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1 Introduction

This Chapter describes the concurrent coupling of atomistic methods with continuum mechanics. Such models are use-
ful in the study of phenomena such as fracture and dislocation dynamics, where molecular mechanics and/or quantum
mechanics models are required for phenomena such as bond breaking, but the relevant configuration is far too large
to permit a completely atomic description. To make such problems computationally tractable, the quantum/atomistic
model must be limited to small clusters of atoms in the vicinity of a domain of interest where such high resolution
models are necessary and a continuum method should be used for the rest of the domain, see e.g. Khare et al. [1, 2]. In
the remainder of the domain, where no bond breaking occurs, the continuum description permits much less expensive
computations with sufficient accuracy to describe the behavior of the system.

This chapter describes two types of concurrent models

1. mechanical equilibrium models

2. molecular dynamics models

Equilibrium models are used to determine the energy landscape of a system, i.e. the surface that gives the energy
at 0 K. They provide valuable information about the system such as energy differences due to configurational changes,
activation barriers, etc. The adjectivemechanicalshould be carefully noted. Equilibrium is often used in molecular
mechanics to describe thermodynamic equilibrium in atomistic systems, but thermodynamic equilibrium pertains only
to molecular dynamics and is distinct from mechanical equilibrium. Mechanical equilibrium can be thought of as
molecular statics, in contrast to molecular dynamics.

We will describe five concurrent coupling methods

1. direct and master-slave coupling

2. the ONIOM method

3. the bridging domain method

4. the quasicontinuum method

5. the bridging scale method

Although this list is not comprehensive, it provides a birdseye view of concurrent methods. We will first give a
brief review of the literature. This is followed by a taxonomy of multiscale methods, so that the place of concurrent
methods can be seen. Several concurrent methods are then described. Similarities and differences of the methods
will be described, along with their advantages and disadvantages. The description is by no means comprehensive and
emphasizes the bridging domain method.

Among the first atomistic/continuum models are those in Baskes et al.[3] and Mullins and Dokainish [4]. The
latter studied a plane crack in alpha iron. In their model, the finite element mesh was coarser than the lattice constant
(note: the lattice constant is the distance between nuclei). The displacements of the atoms not coincident with finite
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element nodes were prescribed by using the finite element interpolation (the term nuclei is more precise since atoms
include the electrons, but we will use both interchangeably). It can be said that the atoms were slaved to the finite
element mesh. This procedure is often called a master-slave approach in the finite element literature, see Belytschko
et al. [5], and we will use this nomenclature here and describe the method.

Kohlhoff et al. [6] similarly coupled finite elements with an atomistic model in a method called FEAt, but they used
a nonlocal elasticity theory for the continuum in the overlapping domain to link with the nonlocal lattice theories. The
model was applied to the cleavage fracture of two b.c.c. crystalline materials, tungsten and iron. The FEAt method
introduces the concept of a “pad" which overlaps the finite element model. However, the energy of the underlying
finite element model is not included in the total energy. Its purpose is to provide the displacements of the pad atoms.
At the atomistic/finite element interface, the nodes and atoms are coincident to ensure the compatibility between the
two models.

The quasicontinuum method (QC) (Tadmor, Ortiz and Phillips, [8]) is aimed at making the transition to atomistic
more seamless. The entire model is viewed as an atomistic model; finite element interpolation and the Cauchy-Born
rule are used to eliminate atoms where atomic resolution is not needed. Accurate computation of the energy in the
atomisticsubdomain requires that the atoms be coincident with the finite element nodes. Representative atoms are
selected to define a subspace in order to eliminate the unnecessary atomistic degrees of freedom, and the mechanical
variables, e.g. displacement and forces, of the atoms inside the elements of the subspace are calculated using finite ele-
ment interpolation. This almost bypasses the distinction between atomistic and continuum domains. Ghost forces due
to the mismatch in the transition zone were later taken care of by the developers of the method [9]. The convergence,
accuracy and the effect of tolerances were evaluated in [10]. Several special purpose variants of the method have been
developed. For example, Knap and Ortiz [10] formulated a cluster summation rule for the QC method, which made
it possible to apply the QC model to more complex problems. Rudd and Broughton [11] developed a similar method,
called the coarse-grained molecular dynamics (CGMD) method. The coincidence of the atoms and nodes was required
and the equations of motion were directly obtained from a statistical coarse graining procedure.

