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SUMMARY

A two-phase flow extended finite element method (XFEM) model is presented to analyze the injection
and sequestration of carbon dioxide (CO2) in deep saline aquifers. Carbon sequestration is a multiscale
problem, involving length scales over four orders of magnitude–from injection well diameter scale to the
aquifer scale. XFEM is introduced to accurately approximate near injection well pressure behaviour with
elements significantly larger than the injection well diameter. We present a vertically averaged multiphase
flow model that combines XFEM to approximate the pressure field, with a Streamline Upwind Petrov-
Galerkin / Finite Element / Finite Difference method (SUPG-FEM-FDM) to approximate the distribution of
CO2 in the aquifer. Near well enrichment functions are presented along with the solution procedure for the
coupled problem. Two examples are presented; in the first, CO2 injection into a perfectly horizontal aquifer
is model with both XFEM and FEM-based methods. It is shown that the XFEM provides improved accuracy
in the prediction of pressure. The impact and selection of the stabilization coefficient of the SUPG-FEM-
FDM is also discussed. In the second example, the XFEM and SUPG-FEM-FDM model are applied to a
more realistic model of an inclined aquifer. Here the XFEM-based model is shown to correctly capture the
buoyancy driven migration of CO2 in a deep saline aquifer. Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Multiphase Flow; Carbon Sequestration; eXtended Finite Element Method; XFEM
LATEX 2ε; Int. J. Numer. Meth. Engng

1. INTRODUCTION

Carbon sequestration is an operation where carbon dioxide (CO2) from point source emitters, such
as coal-fired power plants, is injected into deep geological structures for long term storage. Ideal
storage locations are deep saline aquifers that have an impermeable caprock above to prevent the
CO2 from leaking into overlaying aquifers.

Deep saline aquifers are composed of porous rock such as sandstone and initially contain brine
(salt water). The resident brine is displaced when the CO2 is injected. At the depths of these aquifers
the temperatures and pressures are such that the CO2 exists in a supercritical state. The supercritical
CO2 is less dense than the host brine, and thus there will be a buoyancy drive causing the CO2 to
rise and float on top of the brine.

Carbon sequestration is a multiscale problem. There is a large difference in the timescales of
relevant processes and there are large differences in spatial scales. The horizontal dimensions of
the aquifers are measured in kilometers, but the diameter of the injection wells is measured in
centimeters. To accurately resolve the pressure field in the vicinity of an injection or abandoned
wells using traditional numerical methods would require a prohibitively fine discretization near the
wells.

∗Correspondence to: Dr. Robert Gracie at rgracie@uwaterloo.ca
†In honour of Professor Ted Belytschko
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2 C. LADUBEC ET AL.

In this paper, an eXtended Finite Element Method (XFEM) method for accurate and efficient
modeling of the pressure field resulting from injecting CO2 into a deep saline aquifer using a
vertically averaged multiphase flow formulation is presented. XFEM is then coupled to a Streamline
Upwind Petrov-Galerkin/ Finite Element Method/Finite Difference Method (SUPG-FEM-FDM) to
model the evolution of the average saturation of each phase in the aquifer. This article follows earlier
works by the authors on XFEM-based single phase aquifer flow models [1, 2].

The XFEM was comprehensively developed by Belytschko and co-workers over the past 15 years
[3, 4, 5, 6] . It was first applied to the simulation of the singularities and discontinuities found in
linear elastic fracture mechanics [7, 8]. Later applications focussed on dynamic crack propagation
[9, 10, 11], multiscale analysis [12, 13, 14], and material modelling [15, 16, 17].

Comparably less attention has been given to the application of XFEM to multiphase flow. Some
notable exceptions are the two-dimensional two-phase flow works of Chessa and Belytschko [18]
and Cheng and Fries [19], the three-dimensional two-phase flow models of Sauerland and Fries
[20] and the analysis of partially saturated porous media of Mohammadnejad and Khoei [21]. One
of the major differences between these earlier works and that present here, is that they focus on
two and three dimensional models, whereas, the present model is quasi-three dimensional, leading
to different governing equations, different representation of the interface between fluid phases, and
different enrichment functions. Furthermore, the focus here is on the singular behaviour near wells.

