PLANNING - PART 1 - NETWORK DIAGRAMS

How to prepare a winning bid? If you win, How to meet project objectives?
IF YOU FAIL TO PLAN . . . YOU PLAN TO FAIL

Planning = Solving a Puzzle
Two steps:
(1) Find all the Pieces
(2) Arrange them in a logical order

Detailed Steps:

1. Work Breakdown Structure (WBS) linked to OBS

- Production activities: excavation, formwork, concreting, and so on. Each having costs, duration, etc.
- Procurement activities: materials and manufactured equipment needed for any production activities.
- Management decision activities: such as vacations, special delays, approvals, etc.
- Hammock activities: dependent on other ones. Example is dewatering, which is required as long as subsurface work is being carried out.

- Dummy activities: activities needed for presentation purposes to maintain logical relationships.

Published Lists: The MasterFormat list developed by the Construction Specifications Institute - 16 divisions - is a good checklist for project activities.

[^0]The Main Divisions in the MasterFormat list for Building Projects

2. Activity Logical Relationships and Network Diagram

Jigsaw puzzle - Brainstorming
Which activities are parallel? Which activities must precede? Which activities must succeed?
Remove redundant relations and produce a table of activities and IPAs.
Check if start \& finish activities are required and calculate Sequence Steps.

Types of Networks:

Activity on Arrow (AOA) - We may need to add dummy activities to preserve logical relations

C depends on A \& B
D depends on B only

Activity on Node (AON)

- Does not need dummy activities.
- The sequence step calculation also made the AON to look more organized and clearer to read.
- The technique is also well suited to computer implementation.
- Has a major advantage in terms of the types of logical relationships it allows
(Finish-to-Start, Start-to-Start, Start-to-Finish, and Finish-to-Finish).

No.	Activity	Predecessors		Successors			
	P1	P2	P3	S1	S2	S3	
1	A	---	---	---	---	---	---
2	B	---	---	---	---	---	---
3	C	---	---	---	---	---	---
4	D	---	---	---	---	---	---
5	E	---	---	---	---	---	---
6	F	---	---	---	---	---	---
7	G	---	---	---	---	---	---
8	H	---	---	---	---	---	---
9	I	---	---	---	---	---	---
10	J	---	---	---	---	---	---
11	K	---	---	---	---	---	---
12	L	---	---	---	---	---	---

Example:

Initial Activity List for Example Project

Activity	Description
	A
B	Site clearing
C	Removal of Trees
D	Grading Excavation general area
E	Excavation for utility trenches
F	Placing formwork and reinforcement for concrete
G	Installing sewer lines
H	Pouring concrete

Refined Activity List

	Refined Activity List		
	Activity	Description	
	A	Site clearing	
	B	Removal of Trees	
	C	Excavation	Production
	D	Grading	activities
	E	Excavation for utility trenches	
	F	Placing formwork and reinforcement for concrete	
	G	Installing sewer lines	
	H	Pouring concrete	Material
Additional	J	Obtain formwork and reinforcing steel	\} Procurement
activities	K	Obtain sewer lines	$\int \text { activities }$
,	L	Obtain concrete	\} Labor procurement

Initial Relationships		
Activity	Description	Depends Upon
A	Site clearing	-----
B	Removal of Trees	A
C	Excavation	A, B, C
D	Grading	A, B, C
E	Excavation for utility trenches	B, C, J, M
F	Placing formwork and reinforcement for concrete	B, C, D, E, K
G	Installing sewer lines	D, E, F, G, L
H	Pouring concrete	----
J	Obtain formwork and reinforcing steel	-----
K	Obtain sewer lines	-----
L	Obtain concrete	--

Redundant Relationships

Which relationship is redundant?

Removing Redundant Relationships

	Activity	Description
	IPAs	
A	Site clearing	
B	Removal of Trees	-----
C	Excavation	A
D	Grading	B, C
E	Excavation for utility trenches	B, C
F	Placing formwork and reinforcement for concrete	B, C, J, M
G	Installing sewer lines	D, E, K
H	Pouring concrete	F, G, L
J	Obtain formwork and reinforcing steel	----
K	Obtain sewer lines	-----
L	Obtain concrete	-----
M	Steelworker availability	

Adding Start and Finish Activities

Activity	Description	IPAs
ST	Start Activity	----
A	Site clearing	ST
B	Removal of Trees	ST
C	Excavation	A
D	Grading	B, C
E	Excavation for utility trenches	B, C
F	Placing formwork and reinforcement for concrete	B, C, J, M
G	Installing sewer lines	D, E, K
H	Pouring concrete	F, G, L
J	Obtain formwork and reinforcing steel	ST
K	Obtain sewer lines	ST
L	Obtain concrete	ST
M	Steelworker availability	ST
FN	Finish Activity	H

Determining the Sequence Steps for AON

Activity	IPAs	Sequence Step (SS)	
		Cycle 1	Cycle 2
ST	-----	$\mathrm{SS}(\mathrm{ST})=1$	1
A	ST	SS(ST) + $1=2$	2
B	ST		2
C	A		3
H	F, G, L		6
D	B, C		4
E	B, C		4
F	B, C, J, M		4
G	D, E, K		5
J	ST		2
K	ST		2
L	ST		2
M	ST		2
FN	H		7