Shilkrot et al. [7] developed the coupled atomistic/discrete-dislocation (CADD) method, which combines the QC
method with continuum defect models. It added the capability to pass dislocations between the atomistic and the
continuum model. Closed form solutions and superposition methods were used for this purpose, and thepad atoms
were used in CAAD method too, but they were not slaved to the continuum nodes. The contribution of thepadwas to
eliminate the free surface when dealing with the atomistic model.

Considerable interest in multiscale methods has been aroused by the pioneering work of Abraham et al.[12] and
Broughton et al.[13], in which a quantum model was added in the bond-breaking subdomain. Their method is called
macroscopic-atomistic-ab initio dynamics (MAAD). In their atomistic/continuum coupling, the two models are over-
lapped and the contribution of each model to the total Hamiltonian is taken to be the average of the two Hamiltonians
(i.e. the energies). The coupling procedure is only described briefly and appears to be rather ad hoc. They called the
overlapping domain thehandshakedomain, and this name has become widely used. In their models, the finite element
size at the atomistic/continuum interface was the same as the lattice constant.

Recently, several methods have been developed for equilibrium solutions and dynamics that do not require coin-
cident nodes and atoms. Belytschko and Xiao [22] have developed an overlapping domain decomposition approach,
called the bridging domain method, in which the energies of the atomistic and continuum models are scaled in the
overlapping domain. Compatibility between the two models is enforced by Lagrange multipliers. A similar method
was developed for molecular dynamics in Xiao and Belytschko [21]. A comparison of two types of coupling with
bridging domain methods,L2 andH1 coupling, is given by Guidault and Belytschko [23]. Fish et al. [24] have
developed a similar method in which the forces instead of the energies are scaled, which permits the continuum to be
an irreversible material.

Wagner and Liu [14] developed a bridging scale method (BSM) for coupling molecular dynamics with continuum
mechanics. In their method, the continuum and atomistic models are initially applied on the entire domain. Then the
fine scale degrees of freedom are eliminated from the coarse scale domain by a time history kernel, i.e. a Green’s
function. In the fine scale region a projection of the fine scale solution onto the coarse scale model is used to link the
models. A Laplace transform was applied to derive the time history kernel function which corresponds to the missing
degrees of freedom in the coarse scale region. Park et al. [37] extended the method to two dimensions by computing
the kernel function numerically. The performance of BSM is studied by Farrell et al. [16].

In all concurrent coupling methods for dynamics, a general issue is the spurious reflection of elastic waves at the
fine scale domain boundary due to the difference in the cutoff frequencies of the models. Several silent boundary
conditions have been developed to solve this problem. Cai et al. [17] introduced a time-dependent memory kernel
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to the equations of motion in the fine scale. It gave the exact boundary conditions for the microscale simulation but
was generally computationally expensive. E and Huang [18] proposed a matching boundary condition by optimizing
the reflection term which was added to the displacement field. This type of matching condition is only valid for zero
temperature systems. The time history kernel of the bridging scale method [14] serves a similar purpose. In the
bridging domain method [21], a diagonalized constraint matrix was used to eliminate such reflections. To and Li [19]
applied a perfectly matched layer [20] to the overlapping region to absorb high frequency waves leaving the atomistic
domain.

2 Classification of Methods

Before describing concurrent methods in more detail, we will first give an overview of different multiscale methods.
Multiscale methods are often classified as either hierarchical or concurrent. But this classification is too simple to
reflect the subtleties of different variants of multiscale analysis methods. Table 1 gives a classification of multiscale
methods, and a schematic of the various methods is shown in Fig. 1.

In Fig. 1 the fine-scale models are on the left and the coarse scale model on the right. The essence of the procedures
is the same for any scales that are linked, whether it is quantum to continuum, microstructure of a composite to an
engineering structure, or an atomistic (molecular) model to a continuum. Furthermore, coarse-graining is not restricted
to link only two scales: it is feasible to couple three, four or even more scales.

