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Abstract

Cosserat (micropolar, asymmetric) elasticity can better predict the mechanical behavior of the materials with character-
istic length scale than the classical theory of elasticity. However, the area of fracture modelling in a Cosserat medium is
not widely presented in the literature. The simulation of cracks in a Cosserat medium using the eXtended Finite Element
Method (XFEM) is presented in this paper. The proper crack tip enrichment of the translational and microrotational
fields is important for the robustness and efficiency of the XFEM/Cosserat model. Using the example of an edge crack
of the Mode | in this paper, we have shown that the values of the J-integral for the Cosserat solid are higher than
those for the equivalent classical elastic solid. The difference becomes significant for the cases of materials with strong
micropolar properties. The dependence of the fracture behavior of the crack of different sizes on the Cosserat elastic
constants was found to be significant. Therefore, it is recommended that the special tip enrichment is considered for
the microrotational field, and a careful analysis of the material parameters is performed in order to model fracture in a
Cosserat medium.
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I. Introduction

Simulation of the fracture behavior of materials with intrinsic length scales (such as grains, particles, etc.)
remains a challenge to the computational mechanics community. However, the scale of the microstructure
contributes significantly to the overall behavior and the strength of the materials such as polymers, graphite,
composites, cellular solid, bones, etc. The Cosserat elasticity theory, being a higher order gradient theory,
effectively represents the scale dependent behavior of the materials with significant microstructure [1, 2]. The
Cosserat theory of elasticity was first proposed by the Cosserat brothers [3]. Later, works by Shaefer [4, 5],
Eringen [6] and Nowacki [7] gave further development of the Cosserat theory, and the new name for the theory
was introduced: the theory of micropolar or asymmetric elasticity. The Cosserat elasticity theory considers a
medium as a continuous collection of particles that behave like rigid bodies having three independent micro-
rotations at each point, in addition to three classical translational degrees of freedom. The isotropic Cosserat
continuum has six elastic constants, in contrast to just two constants of the classical elastic continuum. The
couple stress tensor is introduced in addition to the conventional stress tensor. This leads to an additional set
of equilibrium equations that account for the moments. The essential feature of a micropolar continua is that
the stress tensor is not necessarily symmetric so that the balance of momentum equation should be modified
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accordingly. The presence of the rotational degrees of freedom allows us to explicitly model the mechanical
behavior of the heterogeneous material with microstructure, while considering it as a continuum (see, for exam-
ple, [8—19] ). For example, the Cosserat theory is able to model discrete media, where the interblock or interlayer
slip occurs under the loading, such as discontinuous rock masses and layered materials [20, 21]. In both cases,
this type of deformation is independent of the macroscopic deformation of the system. Considering the bone
structure, the mechanical properties of the bone are better described by the Cosserat theory than the classical
theory of elasticity [22, 23]. The size effect in torsion tests of bonespecimens was predicted by the Cosserat
theory, according to Lakes [24] and Yang and Lakes [25].

The present paper focuses on a way to combine the eXtended Finite Element Method (XFEM), which is
widely used in the area of the fracture mechanics, with the Cosserat elastic model. The XFEM was first intro-
duced for the linear elastic fracture mechanics problems by Belytschko and Black [26] and Moes et al. [27].
Then, it was effectively applied for the modelling of different kinds of discontinuities in elastic solids such as
various types of cracks [28-30], interfaces [31], inclusions [32], dislocations [33-35], and so on.

