 3 to 

8 only, with 
interruption at 

station 5.

Work proceeds 
forward from 

station 3 to 8 only. 

  Activity A    Activity B   Activity C     Activity D   
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2 PARALLEL 
CREWS 

3 Staggered 

In
de

x 
to

 S
ite

 N
um

be
r 

TIME1 

4 

5 

3 

6 

2 

9 

8 

7 

Crew 1 

Crew 2 

Out-Tasked 

Crew 1

Crew 2 

Crew 1

Crew 2 

Crew 1 

Crew 2 

Crew 3

Crew 1 

Crew 2 

Crew 3 

Crew 1

Crew 1 

Crew 2

Crew 3 

Crew 1 

Crew 2 

Crew 2 

Crew 3 

Outsourced site 

Outsourced site 

Available 
crew is 
assigned 

 

Infrastructure Networks with Distributed Sites: A Bigger Challenge 
Buildings, Hispitals, Schools, Highway Spots, Bridges 
 

 
 
 
 
 
 
Delivery approaches for 
MR&R programs 
 
 

 
 

    Effect of Site order 
 
 
 
 
 

 
    Scheduling of crews  
    along multiple sites 
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Baseline

Current schedule 

Project Control 
 

Organize site? Recording of site events? Work Status? Comparing Planned versus Actual?  
Progress Payments? Managing Changes? Updating? Corrective Actions? Delay Resposibility? Forecasting/ 

Time Extension? Cost compensation? Productivity Assessment? Saving All As-Built Details? Lessons Learned? 
 
 
a) Organized Site = Safety + Productivity + Good Circulation + Cost & Time Savings 

 

(1) identifying necessary facilities and determining their appropriate sizes;  
(2) determining the inter-relationships among the facilities on the site; and 
(3) optimizing the placement of the facilities on the site plan.  

 
 
b) Recording Site events 
 
  Calculate activity % complete, Camcorders, Time-Lapse Camera, Minutes, Project Web Site 
 
 
 
 
 
 
 
 
 
 

 
 
                                             Calculating activity % complete: pages 291& 292 
 

     Calculating the overall project % complete: page 293 
 
 
 
c) Using Software 
 
 

How to show Delays? 
Slow versus Fast?  
Reasons for work stops? 

 
 
 
 
 
         

Can we readily decide 
which party is responsible 
for the two days delay 
beyond the deadline? 

 
 
 
 
 
 
 

Work Stop Acceleration Slow-down 

• Reason? 
• Owner Directed?
• Contractor own? 
• Document? 

Activity % Complete 

% complete        % complete 
      actual            planned 〈

% Actual complete = 0 
〉

% complete        % complete 
      actual             planned 

Owner (O) 
 

Contractor (C) 
 

Neither (N) 
 

Responsibility and reason 

• Reason? 
• Document? 
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d) Techniques for Performance Evaluation 
 

1. S-Curve Envelope: 
 

       
          Early versus Late bar chart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Earned-Value Analysis: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Schedule Performance Index (SPI)   = 
BCWP 
BCWS 

               Cost Performance Index (CPI)   = 
BCWP 
ACWP 

     BCWS 
Budget Price

ACWP  
Actual Cost

BCWP (EV) 
Time 

     $ 

Direct + Indirect 
Costs 

Time

 
Contractor’s cost Control 

 3 piles = $ 
 
 
 
 
7 piles = $ 
 
 
3 piles = $ 
 
 
 
Progress 
Date

Budget for 1 pile = $10,000;  Actual cost of 1 pile = $40,000  
 
On Progress Date: 
 

Work Scheduled =   7 Piles; Work Performed=   3 Piles 

- Time variance?  
 
- Estimate at completion? 
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e) Agenda for Success: 
 

- Get Good Designers: Beware of Bargain Shopping; 
- Watch Low Bids Carefully: Work at Cost Spells Trouble; 
- Fail to Plan and you Plan to Fail; 
- Keep the Work Site Organized; 
- Monitor the Gaps; 
- No Pay Causes Delay; 
- Time = Money; 
- Communication; and Documentation. 

 
 

f) New Concept For Project Control (Critical Chain): 
 

- Estimate with safety removed (50% chance); 
- Incentive for early finish; 
- Focus on predecessors’ finish; 
- Project buffer (50%); 
- Simple monitoring of buffer penetration; 
- Earned-Value for cost analysis. 

 
 
 

 
 

CPI

1.1 

1.2 

1.0 

1.1 1.2 0.9 0.8 

0.9 

0.8 

SPI 

       Over Cost, 
   Ahead of Schedule 

        Under Cost, 
   Ahead of Schedule 

        Under Cost, 
   Behind Schedule 

        Over Cost, 
   Behind Schedule 

Start