Tab. 1: Classification of multiscale methods illustrated for Atomistic/Continuum
Multiscale techniques Information transfer

Hierarchical Ωatomic → Ωcontinuum

Hybrid hierarchical-semiconcurrentΩatomic → Ωcontinuum if E ∈ EI

Ωatomic ↔ Ωcontinuum if E /∈ EI

Semiconcurrent Ωatomic ↔ Ωcontinuum

Concurrent Ωatomic ⇔ Ωcontinuum

(E =input,EI =domain of input,→,↔: weak coupling,⇔: strong coupling)

Hierarchical methods are the most widely used and computationally the most efficient, see Fig.1a. In these meth-
ods, the response of a representative volume element at the fine scale is first computed over a range of expected inputs
E , and from these a stress-strain law is extracted. The stress-strain law can be a constitutive equations, with parameters
determined by the fine scale solutions, a numerical data base, or a neutral network based law. For linear response, this
process can be simplified since there is a robust theory of homogenization whereby linear constants can be effectively
extracted, sometimes even without recourse to numerical micromodels.
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(a) Hierarchical

(c) Semi-concurrent

(b) Concurrent

(d) Hybrid
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Fig. 1: Schematic of hierarchical, concurrent, semiconcurrent and hybrid hierarchical-semiconcurrent coupling meth-
ods.

For severely nonlinear problems, hierarchical models become more problematical, particularly if the fine scale
response is path dependent. It should be noted that when failure occurs, in many circumstances hierarchical models
are invalid and cannot be used, see Song et al. [15].

Concurrent methods are those in which the fine scale model is embedded in the coarse scale model and is directly
and intimately coupled to it, as shown in Fig 1b. Both compatibility and momentum balance are enforced across the
interface. For example, in Khare et al. [1, 2] electronic structure models solved by quantum mechanics (in the bond
breaking subdomain) are linked to atomistic and continuum models. Similarly the MADD method [12], the BSM [14]
and the bridging domain method [22] are concurrent. Such models are quite effective when the subdomain where a
higher order theory is required is small compared to the domain of the problem. In Khare et al. [1, 2], the QM model,
which is the highest order theory, was restricted to the area around a slit where bond breaking was likely to occur;
some of these models are described in Section 5. In the study of fracture, fine scale models can be inserted inhot spots
where stresses become large. Thesehot spotscan be identified on the fly or by a previous run.

Semiconcurrent methods are a class of methods in which a fine scale model is calculated concurrently with a
coarser-grained model, as shown in Fig. 1c. They are distinguished from concurrent methods by the fact that the
fine scale model is not coupled directly with the coarse-grained model; compatibility and momentum balance are
only satisfied approximately. Examples of such methods are the FE2 methods of Feyel and Chaboche [28], and their
extensions to gradient models in Kouznetsova et al. [29]. As discussed in [28], the reduction in computational effort
from a fully concurrent approach is not great. The appeal of these methods lies more in the fact that the fine scale and
coarse scale models can be run by separate software and the avoidance of numerical problems associated with rapid
changes in element size (the lattice constant can be viewed as an element size). These difficulties include
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• Ill-conditioning of the equilibrium equations

• Spurious reflections off the interface between fine-grain and coarse-grain models

The fourth type of methods are hybrid hierarchical/semiconcurrent methods, Fig.1d. In these methods, a hier-
archical approach is used as long as the requested information is available. When the requested information is not
available, i.e. when the strain is outside the strain domainE that has been exercised by the fine-scale model, a direct
computation is then invoked. If the fine-scale response is history dependent, it would be necessary to reconstruct at
least an approximate history.