The XFEM is a numerical method that allows one to model the geometry of discontinuity independently of
the mesh. The geometry of the crack is convenient to define using the level set method [36]. The main idea of
the XFEM is to introduce special enrichment functions to the displacement approximation, depending on the
type of discontinuity [27]. For the crack problem, the elements containing the crack tip and some elements in the
vicinity of the crack tip are enriched with the branch functions that span the asymptotic field. The Heaviside step
function is used for the elements cut by the crack, but not enriched with the branch functions. This technique
allows the modelling of the crack propagation without need to re-mesh, which is an advantage over the Finite
Element Method (FEM) where the crack surface must conform to the mesh. In the XFEM/Cosserat model
presented here, both the translation and microrotation fields in the vicinity of the crack tip are enriched by the
functions spanning the asymptotic fields [37] and by the Heaviside function away from the crack tip. In the
area of the Linear Elastic Fracture Mechanics (LEFM) for the Cosserat materials, very few numerical models
have been presented, in contrast to experimental and analytical work. Amongst the first investigations in the
field, the finite element analysis was performed to study the stress concentrations around a blunt crack in the
Cosserat solid by Nakamura and Lakes [38]. The stress concentration factors were shown to be smaller than
those of the classical problem. Simultaneously, the experimental studies of the cracks in the bones, considered
as the Cosserat solids, were performed [22, 39]. Although, it falls out of the LEFM scope, it is worth mentioning
that the wide implementation of the FEM/Cosserat model lies in the field of geomechanics, such as modelling
of shear band formations and strain localizations. In Khoei and Karimi [40], a combined XFEM/Cosserat
continuum model to simulate the strain localization in elasto-plastic solids was proposed. In Khoei et al. [41],
the non-linear behavior of Cosserat materials, particularly plastic deformation, was modelled by representing
material interfaces independent of the finite element mesh. Due to complexity of fracture modelling in Cosserat
materials and the lack of information on the fracture parameters, the numerical simulations of the cracks in the
Cosserat elastic medium are poorly covered up to date. In the present article, the XFEM model of the Mode
I and II edge cracks in the Cosserat elastic solid are presented and discussed. The calculation of the energy
release rate is performed. The obtained results could give a new rise to the modelling of the crack propagation
problems in the Cosserat elastic solids.

This article is organized as follows. In Section 2, the concepts of the linear elastic fracture mechanic appli-
cable to the crack modelling in the Cosserat materials are presented. In Section 3, the problem formulation and
the governing equations are given. In Section 4, the extended finite element method formulation and the discrete
equations are stated, and the numerical integration scheme is described. In Section 5, several numerical exam-
ples are presented. First two examples introduce the verification of the XFEM model and the convergence study
for the Mode I and II edge cracks in the Cosserat medium, respectively. In the third example, the calculation of
the energy release rate for the Mode I edge crack is presented and verified, and the comparison of the J-integral
for the Cosserat and classical elasticity problems is performed for varying coupling levels. The conclusions are
given in Section 6.

2. Modelling of fracture in Cosserat media

Crack tip behavior in classical linear elastic fracture mechanics is described by three crack opening modes,
modes I-I1I [42]. Due to the presence of the additional degrees of freedom (microrotation) in Cosserat theory,
crack tip behavior is described by three crack opening models plus three higher modes, bending modes V-
VI [43, 44]. These bending crack modes describe discontinuities in the microrotations and the moment stress
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concentrations at the crack tip. Fracture theory for Cosserat continua is still in its infancy. The J-integral (energy
release rate) for a crack in a Cosserat media has six components, compared to three for classical elasticity [45].
While in classical linear elastic fracture mechanics there is a well-established relationship between the energy
release rate and the stress intensity factors, J = K7?/E' + K%/E', no such relationship exists for a Cosserat
material. Furthermore, it is not yet clear what role modes IV-VI play in crack propagation, especially in mixed-
mode fracture. To the authors’ knowledge, there is not a single empirical crack propagation law, backed by
experimental data, for a Cosserat material based upon stress intensity factors and/or energy release rates. It
is also not clear how the crack propagation direction should be chosen. In classical fracture mechanics, crack
propagation direction is often chosen to be in the direction of the maximum circumferential stress which can be
related in two-dimensions to the stress intensity factors; in a Cosserat continuum, it has not yet been determined
what role the coupled stress (if any) should play in determining the crack propagation direction. Due to the
limits on current knowledge about the relationships governing crack propagation, we will restrict ourselves to
the simulation of static (non-propagating) cracks.