Sequence Step:

Exercise:

Activity	IPAs	SS	SS
A	----	-------	-------
B	A	-------	-------
C	A	--	-------
D	A	-----	-----
E	B	---	-----
F	D	-------	-------
G	B	-------	-------
J	G, H, I	---	-------
H	C, E	---	-------
I	F		-------

Case Study Project

- 11 work packages (activities) are involved: A ,B ,C ,D ,E ,F ,G ,H ,I ,J ,and K;
- Civil activities are A and B (Substructure); and C, D, E, and F (Superstructure);
- Electrical activities are: G (Interior work) and H (Exterior work); and
- Mechanical activities are: I (HVAC), J (Elevator), and K (Plumbing).

Supervision personnel:

- Substructure is supervised by Mark (activity A) and Peter (activity B);
- Superstructure is supervised by Hossam (activities C and F) and Sam (D and E);
- All Electrical work is supervised by George; and
- Adam is responsible for all HVAC and Plumbing work, while Wang is responsible for the elevator work.

From the project information, the WBS and its link to the OBS is shown below. A simple Excel list that shows all the information is also shown.

WBS and OBS

An Excel List of WBS \& OBS

	A	B	C	D	E	F	G	H	1	J
1	Item	Desc.	WBS1	WBS2	WBS3	OBS	cost			
2	1	A	Civil	House1	Substruct.	Mark	1000			
3	2	B	Civil	House1	Substruct.	Peter	1000			
4	3	C	Civil	House1	Superstruct.	Hosam	1000			
5	4	D	Civil	House 1	Superstruct.	Sam	1000			
6	5	E	Civil	House1	Superstruct.	Sam	1000			
7	6	F	Civil	House1	Superstruct.	Hosam	1000			
8	7	G	Electrical	House1	Interior	George	1000			
9	8	H	Electrical	House1	Exterior	George	1000			
10	9	1	Mechanical	House1	HVAC	Adam	1000			
11	10	J	Mechanical	House1	Elevator	Wang	1000			
12	11	K	Mechanical	House1	Plumbing	Adam	1000			
13							,			
14										
15			Notice the				Page		WBS1	Civil
16			arrangement of the						WBS2	House1
17			data in columns: 3				Fields		WBS3	Superstruct.
18									OBS	Sam -
19			levels of WBS and							
20			one level of OBS						Sum of COST	
21									Desc.	Total
22									D	1000
23									E	1000
24									Grand Total	2000
25										

Logical relationships:

- Activities E and F follow activity B;
- Activity C precedes activity G;
- Activity I follows the completion of activity E;
- The predecessors to activity K are activities H and I ;
- Activity D follows activity A and precedes activity H ; and
- Activity J is preceded by activities F and G.
- From the planning information available to us, we can form the relationship table and the network diagrams as shown below.

Activity Dependency Table and Sequence Step Calculation.

Activity	IPAs	Sequence Step (SS)
ST	--	
A	ST	
B	ST	
C	ST	
D	A	
E	B	
F	B	
G	C	
H	D	
I	E	
J	F, G	
K	H, I	
FN	J, K	

Note: a Start (ST) and a Finish (FN) activities have been added.

TIME \& COST ESTIMATION

Owner, CM					
	AVE, CM, Owner				
- Need		Bidders			
- Feasibility	- Conceptual	Prepare Bid Proposal + Baselines	Owner, CM		
- Project	Design			Contractor	
- Oefinition	- Owner Approval	- Collect data (site, quantities, specs, resources, tasks, etc)	Evaluate		O \& M Staff
- Owner	- Soil Reports		Bids and	Start Construction	
Approval	- Preliminary Design	- Planning	Select	Detailed planning,	- O \& M
	- Detailed Design	- Time \& Cost Estimation	General	estirnating \& resource	- Demolitio
	- Quantities	- Scheduling	Contractor	management	n at end
	- Work Documents	- Resource Management: deadline,		Schedule Updating	of service
	- Select Project	resource constraints, TCT, etc		Progress Evaluation	life
	Contract Strategy	- Bidding Strategy \& Markup		Time, cost, \& Quality	
		Estimation		Control	
		- Cash flow analysis		Commissioning	
		- Submit Bid			
CONCEPT	DESIGN	BIDDING		CONSTRUCTION	O \& M

Estimating: Types and Challenges

Using Published Data for Parametric Estimating

Preliminary Estimate: Residential - RS Means Square Foot Costs

A = Main House
$B=11 / 2$ Story Wing
C = 1 Story Wing
D = Breezeway
E = Garage
F = Open Covered Porch