3 Mechanical Equilibrium Methods

In this section we describe several concurrent methods for mechanical equilibrium problems, often called 0 K meth-
ods; we will often simply use the term equilibrium methods. In this description and subsequent descriptions of the
method, we denote the complete domain in the initial configuration byΩ0 and its boundaries byΓ0; Γ0 consists of
traction boundariesΓt

0 and the displacement boundariesΓu
0 . The domain is subdivided into the subdomains treated

by continuum mechanics (CM),ΩC
0 , by molecular mechanics (MM), i.e. by atomistic methods,ΩM

0 , and by quantum
mechanics (QM),ΩQ

0 ; ΩM
0 ∪ ΩQ

0 is the domain encompassed by the atoms of the model. The intersection ofΩC
0 and

ΩM
0 is denoted byΩMC

0 and is often called the handshake domain;Γα
0 denotes the edges of the continuum domain.

The position of atomsI in the reference configuration, or more precisely the nuclei of the atomI, is given byXI and
its displacements bydI . Sometimes we use a superscriptA to indicate molecular mechanics related variables instead
of M .

3.1 Direct and Master-Slave Coupling

A common method of coupling molecular mechanics with continuum mechanics is what we call master-slave coupling.
It can also be used for QM/MM and QM/CM coupling. This is a well-known method in finite elements (see [5], p 168)
based on energy. In one dimension, a model with direct coupling is illustrated in Fig. 2. As indicated by the dashed
lines, the atoms and coincident nodes are constrained to move together. In master-slave coupling, the nodes need not
be coincident. We will describe this more general coupling in more detail.

EM

EC

atoms

nodes

virtual atoms

Fig. 2: Schematic of direct coupling method

The total energy of the coupled system is

E
(
u,dM

)
= EC (u) + EM

(
dM

)− Eext (1)

whereEM andEC are the energies of the molecular and continuum subdomains respectively, andEext is the work
of external forces. The vectoru is the displacement field in the continuum anddM is a vector of discrete molecular
displacements. The continuum energy is given by

EC (u) =
∫

ΩC
0

wC (F) dΩC
0 (2)

wherewC is the strain energy density andF is the deformation gradient:F = I + ∂u
∂X .

If a finite element method is used for the continuum, then the displacement field is given by

u (X) =
∑

I∈S
NI (X)uI (3)
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whereNI (X) are the shape functions expressed as functions of the material coordinatesX, uI are the nodal displace-
ments andS is the set of all FEM nodes.

The potential energy of the bondI − J is denoted bywM
IJ = wM (xI ,xJ), wherexI = XI + dI is the current

position of atomI. The total potential energy of the molecular mechanics subdomainΩM is then

EM =
1
2

∑

I,J∈M
wM

IJ (4)

whereM is a set of atoms in the atomistic model.
Master-slave methods can be classified as follows:

• Methods with atoms coincident with continuum nodes on the interface, Fig. 3.

• Methods where atoms are not coincident with nodes on the interface, Fig 4.

An illustration of a model with coincident atoms/nodes is shown in Fig. 3. As can be seen, to reduce the nodal
spacing to the lattice constant, it is necessary to construct rather complicated meshes. This is awkward in two dimen-
sions and can be a severe obstacle in three dimensions.

atoms

virtual atoms

nodes

Fig. 3: Master-slave model with nuclei coincident with nodes at the coupling interface

atoms

virtual atoms

nodes

Fig. 4: Master-slave model with nuclei not coincident with nodes at the coupling interface

In models with coincident coupling, the atomistic and nodal displacements at the interface are taken to be equal.
Therefore, we define a common vectord = {dI}n

I=1, wheren is the number of independent nodes and atoms.
Compatibility is enforced by letting

dI =





dM
I XI ∈ ΩM

0

dM
I = uI XI ∈ ΩM

0 ∪ ΩC
0

uI XI ∈ ΩC
0

(5)

The discretized energy of the model can then be written as

E (d) = EC (d) + EM (d)− Eext (6)



3 Mechanical Equilibrium Methods 7

Equilibrium configurations correspond to the stationary points of (6), i.e the configurations where the derivatives
with respect todI vanish. This gives

0 =
∂EM

∂dI
+

∂EC

∂dI
− ∂Eext

∂dI
(7)

These derivatives correspond to nodal and atomistic forces, so the above can be written as