Diegele et al. [37] derived the form of the two-dimensional asymptotic fields for the displacements near a
crack tip in a Cosserat medium:

ugp . r I?] 1
(uz“’) =V 2 il + oG — 2] M
cos £[u(1 — 2v) — & + [ + (7 — 6v)] sin” &
—sin §[2(n + a)(1 — v) — [ + a(7 — 6v)] cos® §

)
0(7.3/2) B

. 2r L .0
P — /; v i(s sin -+ o), 2)

where P and u," are displacements at the crack tip and ¢ is the microrotation. Also, K; and L; are the Mode I
stress 1nten51ty factors associated with the stress and couple stress, respectively. The stress intensity factors for
the micropolar theory of elasticity K; and | K are distinct from the stress intensity factors of the classical theory
of elasticity K; and Kj;.The deviation of K; from K; varies from 14% to 26% depending on the « and y values
[37].

The degree of coupling of the displacements and rotations is governed by elastic constant . For « = 0 and
a —> oo the problem reduces to classical linear elasticity and to couple stress linear elasticity, respectively.
Typical values for a for real materials varies from o = 10~ "toa = 10° [16, 37].

It is noteworthy that K, and L; are not independent, and that the relationship between these quantities depends
upon the elastic constants. This is consistent with earlier investigations where the effect of the coupled stresses
on the crack tip stress concentration, energy release rate and mechanical behavior were discussed [42, 46].

2.1. Functions spanning the asymptotic solution

Careful manipulation of the asymptotic displacement solutions for an elastic crack in a Cosserat continuum (1)
shows that the crack tip displacements are asymptotically spanned by the same four (branch) functions which
span the Williams solutions of classical linear elastic fracture mechanics, i.e.

0 0 0 0
{Fu} = {ﬁsinz, /¥ cos > ﬁsinzﬁsine, /7 cos Eﬁsin@} , 3)

where (r, 0) are the local polar coordinates centred at the crack tip.
From direction observation of the asymptotic microrotation fields for an elastic crack in a Cosserat
continuum (2) it is clear that the first order term is spanned by:

(F?} = {ﬁsin%}. 4)
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Figure |. Body with external and internal boundaries subjected to loads.

The above sets of functions will be the basis for XFEM enrichment of the crack tip translation and
microrotation fields.

2.2. The J-integral for a Cosserat continuum

The Cosserat equivalent to the J-integral has been derived in numerous ways [43—45, 47]. Following the deriva-
tion presented by Lubarda and Markenscoff [45], the energy release rate (in the absence of the body forces and
body moments) for plane strain micropolar elasticity is:

Ji = /Pj,»njd[‘, (5)
r

where i and j are the Einstein indices; I" is the contour about the crack tip, and n is the normal to the contour I.
P is the energy momentum tensor [48]:

Py = Wé,j — o j — mpds, (6)

where W is elastic energy per unit volume; o;; and m;3 are the components of the stress and couple stress tensors,
respectively; u; ; and ¢3; are derivatives of the translations and rotations with respect to x; correspondingly. The
elastic energy is defined as:

1 1

where ¢;; and s7; are the components of the strain and curvature tensors, defined in the following section.

3. Problem formulation
Consider a linearly elastic domain € bounded by I' which contains a traction free crack I'., as shown in
Figure 1. Boundary I' consists of the sets I'y, I'y, I'; and I',,, where displacements u, microrotations ¢, sur-
face forces (tractions) t and surface couple forces (moments) M are prescribed respectively. Boundary sets have
the following properties:
r,nr,= @, I,U,=I,T,NTy=0, [,Uly=T.
In two dimensions, governing equilibrium equations are

V.o +b°=0, (8)