MeansForms

RESIDENTIAL COST ESTIMATE

MAIN BUILDING	COSTS PER S.F. LIVING AREA	
Cost per Square Foot of Living Area, from Page 30	\$	58.30
Basement Addition:_ \% Finished, 100 \% Unfinished	+	3.35
Roof Cover Adjustment: Cedar Shake Type, Page 30 (Add or Deduct)	(+)	1.05
Central Air Conditioning: \square Separate Ducts \square Heating Ducts, Page 30	+	1.30
Heating System Adjustment: __ Type, Page ___ (Add or Deduct)	1)	-
Main Building: Adjusted Cost per S.F. of Living Area	\$	64.00

WING OR ELL
TOTAL COST

WING OR-ELL (C)	\$ 77.30 IS.F.	192 S.F.		\$ 14,842
TOTAL COST	Cost per S.F. Living Area	Living Area		TOTAL COST
			TOTAL THIS PAGE	225,099

Means Forms
 residential COST ESTIMATE

Total Page 1			\$	225,099
	QUANTITY	UNIT COST		
Additional Bathrooms: 2 Full 1 Half $2 @ 3,5281 @ 2,173$				9,229
Finished Attic: N/A Ft. X _ Ft.	S.F.		$+$	
Breezeway: \square Open पEnclosed $12 \quad \mathrm{Ft}$ X 12 Ft .	144 S.F.	13.85	+	1,994
Covered Porch: $\begin{aligned} & \text { Open } \square \text { Enclosed } \\ & 18\end{aligned}$	216 S.F.	20.80	+	4,493
Fireplace: $\boxed{\text { Interior Chimney }}$ \square Exterior Chimney \square No. of Flues (2) \square Additional Fireplaces $1-2 n d$ Story			+	6,050
Appliances:			+	-
Kitchen Cabinets Adjustments: (\pm)				
\checkmark Garage \quad Carport: $2 \quad$ Cars) Description Wood, Attached (\pm)				9,831
Miscellaneous:			+	

REPLACEMENT COST		
ADJUSTED TOTAL BUILDING COST		
Site Improvements		
(A) Paving \& Sidewalks		
(B) Landscaping		
(C) Fences		
(D) Swimming Pools		
(E) Miscellaneous		
TOTAL		
Location Factor		
Location Replacement Cost		
Depreciation -10 \%		
LOCAL DEPRECIATED COST		

INSURANCE COST	
ADJUSTED TOTAL BUILDING COST	$\$$
Insurance Exclusions	
(A) Footings, Site work, Underground Piping	$-\$$
(B) Architects Fees	$-\$$
Total Building Cost Less Exclusion	$\$$
Location Factor	$\mathbf{\$}$
LOCAL INSURABLE REPLACEMENT COST	$\$$

- Simple design from standard plans
- Single family - 1 full bath, 1 kitchen
- No basement
- Asphalt shingles on roof
- Hot air heat
- Drywall inferior finishes
- Materials and workmanship are average
- Detail specifications on p. 27

Note: The illustration shown may contain some optional components (for example: garages and/or fireplaces) whose costs are shown in the modifications, adjustments, \& alternatives below or at the end of the square foot section.

Base cost per square foot of living area

Exterior Wall	Living Area										
	1000	1200	1400	1600	1800	2000	2200	2600	3000	3400	3800
Wood Siding - Wood Frame	82.40	74.15	70.95	68.80	65.95	63.55	61.95	58.30	54.80	53.45	51.90
Brick Veneer - Wood Frame	87.90	79.25	75.70	73.30	70.25	67.65	65.85	61.80	58.10	56.60	54.85
Stucco on Wood Frame	82.85	74.55	71.35	69.15	66.35	63.90	62.25	58.60	55.10	53.75	52.15
Solid Masonry	96.35	87.10	83.05	80.30	76.85	74.00	71.85	67.30	63.15	61.35	59.40
Finished Basement, Add	11.70	11.30	10.90	10.70	10.40	10.25	10.05	9.70	9.45	9.30	9.15
Unfinished Basement, Add	4.70	4.40	4.15	4.00	3.85	3.70	3.60	3.35	3.20	3.10	3.00

Modifications

Add to the total cost
Upgrade Kitchen Cabinets
\$ + 1969
$+798$
Full Bath - including plumbing, wall and floor finishes
$+3528$
Half Bath - including plumbing, wall and floor finishes
$+2173$
One Car Attached Garage
$+6927$
One Car Detached Garage
$+7430$
Fireplace \& Chimney
$+3590$

Adjustments

For multi family - add to total cost
Additional Kitchen
Additional Bath
Additional Entry \& Exit
Separate Heating
Separate Electric
For Townhouse/Rowhouse -
Multiply cost per square foot by
$\begin{array}{ll}\text { Inner Unit } & .90 \\ \text { End Unit } & .95\end{array}$

Alternatives

Add to or deduct from the cost per square foot of living area

Cedar Shake Roof

\$+ 1.05
Clay Tile Roof
$+2.20$
Slate Roof $+3.65$
Upgrade Walls to Skim Coat Plaster $\quad+.29$
Upgrade Ceilings to Textured Finish
$+.41$
Air Conditioning (in heating ductwork) +1.30