0 = fM
I + fC

I − fext
I (8)

where from (2) and (3) it follows that

fC
I =

∫

ΩC
0

∂wC (F)
∂F

∂F
∂dI

dΩC
0 =

∫

ΩC
0

P
∂NI

∂X
dΩC

0 (9)

whereP is the first Piola-Kirchhoff stress.
The position of atoms which lie insideΩC

0 , denoted as virtual atoms in Fig.3, are obtained by the finite element
interpolation (3),

dM
J =

∑

I∈S
NI (XJ )uI (10)

Models with noncoincident nodes and atoms at the interface, as shown in Fig.4, are treated by master-slave methods
by letting the atoms be slaves. The displacement of the atoms on the interface are obtained by (10). The governing
equations are identical to those described for coincident coupling. However, the forces on the slave atoms are added
to the continuum nodes by the usual master-slave procedure. This can be seen by rederiving (6) for nodes on the
interface:

∂EM

∂uI
=

∑

J

∂EM

∂dM
J

∂dM
J

∂uI
= fM

I NJ (XI) (11)

where the last step follows from the definition of nodal forces and (10)

3.2 ONIOM Method

In the ONIOM method, first developed by Svensson et al. [32], the higher order method is superimposed on the lower
order method on the subdomain in which higher accuracy is needed. For QM/MM coupling, the ONIOM method is
basically a direct coupling method. The QM/CM coupling we describe is a master-slave method. Its advantage lies in
the ease with which it can be used to couple models that reside in two different software systems. Since the QM and
MM methods that are needed for a particular model are often in different software packages, this often proves useful.
The ONIOM scheme is illustrated in one dimension in Fig. 5 for a quantum/molecular model. As can be seen, the
model consists of three layers in the subdomain where the higher order theory is used:

• The layerQ modeled by the higher order theory, in this case an electronic structure method (quantum mechanics)

• The bottom layerM which extends throughout the entire computational domain, in this case an atomistic model

• The overlaid (middle) layerMQ which cancels the energy of the lower order method (molecular mechanics) on
ΩQ



3 Mechanical Equilibrium Methods 8

EQ

EMQ

EM

+

+

-

link atoms

Q

M

MQ

dangling bond

Fig. 5: Schematic of ONIOM method for quantum/molecular coupling. The signs indicate the sign of the corre-
sponding terms in energy (force) expression; the vertical lines indicate that the atoms in the three models are
constrained to move identically.

The middle layer is called fictitious, but bothM andMQ are fictitious onΩQ. They are only retained to simplify the
coupling.

In the ONIOM method, the displacements of corresponding nuclei in difference layers are equal (except the link
atoms) and will here be denoted bydI .

The energy of the system as treated by ONIOM is given by

E (αd) = EQ (αd) + EM (d)− EMQ (d)− Eext(d) (12)

as is readily apparent from Fig. 5. Whered is the matrix of atomic displacements andα the electronic configuration
parameters. The equilibrium equations for a system with external loadsfext

I on atomI is then

0 =
∂E

∂dI
=

∂EQ

∂dI
+

∂EM

∂dI
− ∂EMQ

∂dI
− fext

I (13)

This equation can be written as

0 = fQ
I + fM

I − fMQ
I − fext

I = f int
I − fext

I (14)

Generally, in the ONIOM coupling of QM/MM models, the atomic displacementsdI are obtained by minimizing
the total energy with respect to the parameters of the electronic structureα anddI . This involves two nested iterative
procedures. First the energy must be minimized with respect to the parameters of the electronic structure. In the outer
loop, the positions of the nuclei are updated to bring them towards equilibrium.

An interesting aspect of ONIOM is that the quality of the coarse scale model underlying the fragment has no
effect on the results. Therefore, models that are quite inaccurate for the phenomena under study can be used. For
example, in the study of fracture with MM/QM ONIOM schemes, the MM model can be quite inaccurate near the
fracture strain. However, it is crucial that in the range of behavior that occurs at the QM/MM interface, the models
are matched carefully. For example, in Khare et al. [1], it was reported that a standard Brenner MM model for carbon
coupled with either a DFT or PM3 quantum model often fractured at the interface. Therefore, they proposed a scaling
of the MM potential to provide better results. A major source of error in these models is the “dangling" bonds at the
boundary of the model (in Fig. 5 the two ends of the model). Electronic structure calculations can be very inaccurate
at nonperiodic boundaries when the QM model is terminated, especially for covalent bonds. One common remedy is
to cap the dangling bonds with hydrogen atoms; these are called link atoms.