This article is organized as follows. We present the equations governing conservation of mass
in the vertically averaged multiphase flow of CO2 and brine in a porous medium in Section 2. In
Section 3, 4 and 5, the government equations, weak form, and discrete equations, respectively. Two
numerical examples that demonstrate the capabilities of the outlined model are presented is Section
6 and conclusions are given in Section 7.

2. PROBLEM STATEMENT

Consider a saline aquifer, bounded from above and below by impermeable aquicludes, as illustrated
in the cross-section shown in Figure 1. CO2 is injected into the saline aquifer displacing the host
brine fluid. Since the density of the CO2 is less than the brine it floats on top of the brine and spreads
laterally. The injection well acts as a point source, with a locally singular pressure field. Singlular
pressure fields are also found near hydraulic connections between adjacent aquifers, such as in the
vicinity of abandoned wells, faults and fractures [1]. In this paper, we present a computationally
efficient methodology to model the injection of CO2 into a carbon sequestration system. Vertically
averaged mass balance equations [22] are used to describe the pressure distribution and the average
saturation distribution of CO2 in the injection aquifer.

The use of a vertically averaged formulation allows us to reduce the dimensionality of the
problem from three to two by integrating the governing equations over the depth of the aquifers
[23, 24, 25, 26]. Vertical averaging thus reduces the number of degrees of freedom in the system by
one third, thus increasing the computational efficiency of the resulting numerical model. Reducing
the dimensionality of the problem is generally considered a reasonable approximation since the
depth of the aquifers is quite small compared to the horizontal dimensions of the aquifer [22].

The governing equations adopted in this paper assume:

• Chemical, thermal and mechanical effects are negligible;
• The brine, CO2 and solid matrix are incompressible;
• The viscosity and density of brine and CO2 are constant;
• The interface between the brine and CO2 is sharp and the capillary pressure is zero;
• The pressure in the aquifer varies hydrostatically through the depth of the aquifer.

The governing equations are the mass balance equations for brine and CO2 which are combined
with two equations describing vertically averaged fluxes of each phase using a multiphase extension
of Darcy’s law [22].

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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XFEM CARBON SEQUESTRATION 3

The mass balance equations for the CO2 and brine phases in the aquifer are:

φ(1− Sres,B)
∂h

∂t
+∇ · q̂C = qC,inj (1)

φ(1− Sres,B)
∂(H − h)

∂t
+∇ · q̂B = 0 (2)

where φ is the porosity of the aquifer, Sres,B is residual saturation of the brine, h(x, t) is the depth
of the CO2, q̂C(x, t) is the vertically averaged CO2 flux, q̂B(x, t) is the vertically averaged brine
flux, qC,inj(x, t)is the source term to account for the injection of CO2 into the aquifer.

CO2 is assumed to be injected from a point source and is defined as:

qC,inj = Qinjδ(x− xinj) (3)

where Qinj is the injection rate (e.g. m3/d), and δ() is the Dirac delta function.
The vertically averaged fluxes are given by the multiphase extension of Darcy’s Law [22]:

q̂C = −hkkrel,C
µC

(∇pbot − ρBg∇H + ∆ρg∇h+ ρCg∇ztop) (4)

q̂B = −(H − h)
k

µB
(∇pbot + ρBg∇zbot) (5)

where k is the intrinsic permeability of the aquifer, krel,C is the relative permeability, µC is the
viscosity of CO2, µB is the viscosity of brine, pbot(x, t) is the pressure at the bottom of the aquifer,
ρC is the density of CO2, ρB is the density of the brine, ∆ρ = ρB − ρC , g is the gravitational
constant, ztop(x) is the vertical depth of the top of the aquifer, zbot(x) is the vertical depth of the
bottom of the aquifer, and H(x) is the thickness of the aquifer.

H(x,y)

h(x,y,t)

Brine CO2

Caprock

Caprock

Aquifer

z   (x,y)

Brine

z   (x,y)

qinj(t)

CO2

bot

top

Figure 1. Defining parameters of carbon sequestration model.
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4 C. LADUBEC ET AL.