Addinional upgrades or components

Kitchen Cabinets \& Countertops Page 58
Bathroom Vanities
59
59
Fireplaces \& Chimneys 59
Windows, Skylights \& Dormers 59
Appliances 60
Breezeways \& Porches 60

Wings \& Ells

Finished Attic 60
Garages
Site Improvements
+
+969
$+1165$
$+1184$

Using Published Data for Elemental Estimating

RS Means Assemblies Estimate

Example

Front Elevation

Basement Plan

Typical Floor Plan

iround Floor Plan

PROJECT Office Building	TOTAL AREA	54,000	S.F.
LOCATION	TOTAL VOLUME	648,000 C.F.	ESTIMATE NO.
ARCHITECT	COST PER S.F.	DATE	
OWNER	COST PER C.F.	NO. OF STORIES	

ASSEMBLY NUMBER			QTY.	UNIT	TOTAL COST		COST PER S.F.
					UNIT	TOTAL	
1.0	Foundations						
1.1-120-7900	Corner Footings 8'-6" SQ. $\times 27^{\prime \prime}$		4	Ea.	1170	4,680	
-8010	Exterior	$9^{\prime}-6^{\prime \prime}$ SQ. $\times 30^{\prime \prime}$	8		1560	12,480	
-8300	Interior	12 " SQ.	3	\downarrow	2825	8,475	
1.1-140-2700	Strip $\quad \sqrt{ }$ 2'Wide $\times 1$ ' Thick						
	320 L.F. $[(4 \times 8.5)+(8 \times 9.5)]=$		210	L.F.	25.25	5,303	
1.1-210-7262	Foundation Wall 12' High, 1' Thick			I	142.50	29,925	
1.1-292-2800	Foundation Waterproofing		\downarrow	\downarrow	11.57	2,430	
1.9-100-3440	Building Excavation + Backfill		6000	S.F.	3.91	23,460	
-3500	(Interpolated; 12' Between						
-4620	8' and 16'; 6,000 Between						
-4680	4,000 and 10,000 S.F.)						
	Total					86,753	1.61

If spread footing \& column sizes are unknown, develop approximate loads as follows. Enter tables with these loads to determine costs.

Superimposed Load Ranges

Apartments \& Residential Structures	65	to	75 psf
Assembly Areas \& Retail Stores	110	to	125 psf
Commercial \& Manufacturing	150	to	250 psf
Offices	75	to	100 psf

Approximate loads/S.F. for roof \& floors. Roof. Assume 40 psf superimposed load.
Steel joists, beams \& deck.
Table 3.7-420-Line 3900

3.7-420		Steel Joists, Beams, \& Deck on Columms						
	$\begin{gathered} \text { BAY SIZE } \\ (\mathrm{FT} .) \end{gathered}$	$\begin{aligned} & \text { SUPERIMPOSED } \\ & \text { LOAD (P.S.F.F) } \end{aligned}$	DEPTH$(\mathbb{N} .)$	$\begin{aligned} & \text { TOTAL LOAD } \\ & \text { (P.S.F.). } \end{aligned}$	$\underset{\text { ADD }}{\text { COLUMN }}$	COST PER S.F.		
						MAT.	INST.	TOTAL
3500	25×30	20	22	40		2.61	. 99	3.60
3600					coumns	. 52	. 17	. 69
3900		40	25	60		3.16	1.17	4.33
4000					coumns	. 62	. 21	. 83

3.5-540		Composite Beams, Deck \& Slab						
	$\overline{B A Y} \text { SIZE }$$\text { (} \mathrm{FF} .)$	$\begin{aligned} & \text { SUPERIMPOSED } \\ & \text { LOAD (P.S.F.) } \end{aligned}$	SLAB THCKNESS $(\mathbb{N}$.)	$\begin{aligned} & \text { TOTAL DEPTH } \\ & (\|\mathrm{FT} . \mathrm{N} .\| \end{aligned}$	$\begin{aligned} & \text { TOTAL LOAD } \\ & \text { (P.S.F.). } \end{aligned}$	COST PER S.F.		
						MAT.	INST.	TOTAL
3400	25×30	40	51/2	1. $111 / 2$	83	5.80	3.65	9.45
3600		75	51/2	1. $111 / 1 / 2$	119	6.25	3.69	9.94
3900		125	51/2	1. $111 / 2$	170	7.20	4.16	11.36
400		200	$6.1 / 4$	2. $6.1 / 4$	252	8.65	4.71	13.36

Floors-Total load, 119 psf.
Interior foundation load.
Roof
$\left[\left(25^{\prime} \times 30^{\prime} \times 60 \mathrm{psf}\right)+8\right.$ floors $\left.\times\left(25^{\prime} \times 30^{\prime} \times 119 \mathrm{psf}\right)\right] \times 1 / 1000 \mathrm{lb} . / \mathrm{Kip}=\quad 759 \mathrm{Kips}$
Approximate Footing Loads, Interior footing $=$
Exterior footing ($1 / 2$ bay) $759 \mathrm{k} \times .6=$ Corner footing ($1 / 4$ bay) $759 \mathrm{k} \times .45=$
[Factors to convert Interior load to Exterior \& Corner loads]
 759 Kips 455 Kips 342 Kips