V-m+b"+6=0, 9)
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where o is the Cauchy stress, b’ is the external forces, m is the couple force (stress), b™ is the external moment,
and ¢ = 0y — o1,, which are subject to the following boundary conditions

o-n=tonl,, m-n=M onTly, (10)
u=u onT,, ¢ =¢ onTy, (11)
o-n,=0andm-n, =0onT,,, (12)

where n is the unit outward normal to I" and n., is the normal to the crack surface I'.,..
The translations u and the microrotations ¢ are taken to be the independent variables. The strain ¢ and the
curvature > have the following relations with » and ¢ :

& = Vu—a, (13)
»x=Vg, (14)

~ |0 —¢3
¢—[¢3 0]'

The linear constitutive equations for the coupled model are:

where

oc=D":¢, (15)
m=D?: x, (16)
where D* and D? are the elastic moduli tensors which for an isotropic material are defined as:
21+ A A 0 0
u A 2u+ A 0 0
D" = 0 0 n—o pu+a (17
0 0 nW+to p—o
and
o _ |V + K 0
D¥ = [ 0 v+ K] ’ (18)

where i, A, @, ¥y and k are material constants.

3.1. Weak form

Following the standard Galerkin procedure, the following weak form of the coupled boundary value problem
governing an elastic Cosserat medium can be derived.
Findu € U and ¢ € & such that:

/VW: odQ = /w b°dQ + /W'Ea’r‘, Yw € U, (19)
Q Q r
/Vv: mdQ2 = fv-b’"dQ + /W-Mdf‘, Vv € @y, (20)
Q Q r
where
U={ueH' u=uonT,, uisdiscontinuous on '}, 21)
®={p € H', u=¢onTly, ¢isdiscontinuous on I}, (22)
and
U={weH' w=0onT,} (23)
®)={veH', v=00nTy} (24)

where H'! is the corresponding Sobolev space.



6 Mathematics and Mechanics of Solids

Figure 2. Level set method for the crack positioning.

T

Figure 3. lllustration of a two dimensional domain containing a crack cr. The circled nodes are enriched by the Heaviside function,
and the squared nodes are enriched by the crack tip enrichment function.

4. The eXtended Finite Element Method

Consider a crack I';, passing through a discretized domain, as shown in Figure 2. Following Lakes [24], the
geometry of the crack is represented by two orthogonal level sets f(x) and g(x). The set f(x) is defined as
the signed distance to the crack surface, and so the crack surface is given by points on the zero level set, i.e.
f(x) = 0. g(x) is defined as the signed distance to the crack front, such that Vf - Vg = 0. The sign of g(x) is
chosen such that for all points on the crack surface g(x) > 0. The crack surface I';, is therefore defined at all
points where the following conditions are true: f(x) = 0 and g(x) > 0.

Following the XFEM methodology developed by Belytschko and Black [26] and Moes et al. [27], the FEM
displacement approximation is enriched by the Heaviside step function at nodes with supports cut by the crack
(denoted by circles in Figure 3) and by a set of tip functions which span the asymptotic crack tip fields for nodes
within a given domain about the crack tip (denoted by squares in Figure 3).

The XFEM approximation for the translation and microrotation for a crack in a linearly elastic Cosserat

continuum are
) = Y N@d + Y N OdH ) — Hf (x)]al + (25)
Ies J € Ser

M
+ ) Ne(®) D [Fu(r,0) — Fi(r, 0,)]blg, Vx € 2,

KeSip m=1
¢"(x) =Y N/} + > NI®)d]H(f(x)) — H(f (x,)]a7 + (26)
I1eS JeSe

+ Y NEF?(r,0) — F4(ry, 0,)]bY, Vx € €,
KESﬁP
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where S is the set of all nodes, S, is the set of nodes with support crossed by the crack surface, S, is the set
of nodes inside the predefined area around the crack tip, N; are the standard finite element shape functions for

the vector field (translations), NI¢ are the standard finite element shape functions for the microrotations, d; and
d}P are the standard FEM nodal translational and rotational degrees of freedom, a’ and a}" are the Heaviside

function enriched degrees of freedom, and b and b{, are the branch function enriched degrees of freedom.
The sets S, and S;;p, are mutually exclusive, as illustrated in Figure 3.
The nodes in Stip are identified using the level sets, i.e.