3. STRONG FORM

The solution approach we take is to manipulate (1) and (2) to arrive at two equations: one that
is solved for pressure (pressure equation) and the second that is solved for the average saturation
distribution (saturation equation).

We first obtain the strong form of the pressure equation and saturation equation from (1) and (2)
combined with (4) and (5). The pressure equation is obtained by adding the mass balance equations
for each phase. The transient term disappears and the pressure equation becomes an elliptical steady
state equation, i.e., a Poisson-type equation. This leads to an instantaneous propagation of changes
in pressure through the domain Ω. The strong form of the pressure equation is: Find pbot(x) such
that:

∇ ·
(
h

kkCREL
µC

(∇pbot + ∆ρg∇h− ρBg∇H + ρCg∇ztop)
)

+∇ ·
(

(H − h)
k

µB
(∇pbot + ρBg∇zbot)

)
= qinj,C ,x ∈ Ω

(6)

and

pbot(x, t) = pbot(x, t) on Γp (7)
q̂C(x, t) = qC(x, t) on Γq (8)
q̂B(x, t) = qB(x, t) on Γq (9)

where Γp ∪ Γq is the boundary of Ω and Γp ∩ Γq = ∅.
The saturation equation is obtained directly from the mass balance equation for the brine, (2) and

(5). The strong form of the saturation equation is: Find h(x, t) such that:

φ(1− Sres,B)
∂(H − h)

∂t
−∇ ·

(
(H − h)

k

µB
(∇pbot + ρBg∇zbot)

)
= 0, x ∈ Ω, t ∈ [0, tend]

(10)

h(x, t) = h(x, t) on Γh (11)
h(x, 0) = ho(x) on Ω (12)

where Γh is the boundary of Ω.

4. WEAK FORM

In this section, the weak forms of the pressure equation and the saturation equation are presented.
The weak form of the pressure equation for the pressure at the bottom of the aquifer (6) is: find

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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XFEM CARBON SEQUESTRATION 5

pbot(x) ∈W such that∫
Ω

(∇w)T (H − h)
k

µB
∇pbotdΩ +

∫
Ω

(∇w)T (H − h)
k

µB
ρBg∇zbotdΩ

+

∫
Ω

(∇w)Th
kkrel,C
µC

∆ρg∇hdΩ−
∫

Ω

(∇w)Th
kkrel,C
µC

ρBg∇HdΩ

+

∫
Ω

(∇w)Th
kkrel,C
µC

ρCg∇ztopdΩ−
∮

Γ

wT q̂TBndΓ

+

∫
Ω

(∇w)Th
kkrel,C
µC

∇pbotdΩ−
∮

Γ

wT q̂TCndΓ

=

∫
Ω

wT qinj,CdΩ,∀w ∈W0.

(13)

The function spaces are given as

W = {pbot(x)|pbot(x) ∈ H1, pbot(x) = pbot on Γp}
W0 = {w(x)|w(x) ∈ H1, w(x) = 0 on Γp}

(14)

The weak form of the saturation equation is: find h(x, t) ∈ U such that∫
Ω

vTφ(1− SRES,B)
∂(H − h)

∂t
dΩ +

∫
Ω

(∇v)T (H − h)
k

µB
(∇pbot + ρBg∇zbot)dΩ

=

∮
Γ

vT q̂TBndΓ, ∀v ∈ U0.

(15)

where U and U0 are the appropriate function spaces for h(x, t) and v(x, t), respectivley.

5. DISCRETE EQUATIONS AND APPROXIMATION

In this section the discretization of the weak forms of the pressure and the saturation equation are
presented. The pressure is discretized in space using the eXtended Finite Element Method (XFEM)
and the CO2 saturation is discretized using an Streamline Upwind Petrov-Galerkin Finite Element
Method (SUPG-FEM) in space and a Finite Difference Method (FDM) in time.