Approximate average Column load $759 \mathrm{k} / 2=$
379 Kips

FOUNDAIONS

1.1.120		Spread Footings	COST EACH			
		MAT.	INST.	TOTAL		
7090	Spread footings, 3000 psi concrete, chute delivered					
7100			Load 25 K , soil capacity $3 \mathrm{KSF}, 3^{\prime}-0^{\prime \prime}$ sq. $\times 12^{\prime \prime}$ deep	42	73.50	115.50
7150		-oad 50K, soil capacity 3 KSF, 4'.6" sq. $\times 12^{\prime \prime}$ deep	83.50	128	211.50	
7200		Load 50 K , soil capacity $6 \mathrm{KSF}, 3^{\prime}-0^{\prime \prime}$ sq. $\times 12^{\prime \prime}$ deep	42	73.50	115.50	
7250		-oad 75K, soil capacity 3 KSF, $5^{\prime} 6^{\prime \prime}$ sq. $\times 13^{\prime \prime}$ deep	128	181	309	
7300		Load 75K, soil capacity 6 KSF, 4'. $0^{\prime \prime}$ sq. $\times 12^{\prime \prime}$ deep	69	109	178	
7350		Load 100K, soil capacity 3 KSF, 6^{\prime} '01 ${ }^{\prime \prime}$ Sq. $\times 14^{\prime \prime}$ deep	160	216	376	
7410		Load 100K, soil capacity 6 KSF, $4^{\prime} \cdot 6^{\prime \prime}$ sq. $\times 15^{\prime \prime}$ deep	102	150	252	
7450		Load 125K, soil capacity 3 KSF, $7^{\prime} \cdot 0^{\prime \prime}$ sq. $\times 17^{\prime \prime}$ deep	250	310	560	
7500		Load 125K, soil capacity 6 KSF, $5^{\prime} \cdot 0^{\prime \prime}$ sq. $\times 16^{\prime \prime}$ deep	130	180	310	
7550		Ooad 150K, soil capacity 3 KSF $7^{\prime} \cdot 66^{\prime \prime}$ Sq. $\times 18^{\prime \prime}$ deep	299	365	664	
7610		.ooad 150K, soil capacity 6 KSF, $5^{\prime} \cdot 6^{\prime \prime}$ sq. $\times 18^{\prime \prime}$ deep	171	227	398	
7650		Load 200K, soil capacity 3 KSF, $8^{\prime} \cdot 6^{\prime \prime}$ Sq. $\times 20^{\prime \prime}$ deep	420	485	905	
7700		Load 200K, soil capacity 6 KSF, $6^{\prime} \cdot 0^{\prime \prime}$ Sq. $\times 20^{\prime \prime}$ deep	221	280	501	
7750		Load 300K, soil capacity $3 \mathrm{KSF}, 10^{\prime} 6^{\prime \prime}$ sq. $\times 25^{\prime \prime}$ deep	755	785	1,540	
7810		Load 300K, soil capacity 6 KSF, $7^{\prime} \cdot 6^{\prime \prime}$ sq. $\times 25^{\prime \prime}$ deep	410	470	880	
7850		Load 400K, soil capacity 3 KSF, $12^{\prime} 6^{\prime \prime}$ sq. $\times 28^{\prime \prime}$ deep	1,175	1,150	2,325	
7900		_oad 400K, soil capacity 6 KSF, $8^{\prime} \cdot 6^{\prime \prime}$ Sq. $\times 27^{\prime \prime}$ deep	560	610	1,170	
8010		Load 500K, soil capacity 6 KSF, $9^{\prime} \cdot 6^{\prime \prime}$ sq. $\times 30^{\prime \prime}$ deep	760	800	1,560	
8100		Load 600K, soil capacity $6 \mathrm{KSF}, 10^{\prime} 66^{\prime \prime}$ sq. $\times 33^{\prime \prime}$ deep	1,025	1,025	2,050	
8200		Load 700K, soil capacity 6 KSF, $11^{\prime} \cdot 66^{\prime \prime}$ sq. $\times 36^{\prime \prime}$ deep	1,300	1,275	2,575	
8300		Load 800K, soil capacity $6 \mathrm{KSF}, 12^{\prime} \cdot 0^{\prime \prime}$ sq. $\times 37^{\prime \prime}$ deep	1,450	1,375	2,825	
8400		Load 900K, soil capacity 6 KSF, $13^{\prime} .0^{\prime \prime}$ sq. $\times 39^{\prime \prime}$ deep	1,775	1,650	3,425	
8500		_oad 1000 K , soil capacity 6 KSF, $13^{\prime} .6{ }^{\prime \prime}$ sq. $\times 41^{\prime \prime}$ deep	2,000	1,850	3,850	