Sip = 1K | /2 (xk) + &7 (xk) < 1)y

where ry;, is predefined radius of a domain around the crack tip to be enriched with special tip enrichment
functions. The nodes in S, are those with supports is cut by I, and is not in Sy,.
The Heaviside step function is defined in the usual sense as

lifz=0

H(z) = 0 otherwise,

27

The enrichment functions F,, and F? are the basis functions (3) and (4) that span the first-order terms of the
near tip asymptotic translation and microrotation fields, respectively. As discussed in Section 2, the asymptotic
crack tip displacements for a Cosserat continuum are spanned by the same set of functions as the asymptotic
crack tip solutions for classical elasticity. Therefore the crack tip displacements will be enriched by the standard
XFEM branch functions. The asymptotic crack tip microrotation solution is spanned by a single function (4),
which is used to enrich the microrotations in the vicinity of the crack tip.

4.1. Numerical integration

In order to achieve high quality results and optimal convergence rates, accurate numerical integration of the
discrete equations is required since the gradient of the tip enrichment functions are singular at the crack tip
and the Heaviside enrichment function is discontinuous across the crack surface [49-52]. Integration over the
un-enriched elements, Heaviside enriched elements and the crack tip element is done by second-order Gauss
quadrature rules, element subdivision combined with the second-order Gauss quadrature [27], and element
subdivision combined with 15th-order almost polar integration Gauss quadrature [50]. Lastly, for the elements
that are enriched by the branch functions but do not contain the crack tip, an 8th-order Gauss quadrature rule is
used.

According to Khoei et al. [41], several aspects are crucial in order to obtain accurate results and optimal
convergence rates in the XFEM modelling:

1. The proper integration rules in the elements cut by a crack and containing a crack tip should be considered.
The geometrical enrichment is crucial to obtain optimal convergence rates. It allows us to get the optimal
convergence rate in oppose to the topological enrichment, when only particular number of nodes layers
are enriched.

3. Blending elements allow for the smooth transition between enriched and un-enriched subdomains by using
the special weight function with compact support.

4.2. Blending

Another important issue for the accuracy of the solution in the XFEM is the blending elements [52, 54, 55]. The
blending elements are those that have some of the nodes enriched and some of them un-enriched. The standard
enrichment can add parasitic terms to the approximation space of the blending elements, i.e. the reproducing
property of the partition of unity is lost. No difficulty occurs in the blending of the shifted Heaviside enrichment,
because the enrichment is only considered for the elements cut by the crack. Errors due to blending of the
branch function for this problem are negligible and do not affect the convergence rate of the XFEM. Therefore,
no blending treatment has been adopted in this work.



8 Mathematics and Mechanics of Solids

T2
Uz
f f f
Ty r
0
L —_—
[0 T
T O O N
T
L

Figure 4. The domain with an edge crack under tension.

4.3. Crack tip enrichment domain

To obtain optimal convergence rates with the XFEM, the tip enrichment domain around the crack tip must be
a constant (i.e. independent of the element size); this enrichment scheme is called the geometrical enrichment
[49, 50]. This enrichment scheme is used in all convergence studies presented in this article.

5. Examples

In this section, three numerical examples are presented to demonstrate the XFEM simulation of the cracks in
the Cosserat elastic solid. The first and second examples introduce the solutions of the Mode I and II edge crack
problems, respectively. The patch tests and the convergence properties of the method are demonstrated for the
both cases. The third example presents the numerical calculation of the energy release rate for the edge crack
problem under the tension loading in the Cosserat elastic material. The J-integral is calculated for the several
crack sizes, considering the varying Cosserat elastic parameter, and compared to the J-integral of the classical
elasticity.