5.1. XFEM Approximation of the Pressure Equation

The solution to the pressure equation (6) is known to be singular at the injection well. To better
approximate the pressure field, an XFEM approximation is adopted. The key to the XFEM is that
the FEM approximation is enriched in the vicinity of the injection wells with functions that capture
the asymptotic behaviour near the well. In contrast, an FEM model would require a fine mesh around
the wells in order to obtain accurate solutions. As mentioned, XFEM was previously used to model
single phase porous media flow in an aquifer [1, 2]. For the multiphase XFEM model present here,
we investigate the use of the same enrichment function.

The enrichment function for the pressure near well α is

φα(x) =

{
log(rα(x)), rα > rw

log(rw), rα ≤ rw
(16)

where rα is distance to the center of the well number,α, and rw is the radius of the well.

rα(x) = ||x− xinjα || (17)

where xinjα are the spatial coordinates of the injection wells.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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6 C. LADUBEC ET AL.

The XFEM approximation of pressure is given by

p(x) =
∑
I∈N

NI(x)pI +

ninj∑
α=1

wα(x)φα(x)
∑
J∈Sα

NJ(x)aαJ ,x ∈ Ω (18)

whereN is the set of all nodes, pI is the pressure at node I, ninj is the number of injection wells, Sα
is the set of nodes in the enriched domain of well α (see Figure 2), wα(x) is a weighting function
that blends the enriched and unenriched parts of the domain ([27], [1]), aαJ are the enriched degrees
of freedom, and NI(x) are the standard finite element basis functions.

The pressure approximation can be written in matrix form as:

p(x) = Npbot + Na (19)

where N is the matrix of standard FEM shape functions and N is the matrix of the enriched shape
functions. pbot and a are vectors containing the standard FEM pressure degrees of freedom and the
enriched degrees of freedom respectively.

pbot
T = {p1, p2, ..., pnn} (20)

aT = {a1, a2, ..., amm} (21)

where nn and mm are the number of nodes in the mesh and the number of enriched nodes,
respectively.

The blending weight function is define as

w(x) =
∑
I∈N

NI(x)wI (22)

where wI is one for an enriched node within the enrichment radius, renr, and wI is zero for an
enriched node outside the enrichment radius.

r
O

O

x xxx

x xxx

x xxx

x xxx

x xxx

x xxx

x xxx

x xxx

o o o o oo

O

o

x

Unenriched Element

Enriched Element
Well
Enriched node with wI=0
Enriched node with wI=1
Unenriched node

o o o o oo

o o o o oo

o o o o oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

enr

enrr

Figure 2. Enriched domain. Sα is the set of nodes within the enrichment radius of well α
.

The XFEM discretization of the pressure equations are:

Kaquifer

{
pbot

u

}
=

{
Fp

Fp

}
(23)

Fp = Fp1 + Fp2 + Fp3 + Fp4 (24)

Fp = Fp1 + Fp2 + Fp3 + Fp4 (25)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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p   (r)

r
rwellrwell

bot

Figure 3. Illustration of the enrichment function.

Kaquifer =

[
K K

K
T

K

]
(26)

where Kp is the stiffness matrix, Fp1 is the injection vector, Fp2 is the boundary flux vector, Fp3 is
the buoyancy vector, and Fp4 is the aquifer slope vector. Kp and Kp are enriched stiffness matrices,
Fp1 is the enriched injection vector, Fp2 is the enriched boundary flux vector, Fp3 is the enriched
buoyancy vector, and Fp4 is the enriched aquifer slope vector.

The matrices and vectors are

Kp,IJ =

∫
Ω

BT
I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ,∀I, J ∈ N (27)

Kp,IJ =

∫
Ω

B
T

I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ,∀I ∈ N ,∀J ∈ Sα (28)

Kp,IJ =

∫
Ω

B
T

I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ,∀I ∈ Sα,∀J ∈ Sβ (29)

Fp1,I =

∫
Ω

NT
I qC,injdΩ,∀I ∈ N (30)

F p1,I =

∫
Ω

N
T

I qC,injdΩ,∀I ∈ Sα (31)

Fp2,I = −
∮

Γ

NT
I (qB + qC)ndΓ,∀I ∈ N (32)

F p2,I = −
∮

Γ

N
T

I (qB + qC)ndΓ,∀I ∈ Sα (33)