1.1-140		Shrip Foorings	COST PER L.F.		
		MAT.	INST.	TOTAL	
2100	Strip footing, load 2.6KLF, soil capacity 3KSF, 16"wide x 8"deep plain		5.20	9	14.20
2300	Load 3.9 KLF, soil capacity, $3 \mathrm{KSF}, 24^{\prime \prime}$ wide $\times 8^{\prime \prime} \mathrm{deee}$, plain		6.20	9.95	16.15
2500	Load 5.1KLF, soil capacity 3 KSF , $24^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep, reinf.		10.15	15.10	25.25
2700	Load 11.1KLF, soil capacity 6 KSF , $24^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep, reinf.		10.15	15.10	25.25
2900	Load 6.8 KLF, soil capacity 3 KSF, 32 "wide $\times 12^{\prime \prime}$ deep, reinf.		12.05	16.50	28.55
3100	Load 14.8 KLF, soil capacity 6 KSF, 32"wide x 12 "deep, reinf.		12.05	16.50	28.55
3300	Load 9.3 KLF, soil capacity 3 KSF, $40^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep, reinf.		13.85	17.90	31.75
3500	Load 18.4 KLF, soil capacity 6 KSF, $40^{\prime \prime}$ wide $\times 122^{\prime \prime}$ deep, reinf.		13.95	18.05	32
4500	Load 1OKLF, soil capacity 3 KSF, $48^{\prime \prime}$ wide x $166^{\prime \prime}$ deep, reinf.		18.95	22	40.95
4700	Load 22KLF, soil capacity 6 KSF, $48^{\prime \prime}$ wide, $16^{\prime \prime}$ deep, reinf.		19.35	22.50	41.85
5700	Load 15KLF, soil capacity 3 KSF, $72^{\prime \prime}$ wide $\times 20{ }^{\prime \prime}$ deep, reinf.		31.50	31.50	63
5900	Load 33KLF, soil capacity 6 KSF, 72 "wide x 20 "deep, reinf.		33.50	33.50	67

Determine your bid prices for the following project. Total indirect cost $=\$ 100,000$; and markup $=10 \%$.

Activity	Quantity	Unit	Direct Cost	Indirect Cost	Unit Price	Bid Price	Unbalanced Bid
Excavation	50,000	m 3	$\$ 500,000$				
Concrete Work	2,000	m 3	$\$ 200,000$				
Steel Work	---	LS	$\$ 300,000$				
Total Bid $=$							

Example 1:

Activity:
Work Crew:
Crew daily production:
Crew daily cost:
Needed material / day:
Day:

D
CR-06 (2L1 + 1E3)
175 units/day
\$1,800 / day.
4.5 units of M1 (\$100/unit).

8 hours.

In a new bid, calculate the time and cost it takes the crew to finish 1,400 units. Also, calculate the unit cost.

```
Duration =
    = 8 days
Crew Cost =
    = $14,400
Total Cost = $14,400 +
= $18,000
Unit Cost =
```

$=8$ days
$=\$ 14,400$
$=\$ 18,000$
$=\$ 12.86 /$ unit

Example 2:

The resources used by a concreting subcontractor are:

Labor:

Code	Description	Rate/hr
L1	General Laborer	15
L4	Concrete Worker	25

Equipment:

Code	Description	Rent \$/h	Oper. \$/hr
E2	Crane \& Bucket	40	10
E14	Pump \& Tool	15	5

Materials:

Code	Description	Unit	Cost/Unit
M12	Ready-mixed concrete	Cuft	17

Methods of Construction:

Code	Description	Unit	Resources	Production/d	Notes
Md4	Concreting by Pump - 8 hrs/day	Cuft	1 C16 + M12	100	Normal Hours
Md6	Concreting by Pump - 14 hrs/day	Cuft	1 C16 + M12	$?$	6 overtime hours/d

Normal day is 8 hours. Labor overtime rate $=1.5 \times$ normal rate. During an overtime hour, the crew production $=\mathbf{9 0 \%}$ of regular production.

The subcontractor is currently preparing an estimate for a new concreting job in which he has to pour 500 cubic feet (Cuft) of concrete.
a) Estimating Direct Cost and Duration:

$$
\begin{aligned}
& \text { Method Md4: Normal Work: During the } 8 \text { hours work, crew produces } 100 \text { Cuft/day. } \\
& \begin{aligned}
\text { Duration (days) } & =\mathbf{5} \text { days }
\end{aligned} \\
& \begin{aligned}
\text { Total Cost }(\$) & =5 \text { days } \times \text { (daily cost of crew C16 + cost of } 100 \text { M12 material) } \\
& =5 \text { days } \times \quad\left\{\begin{array}{l}
2 L 1 \times \$ 15 \times 8=\$ 240 \\
3 L 4 \times \$ 25 \times 8=\$ 600 \\
1 E 2 \times(\$ 40+\$ 10) \times 8=\$ 400 \\
2 E 14 \times(\$ 15+\$ 5) \times 8=\$ 320
\end{array}\right. \\
& =5 \times(\$ 1560+\$ 1,700)=\$ 16,300
\end{aligned}
\end{aligned}
$$

Method Md6: Overtime Work: 14-hour day (6 overtime hours).