5.1. Mode | edge crack

A square plate of size L by L is considered with an edge crack of length a as shown in Figure 4, where L = 100
mm and ¢ = L/2. The domain is fixed at the bottom, and the displacement u#;, = 5 mm in the x; direction
is prescribed along the top edge. The microrotations ¢ = 0 are prescribed along the bottom and top edges of
the domain, which allows for the microrotations to emerge around the crack tip. The crack surface is traction-
free. The plain strain condition is assumed. The material properties are: Young’s modulus £ = 10,000 MPa,
Poisson’s ratio v=0.3, A = 5796 N/mm?, the elastic constants ;. = 3846 N/mm?, k = 81 N/mm?, y = 1000
N, B = 0. As mentioned @ = 0 reduces the problem to the one of the classical elasticity. For this and the
following examples, the values of & were chosen to be within the range [10~!, 10*] N/mm? to be relevant with
the provisions of the Cosserat elasticity. Particularly for the patch tests and the convergence studies in the first
and second examples, a was taken to be 103 N/mm?.

In order to perform the convergence study for the Mode I and 11 edge crack problems, the normalized energy
norm is employed as a convergence criterion. The employed mesh sizes are 11 x 11,21 x 21, 31 x 31,41 x
41, 51 x 51,71 x 71 elements.

The energy norm is defined as

| ttex — un llz= (0-5f(8ex — &) D"(6ex — En)dRQ + 0-5f(%ex — 52) D? (gex — En)dQ'?, (28)
Q Q

where u, ¢ and 3¢ with the subscript “ex” are the exact solutions of the displacement, strain and curvature, and
with the superscript “h” are the corresponding numerical solutions.
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Figure 5. Convergence study for the Mode | edge crack problem.

The energy norm is normalized as:
| uex — un £
“ Uex ”E

The solution of the addressed Mode I edge crack problem by the FEM with the mesh of 40,000 elements was
taken to be the exact solution. Two types of the tip enrichment zones were considered for the convergence study
of the XFEM solution: the topological tip enrichment of the one layer of nodes around the crack tip and the
geometrical tip enrichment of the size L/10. Figure 5 shows three convergence curves and the corresponding
convergence rates for the Mode I edge crack solution in the Cosserat medium.

As expected, the optimal convergence rate of approximately 1 in the energy norm for the XFEM with geo-
metrical enrichment is obtained. The suboptimal convergence rates of (.5 in energy norm are obtained for the
XFEM solutions with topological tip enrichment and for the FEM solution. The geometrical tip enrichment of
the size L/10 was found to be the optimal choice between the accuracy of the solution and the computational
time.

29

5.2. Mode Il edge crack

In the second example, a Mode II edge crack problem is studied. Consider a square plate of size L x L with
an edge crack of length a, as shown in Figure 6. The length of the plate is L = 100 mm, and the crack size is
a = L/2. The domain is fixed at the bottom. The displacement #; = 5 mm in x; direction is prescribed along
the top edge. The microrotations are prescribed to be ¢ = 0 along the bottom and top edges of the domain. The
crack surface is traction free. The plain strain condition is assumed. The material constants are taken to be the
same as in the previous example of the Mode I edge crack.

The error estimation procedure, described in the first example, is performed for the convergence study for
the Mode 1II edge crack problem (Figure 7). Again, the optimal convergence rate of 1 in energy norm was
obtained for the XFEM solution with the geometrical tip enrichment, and the suboptimal convergence rate of
approximately 0.5 in energy norm was obtained for the XFEM solution with the topological tip enrichment
and the FEM solution. The slight decrease in the convergence rates from the optimal values is observed, but
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Figure 6. The domain with an edge crack under shear.
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Figure 7. Convergence study for the Mode Il edge crack problem.

expected. In order to get higher convergence rates, the very fine mesh should be considered for the exact FEM
solution. Although, the computational time will increase drastically.

Concluding, the results of the convergence studies for the cracks of Modes I and II in the Cosserat medium
allows us to rely on the developed XFEM model with confidence.