Fp3,I = −
∫

Ω

BT
I

kkrel,C
µC

∆ρgh∇hdΩ,∀I ∈ N (34)

F p3,I = −
∫

Ω

B
T

I

kkrel,C
µC

∆ρgh∇hdΩ,∀I ∈ Sα (35)

Fp4,I =

∫
Ω

BT
I (h

kkrel,C
µC

(ρBg∇H − ρCg∇ztop)− (H − h)
k

µB
ρBg∇zbot)dΩ,∀I ∈ N (36)

F p4,I =

∫
Ω

B
T

I (h
kkrel,C
µC

(ρBg∇H − ρCg∇ztop)− (H − h)
k

µB
ρBg∇zbot)dΩ,∀I ∈ Sα (37)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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8 C. LADUBEC ET AL.

where B and B are matrices of the derivatives of the standard and enriched shape functions,
respectively.

5.1.1. Numerical Integration Numerical integration of the unenriched elements in the pressure
equation is performed using 2x2 Gauss quadrature. Enriched elements that do not contain a well
are integrated using 4x4 Gauss quadrature. Enriched elements containing wells are integrated using
an iterative bisection scheme as described in [1]. The subcells are then integrated using 3x3 Gauss
quadrature if they are located outside the well radius, and using 1x1 Gauss quadrature if they are
located within the well radius.

5.2. Stabilized Galerkin FEM - CN discretization of the Saturation Equation

An SUPG-FEM-FDM approximation is used to discretize the saturation equation. Space is
discretized using an SUPG-FEM approach. SUPG is implemented as an added artificial diffusion
term that counteracts the negative diffusion that occurs due to the Galerkin FEM discretization of
the hyperbolic saturation equation (i.e., the advection equation). A Crank-Nicolson (trapezoidal)
finite difference method is used to discretize the time domain.

The average saturation of the brine is approximated in space by:

h(x) =
∑
I∈N

NI(x)hI (38)

The semi-discrete FEM saturation equations are given by:

[Cs]{ḣB}+ [Ks]{hB} = {Fs} (39)

Cs =

∫
Ω

NeTφ(1− SRES,B)NedΩ (40)

Kadv =

∫
Ω

BeT k

µB
(∇pbot + ρBg∇zbot)NedΩ (41)

Fs =

∮
Γ

NeT qBndΓ (42)

where {hB} is the unknown vector of brine depth in the aquifer and hB(x, t) = H(x)− h(x, t), Cs

is the mass matrix, Kadv is the advection matrix , Fs is the boundary flux vector. Ne are the shape
functions for each element and Be are the derivatives of the shape functions. The XFEM pressure
approximation is utilized in the advection matrix, Kadv above. The Streamline Upwind Petrov-
Galerkin (SUPG) method is used to stabilize the saturation equation, which is similar to a pure
advection equation. SUPG is implemented using artificial diffusion as described in [28]. Artificial
diffusion acts to offset the negative diffusion that is created due to the Galerkin FEM approach. The
artificial diffusion to the system, which for the pure advection case simplifies to

KSUPG =

∫
Ωe

BeT τ
H

φ(1− Sres,B)

k

µB
|∇pbot + ρBg∇zbot|BedΩe (43)

where τ is a parameter to control the amount of diffusion applied.
In the saturation equation, time is discretized using the finite difference method. This can be

written as

([Cs] + ∆tθ[Ks]
n+1

){hB}n+1
=

(([Cs]−∆t(1− θ)[Ks]
n
){hB}n + ∆t(θ{Fs}n+1

+ (1− θ){Fs}n))
(44)

where [Ks] = [Kadv] + [KSUPG]
In the above equation, θ = 0.5 gives the Crank-Nicolson (CN) method. CN is an implicit scheme

that is unconditionally stable and second order accurate (i.e. O(h2
e)).
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XFEM CARBON SEQUESTRATION 9

5.3. Solution Procedure

The system of equations that we obtain from the discretization of the pressure and saturation
equations are strongly coupled. A sequential solution strategy similar to IMPES (IMplicit Pressure
Explicit Saturation) [29], which is common in the reservoir simulation community is adopted.
In this solution scheme initial conditions for the saturation are specified and the initial pressure
distribution is computed. Then for each timestep the saturation equation is solved using the
pressure distribution from the previous timestep. The pressure distribution is then updated using
the saturation distribution from the current timestep. This solution strategy is shown in Figure 4.