$$
\begin{aligned}
& \begin{array}{l}
\text { Production per day }= \\
\text { Then, Duration (days) }= \\
\\
\begin{aligned}
\text { Total Cost }(\$) & =167.5 \text { Cuft/day } \\
& =3 \text { daration (days) } \times \text { Cost per day } \\
& =3 \text { days } \times \quad \text { (daily cost of crew C16 + cost of } 167.5 \mathrm{M} 12 \text { material) }
\end{aligned} \\
\qquad \begin{array}{l}
2 \mathrm{~L} 1 \times \$ 15(8+1.5 \times 6)=\$ 510 \\
3 \mathrm{~L} 4 \times \$ 25(8+1.5 \times 6)=\$ 1275 \\
1 \mathrm{E} 2 \times(\$ 40+\$ 10) \times 14=\$ 700 \\
2 \mathrm{E} 14 \times(\$ 15+\$ 5) \times 14=\$ 560
\end{array} \\
\\
=3 \times(\$ 3,045+\$ 2,847.5)=\$ 17,677.5
\end{array}
\end{aligned}
$$

b) Cost and Time Relationship:

General Estimating Equation:

Duration =
 \qquad

$f=$ Productivity factor (0-1.0), depends on:

- Local weather conditions;

Activity Direct Cost Versus Activity Duration

- Learning curve;
- Labor Unrest;
- Crew absenteeism;
- Economic activity (recession vs. boom);
- Space congestion;
- Regulatory rules and cultural habits;
- Design changes and rework;
- Overtime; and
- Uncertainty (owner attitude, project location, etc).

Using published cost data for detailed estimating - R.S. Means:

Using published cost data for detailed estimating

095 Acoustical Treatment \& Wood Flooring

The details of the crew D-7 are:

Crew no.	Bare costs		Incl. Subs O\&P		Cost per labor-hour	
Crew D-7	Hr.	Daily	Hr.	Daily	Care	Costs

Example on Detailed Estimating

A foundations subcontractor has been asked to place foundation on a flat site (shown) for a building according to the provided cross-section. The tasks are: excavating trench, placing forms on the trench sides, and then concreting the foundation. The foundation wall is not included in the scope of work.

The subcontractor intends to do the work as follows:

- The Excavation crew works 8 hours per day and uses a 0.29 m 3 tractor/backhoe;
- The Formwork crew works 8 hours per day, while the Concreting crew works 9 hours;
- The Formwork material can be used for two uses;
- Concrete production is 4.5 m 3 per hour;

Requirements:

Manually confirm the calculations in the following table.

Activity	Quantity	Duration	Bare Cost
Trench Excavation	$650 \mathrm{m3}$	6	$\$ 3,094$
Footing formwork	411 m 2 CA	10	$\$ 10,427$
Concrete	154 m 3	4	$\$ 20,000$

Cost Estimation Software Systems.

Computer Software	Description
Win Est.	Building construction estimator assigns WBS tags to each item.
Success	Cost estimation, cost management with a link to scheduling software.
Design 4/Cost	Preliminary estimate based on square foot system.
Micro fusion for windows	An advanced integrated planning, estimating, proposal preparation and performance management system.
Timberline	A cost estimating software with modules for CAD and scheduling
G2 Estimator	Cost estimation based on previous experience
Best estimate	Cost estimation software.

Many other systems

Another Example on Detailed Estimating Using EasyPlan

A General Contractor has the following resources stored in the company's resource list.

Labor:		Equipment:		Crews:		Subs:
Code	Basic \$/hr	Code	Basic \$/hr	Code	Composition	Code
L1	25	E1	50	CR1	L1+L2	As Needed
L2	25	E2	50	CR2	L3+E1	
L3	25	E3	50	CR3	L4+2L2+E2	
L4	25	E4	50	CR4	L4+3L2+E3	
L5	25	E5	50	CR5	L5+2L2	
				CR6	L3+E4+L2	
				CR7	L4+E4+L2	
				CR8	E5+3L2	
				CR9	L4+2L2+E2	
				CR11	E4+2L3	
				CR12	4L2+E3	

New Bid:

The contractor is preparing a bid for the installation of a mobile house. Activities and estimates are:

No.	Activity	Depend on	Estimate 1	Estimate 2	Estimate 3
1	Site Layout	-----	$\begin{aligned} & \text { CR1, } 8 \mathrm{hrs} \\ & \mathrm{Q}=1, \text { Prod. }=0.5^{*} \end{aligned}$	$\begin{aligned} & \text { CR1, } 12 \text { hrs } \\ & \text { Q= 1, Prod. }=0.5 \end{aligned}$	Subcontractor S1 1 day, $\$ 1,200$
2	Excavation	1	$\begin{aligned} & \text { CR2, } 8 \text { hrs } \\ & \text { Q=600, Prod. }=100 \end{aligned}$	$\begin{aligned} & \text { CR2, } 12 \mathrm{hrs} \\ & \mathrm{Q}=600, \text { Prod. }=100 \end{aligned}$	Subcontractor S2 3 days, $\$ 5,350$
3	Forms	2	$\begin{aligned} & \text { CR3, } 8 \text { hrs } \\ & \text { Q= } 300 \text {, Prod. }=100 \end{aligned}$	$\begin{aligned} & \text { CR3, } 12 \mathrm{hrs} \\ & \text { Q= } 300, \text { Prod. }=100 \end{aligned}$	Subcontractor S3 1 day, $\$ 4,500$
4	Concrete	3	$\begin{aligned} & \text { CR1, } 8 \text { hrs } \\ & Q=300, \text { Prod. }=150 \end{aligned}$	$\begin{aligned} & \text { CR1, } 12 \text { hrs } \\ & \text { Q= } 300, \text { Prod. }=150 \end{aligned}$	Subcontractor S4 1 day, $\$ 3,500$
5	Rough Plumbing	1	$\begin{aligned} & \text { CR5, } 8 \text { hrs } \\ & \text { Q=3000, Prod. }=1000 \end{aligned}$	$\begin{aligned} & \text { CR5, } 12 \text { hrs } \\ & \text { Q=3000, Prod. }=1000 \end{aligned}$	Subcontractor S5 2 days, $\$ 3,000$
6	Place Blocks	5	$\begin{aligned} & \text { CR6, } \quad 8 \mathrm{hrs} \\ & \mathrm{Q}=200, \text { Prod. }=50 \end{aligned}$	$\begin{aligned} & \text { CR6, } \quad 12 \mathrm{hrs} \\ & \mathrm{Q}=200, \text { Prod. }=50 \end{aligned}$	Subcontractor S6 2 days, $\$ 5,000$
7	Rough Elec.	5	$\begin{aligned} & \text { CR7, } 8 \text { hrs } \\ & \text { Q }=300, \text { Prod. }=75 \end{aligned}$	$\begin{aligned} & \text { CR7, } 12 \text { hrs } \\ & \text { Q=300, Prod. }=75 \end{aligned}$	Subcontractor S7 2 days, $\$ 5,200$
8	Place Home	6	$\begin{aligned} & \text { CR8, } 8 \mathrm{hrs} \\ & \mathrm{Q}=1, \text { Prod. }=0.5 \end{aligned}$	$\begin{aligned} & \text { CR8, } 12 \text { hrs } \\ & Q=1, \text { Prod. }=0.5 \end{aligned}$	Subcontractor S8 1 day, $\$ 2,800$
9	Remove forms	4	$\begin{aligned} & \text { CR9, } 8 \text { hrs } \\ & \text { Q }=300, \text { Prod. }=75 \end{aligned}$	$\begin{aligned} & \text { CR9, } \quad 12 \mathrm{hrs} \\ & \text { Q=300, Prod. }=75 \end{aligned}$	Subcontractor S9 2 days, $\$ 6,909$
10	Cure Concrete	4	Subcontractor S10: 7 days and \$1400		
11	Hookup finish	7, 8	$\begin{aligned} & \text { CR11, } 8 \mathrm{hrs} \\ & \text { Q=30, Prod. }=10 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CR11, } 12 \mathrm{hrs} \\ & \text { Q= } 30 \text {, Prod. }=10 \end{aligned}$	
12	Cleanup	9, 10, 11	$\begin{aligned} & \text { CR12, } \quad 8 \mathrm{hrs} \\ & \text { Q }=1, \text { Prod. }=0.25 \end{aligned}$	$\begin{aligned} & \text { CR12, } \quad 12 \mathrm{hrs} \\ & \text { Q }=1, \text { Prod. }=0.25 \\ & \hline \end{aligned}$	Subcontractor S12 2 days, $\$ 7,000$

Notes: * Q = Quantity of work; Prod. = Regular production rate in an 8-hr day.

- Seasonal productivity factors for all activities are: Winter (0.7), Spring (1.0), \& Fall (0.85).

Project Constraints:

Start date $=$ June 1, 04; Markup $=5 \%$;
Resource Limit is 4 L 2 ; Retainage $=10 \%$;
Reporting period = every 7 days;
Interest / period = 1\%; Mobilization = 0\%; Indirect costs = \$300/day; Suppliers' credit = 20\%;
Penalty $=\$ 10,000 /$ day; Incentive $=\$ 2,000 /$ day; $\&$
Deadline $=90 \%$ of project duration when all activities use their first estimate (rounded up).

Requirements:

In EasyPlan, use the "Auto-Estimate" option in the activities sheet to estimate activities’ costs. Determine an optimum plan that meets the contractor's constraints. Check your solution (Pr8).

Compare project cost and time for three project startdate possibilities: Feb. 1, 2004, June 1, 2004, or Oct. 1, 2004. Comment on the results.

[^0]: Division 1: General Requirements
 Division 2: Site Work
 Division 3: Concrete
 Division 4: Masonry
 Division 5: Metals
 Division 6: Wood and Plastics
 Division 7: Thermal Moisture Protection
 Division 8: Doors and Windows

 Division 9: Finishes
Division 10: Specialties
Division 11: Equipment
Division 12: Furnishings
Division 13: Special Construction
Division 14: Conveying Systems
Division 15: Mechanical
Division 16: Electrical