5.3. J-integral computation

5.3.1. Verification The calculation of the J-integral for the Cosserat elastic solid is performed using the con-
tour integral (5). The most important concept of the contour integral—path-independence under the static
condition—is satisfied in our calculations. Considering the contour as a circle, the obtained values of the J-
integral are constant for the radii greater than W /10 with its centre at the crack tip, where ¥ is the width of
the domain. Therefore, for the following calculations, the radius of the contour integral is assumed to be W /2.2
to capture the cracks of different sizes. The J-integral is zero on the contour without the discontinuity, which is
satisfied by the presented numerical calculation. The number of sectors is taken to be 1000, based on the test of
the J-integral invariance versus the number of sectors on the contour. And finally, the J-integral converges with
the mesh refinement, as expected.



Kapiturova et al. H

T2

T

Figure 8. The domain with an edge crack under tension loading.

In order to verify the calculation of the J-integral, two specific tests were proposed. In the first test, the
Cosserat problem was fully reduced to the classical case and the calculated J-integral was compared to the one
of the corresponding analytical solution of the classical J-integral. Assuming the plane strain condition, the
classical J-integral is calculated as

Ji =KX —Vv?)/E.

For the test, the Mode I edge crack in the domain with the prescribed analytical solution on the boundaries
[49] was considered. The numerical values of the calculated J-integral was found to be less than 1% different
from the analytical values.

For the second test, Mode I and II edge crack were considered in the Cosserat elastic medium with @ = 1000
N/mm?. The J-integral can be analytically calculated as the change in the energy of the domain due to the crack
length increment, i.e AU/Aa. Considering the mesh of 101 x 101 elements with the crack increment Aa = 3,
for the Mode I crack case the deviation from the analytical value was of 4%, and for the Mode II crack case
the deviation was of 5%. Taking into account the fact that this approximation is valid for the crack increment
approaching zero Aa — 0, the obtained results are accurate enough to consider the calculation of the J-integral
in the Cosserat elastic medium to be correct.

The obtained results verify the most important characteristics of the contour J-integral, which allow us to
proceed to the study of the energy release rate for the Cosserat medium.

5.4. Comparison of the J-integral for the Cosserat and classical elastic solids

Consider the domain illustrated in Figure 8. A plate of height L and width W contains an edge crack of length
a, where L/W =2, W = 100mm, and «a has varying value. The bottom edge of the domain is fixed. The stress
o = 3 MPa is applied at the top edge of the domain. The Young’s modulus is £ = 10,000 MPa, the Poisson’s
ratio is v = 0.3, and the material constants are: A = 5796 N/mm?, ;1 = 3846 N/mm?, i = 81 N/mm?, y = 1000
Nand 8 =0.

In this example, the effect of the crack size on the J-integral is analyzed. Several cases are considered
depending on the values of the Cosserat elastic constant, which influences the level of assymetricity of the
stress and strain tensors. For this study, parameter « is chosen to be 107!, 10, 103, 10*, which is attributed to
the Cosserat elastic theory. The mesh size is 101 x 101 elements. The elements to be enriched by the asymptotic
field are chosen within the geometrical tip enrichment zone of size W /10.

The numerically calculated J-integral for the Cosserat elasticity is compared to the one of the classical
elasticity. The exact stress intensity factor solution of the addressed problem for the classical elasticity is given
by Pasternak et al. [44]:

K;=Coiar, 30)

where C is a geometry correction factor.
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Figure 9. The J-integral versus the crack length.
For a/W < 0.6, the factor C is defined as:
a a\? a3 a\4
C=1122-0231 (W) +10.55 (W) — 2172 <W> +30.382 (V—V) . 31)

The reference J-integral of the classical elasticity for the Mode I crack under the plane strain condition is
related to the stress intensity factors as follows:

KZ
Jref = fl(l —?). (32)

Figure 9 summarizes the J-integral calculations versus the crack size for the Cosserat problem, parametrized
by «, and the reference classical J-integral. Figure 10 illustrates the normalized J-integral of the Cosserat
elasticity, which is calculated as:

b — 7|

Jref ’ 100%’ (33)
1

where J! is the J-integral for the Cosserat problem and J}ef is the J-integral for the corresponding classical
elasticity problem (32).