 

 

Begin

End

Specify h(x,y,0)

bot
Compute p  (x,y,0)

NO

YES

Compute h(x,y,t )i

bot
Compute p  (x,y,t )i

t    < t     ?i+1 max

using (23)

using (44)

using (23)

Figure 4. Solution strategy. Pressure is solved using (23) and saturation is solved using (44).

6. NUMERICAL EXAMPLES

The solution approach described in this paper is demonstrated using two examples.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Table I. System properties for example 1.

Property Value Units
µB 5.11e-4 Ns/m2

µC 6.11e-5 Ns/m2

ρB 1099 kg/m3

ρC 400 kg/m3

Sres,B 0 -
φ 0.15 -
kx 1e-15 m2

ky 1e-15 m2

krel,C 1 -
qinj 1600 m3/d
rw 0.15 m

6.1. Example 1

In this example CO2 is injected into a brine filled aquifer. The setup of this problem is shown in
Figure 5. The system properties are given in Table I. The aquifer is bounded above and below by
impermeable caprock layers (aquicludes). Initially, the aquifer is filled with brine. The water table
begins at the top boundary of the aquifer. CO2 is injected at a constant rate of 1600 m3/d. As the
injection progresses, the CO2 plume spreads throughout the aquifer.

q

10m

inj

Caprock

Caprock

Aquifer

1000 m

a)

1000 m

1000 m

(500,500)

b)

A

A

Figure 5. Set up of Example 1

Dirichlet boundary conditions of hydrostatic pressure are applied for the pressure equation along
the whole boundary of the domain. An initial condition of h(x, 0) = 0 throughout the domain is
used (i.e. brine only). Dirichlet boundary conditions of h(x, t) = 0 are imposed at all boundaries,
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and as such the domain must be large enough so that the CO2 plume remains far enough away from
the domain boundaries. The simulation is conducted for a time of 3 days.

Figure 6 compares the pressures distributions for two XFEM and two FEM simulations with
different mesh densities. The pressure is plotted along section A-A, as shown in Figure 5. It is
clear that the XFEM simulation with the coarse mesh better approximates the pressure field near
the injection well. At further distances away from the well XFEM and FEM give similar pressure
fields. The data on this plot are at element nodes. The pressure at the well perimeter will be much
higher at the edge of the well for XFEM.
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Figure 6. Comparison of XFEM and FEM pressure distributions.

Figure 7 shows the average CO2 saturation distribution along section A-A (Figure 5). At the well
the XFEM solutions give a lower CO2 depth than does FEM. This is explained by the artificial
diffusion added to stabilized the saturation equation. The amount of stabilization that is added is a
function of the pressure gradient, which is significantly higher for the XFEM simulations.

A convergence study for the pressure at the well is shown in Figure 8. The pressure values are
much larger here than in Figure 6 since the pressures shown in Figure 8 are taken at the edge of the
well. XFEM converges rapidly towards a solution, while FEM converges much slower, and has not
come close to converging for the mesh densities investigated.

The effect of the amount of non-dimensional stabilization (τ ) on the average saturation profile
is studied using XFEM in Figure 9. At low values of τ the saturation profile is non-physical. The
approximation is improved as τ is increased. One side effect of increased damping is the reduction
of the depth of CO2 at the injection well. The amount of stabilization added is amplified for XFEM
due to a larger pressure gradient (see (43)). The effect of τ on the pressure is shown in Figure 10.
Once τ is large enough to eliminate the non-physical values, there is little change in the pressure
field for the values of τ shown.

6.2. Example 2

In this example CO2 is injected into a sloping aquifer. The problem is illustrated in Figure 11 and the
system properties are described in Table II. The aquifer is bounded above and below by impermeable
layers. The top boundary of the aquifer slopes upwards to the right and the bottom boundary slopes
downwards to the right. Therefore, the depth of the aquifer is a function of the x and y coordinates.