It could be seen that the behavior of the J-integral for the Cosserat elasticity is similar to that of the classical
elasticity for the « € [107!, 10?] N/mm?. However, once the value of the parameter « has passed 10> N/mm?,
we can see the difference in the values for the J-integrals already at the level of 5% and further with the increase
of o one can observe a very significant difference in the values of the J-integrals for Cosserat and the classical
theory, especially when the value of « achieves the magnitude of 10*N/mm?. At this stage the value of the
J-integral computed under the provisions of the micropolar theory can be up to 40% higher than the results for
the J-integral computed under the classical assumptions.

The difference of up to 40 % between the values of the J-integrals when the material constant o passes
through the magnitude of 10*N/mm? can be attributed to the fact that at this range of o the micropolar prop-
erties of the material are the strongest. Lakes provides the table of values of the micropolar elastic constants
corresponding to the materials with strong micropolar properties [16]. He introduces the parameter

B+y
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Figure 10. The normalized J-integral with respect to the crack length.

which is called the polar ratio. 8, y and « from (34) are micropolar elastic constants. The measured value for W
in Lakes’s work [16] varies from 0 to 1.5 for such materials as foams, graphite and human bones. The interval
from 0 to 1.5 for W corresponds to the interval from 10° to 103 N/mm? for .. Therefore, as expected on the basis
of the physical assumptions, at these values of the parameter o we indeed observe the largest difference in the
values of the J-integrals. The results obtained herein are in good agreement obtained for stress concentrations
around a crack in micropolar elasticity obtained by Shmoylova et al. [18], for torsion of micropolar bars obtained
by Potapenko and Shmoylova [19] and by Potapenko et al. [56]. In addition, Mindlin [57], Weitsmann [58]
and Hartranft and Sih [59] obtained approximately the same difference in the values of stresses between the
approach engaging the provisions of Cosserat elasticity and the classical approach when they considered stress
concentrations around rigid inclusions in micropolar elasticity.

Based on the results of these studies, the J-integral presented by Atkinson and Leppington [47] is valid for
the calculations of the energy release rate in the Cosserat medium. In general, the higher values of J-integral are
obtained for the problems with the microrotations involved than the J-integral of the classical elasticity. This
means that, under the same boundary conditions and loading mode, a crack grows faster in the Cosserat elastic
solid than in the classical elastic solid. For the higher values of the Cosserat parameter, the crack will grow up
to 40% faster in the Cosserat material.

6. Conclusions

The simulation of the edge cracks of Modes I and II in a Cosserat medium using the XFEM was presented.
The numerical calculation of the path-independent J-integral for the Cosserat elastic medium was introduced.
The Cosserat J-integral dependence on the crack size was studied for the parameter o from the range from 107!
to 10°N/mm? which is known to affect the coupling level for the Cosserat elasticity, and was compared to the
classical J-integral for the analogous problem. It was discovered that values of the J-integral for the Cosserat
medium can be up to 40% higher than those for the classical elastic medium for the values of « corresponding to
such materials as human bones and graphite. The results obtained herein are consistent with the previous results
published elsewhere [18, 19, 56-59]. This investigation gives more evidence that material microstructure really
does have a significant effect on the elastic response of materials.

Based on the results obtained from the convergence studies, it is recommended that the proper branch func-
tions for the translational and rotational degrees of freedom and geometrical tip enrichment zone are considered
for the modelling of cracks in Cosserat solids in order to obtain the optimal convergence rates for both Mode
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I and II cracks. For the J-integral calculation the elastic constants should be carefully measured and evaluated
while modelling the cracks in a Cosserat elastic media, as they affect the fracture behavior of the material.
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