Dirichlet boundary conditions are specified for the pressure equations as the hydrostatic pressure
caused by the brine that exists between the top of the water table and the bottom of the aquifer. For
the saturation equation dirichlet boundary conditions are specified such that at the boundaries of the
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Figure 7. Comparison of XFEM and FEM average CO2 saturation distributions.
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Figure 8. Comparison of convergence of pressure at the injection well for XFEM and FEM.

domain the full depth of the aquifer is filled with brine. Initial conditions of a completely brine-filled
aquifer are applied.

The average CO2 saturation profile is shown in Figure 12. Since the CO2 has a lower density than
the host brine fluid, the CO2 should preferentially flow to the right, following the up-sloping top
boundary of the aquifer.

Figure 12 shows the average saturation after 60 days of injection for the system shown in
Figure 11 compared to the system shown in Figure 5. The average saturation is shown along axis b,
defined in Figure 11. Comparing the evolution of the CO2 plume in the horizontal aquifer case and
the sloping aquifer we can see that the for the sloping aquifer, the CO2 preferentially flows up the
slope. This preferential flow is caused by the buoyant drive resulting from the lower density of the
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Figure 9. Effect of non-dimensional stabilization parameter on average CO2 saturation profile.
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Figure 10. Effect of non-dimensional stabilization parameter on pressure.

CO2 compared to brine. Thus the current formulation adequately captures the updip effect of CO2
migration.

Figure 13 shows the pressure distribution along along axis b, defined in Figure 11 after 60 days
of injection. The pressure field near the well is almost identical for the horizontal aquifer and the
sloping aquifer, confirming that the difference in the evolution of the CO2 is caused by the sloping
aquifer and the density difference between the CO2 and the brine. It can be concluded that during
the early stages of injection the saturation of CO2 is significantly impacted by the sloping aquifer
geometry –meaning that the differences in the evolution of the CO2 saturation field between the
horizontal aquifer and the sloping aquifer are driven by buoyancy forces.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme

Page 13 of 17

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

14 C. LADUBEC ET AL.

a)

1000 m

1000 m

(5
00

,5
00

)

b)

1m

Caprock

Caprock

Aquifer

995.5m

qinj

994.5m

10m

b=0

19m

b=1414.2 m

Figure 11. Set up of Example 2.

Table II. System properties for example 2.

Property Value Units
µB 5.11e-4 Ns/m2

µC 6.11e-5 Ns/m2

ρB 1099 kg/m3

ρC 400 kg/m3

Sres,B 0 -
φ 0.15 -
kx 1e-15 m2

ky 1e-15 m2

krel,C 1 -
qinj 1600 m3/d
rw 0.15 m

7. CONCLUSIONS

A computationally efficient model of carbon sequestration, where carbon dioxide (CO2) is injected
into deep saline aquifers is presented. An effective computational scheme is obtained by combining
the efficiency of a vertically averaged formulation and through the enrichment of the pressure
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Figure 12. XFEM Average CO2 Saturation Distribution after 60 days of injection
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Figure 13. XFEM Pressure Distribution after 60 days of injection

approximation using the eXtended Finite Element Method (XFEM). The XFEM-based formulation
is used to improve the approximation of the singular pressure field in the vicinity of an injection
well. The XFEM pressure approximation is combined with a Streamline Upwind Petrov-Galerkin/
Finite Element Method/Finite Difference Method (SUPG-FEM-FDM) framework to approximates
the average CO2 saturation through the thickness of the aquifer. Using the XFEM-SUPG-FEM-
FDM framework we examined two examples. In the first, it was shown that XFEM has superior
convergence properties near injection wells, when compared to a FEM approximation. The pressure
approximation is shown to be relatively insensitive to increases in the SUPG stabilization parameter,
once stable behaviour is obtained. In the second example, the XFEM-SUPG-FEM-FD simulator is
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demonstrated to be able to capture the important effect of buoyancy driven flow of CO2 in a sloping
aquifer.
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