The ONIOM scheme can also be used for coupling an atomistic (molecular) or quantum model with a finite element
model of a continuum. This procedure is schematically shown in Fig. 6 for a MM/CM model; the model consists of
three layers

1. the low order model (in this case the continuum model)

2. a fictitious continuum model that overlays the fragment to be modeled by atomistics

3. the atomistic (molecular) model at the top in Fig. 6



3 Mechanical Equilibrium Methods 9

EM

ECM

EC

link atoms
D1

atoms

nodes
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8
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Fig. 6: ONIOM scheme for continuum (C)- molecular (M) coupling.

In this type of application, the nodal spacing of the continuum model need not coincide with the atomic spacing
(lattice constant). Instead, the atomistic displacements can be computed by using the finite element interpolation. This
is of advantage since the finite element continuum model need not be refined to the atomistic lattice at the coupling
interface. Of course, if the disparity between the lattice constant and element size is too large, substantial error can be
engendered.

The formulation framework is identical to that for QM/MM coupling by ONIOM. The energy of the contin-
uum/atomistic system is

E (d) = EC (d) + EM (d)− ECM (d)− Eext(d) (15)

where the energies are associated with the models as shown in Fig. 6 andd is a vector of nodal displacements. For
example, for the model in Fig. 6dT = [d1, d2, ..., d9].

The equations of equilibrium are then

0 =
∂E

∂dI
=

∂EC

∂dI
+

∂EM

∂dI
− ∂ECM

∂dI
− fext

I

We note that as before, the derivatives with respect to the nodal displacements are nodal forces, so

0 = fC
I + fM

I − fCM
I − fext

I (16)

As in QM/MM coupling, the major difficulty occurs on the edge of the atomistic domain, since the behavior of the
outermost bonds (the far left and far right bonds in Fig. 5) can be polluted by incorrect placement of the link atoms
D1 andD2.

3.3 Bridging Domain Method

In the following, we describe the bridging domain method for coupling continuum models with molecular models in
mechanical equilibrium problems. The bridging domain method is in essence an overlapping domain decomposition
scheme where compatibility in the overlapping (handshaking) domain is enforced by Lagrange Multipliers. The
advantage of this method is that the atomic nuclei need not be coincident with the nodes of the continuum mesh.
Furthermore, the method is generally used with a linear scaling of the energies in the handshaking domain, with the
atomistic (continuum) energy dominant near the purely atomistic (continuum) domain. This enables the method to
alleviate the error that arise from dropping atomistic energies due to far field atoms and provides a gradual transition
from the molecular model to the continuum model. An example of a concurrent bridging domain model of graphene
is shown in Fig. 7.
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0

MC

Γ
0

α

Fig. 7: Schematic of bridging domain method.

The total potential energy of the molecular mechanics subdomainΩM is given by (4) and the total potential energy
of the continuum is given by (2). In expressing the total internal potential energy of the system, we employ a energy
scaling functionα (X) in the overlapping subdomain. The energy scaling function is defined as

α (X) =





0 in ΩM
0 /ΩMC

l (X) /l0 (X) in ΩMC
0

1 in ΩC
0 /ΩMC

0

(17)

wherel (X) is the least square projection ofX ontoΓα
0 , as shown in Fig. 8,l0 (X) is defined by the distance between

the overlapping domain boundariesΓα
0 on the orthogonal projection ofX. The scaling parameter vanishes at the edge

of the continuum and is unity at the other edge ofΩMC
0 ; ΩMC

0 should include the last line of atoms.

atom continuum node
Ω

0

M

Ω
0

C

Ω
0

MC

Γ
0

α

α=0 α=1

overlapping domain boundary

Fig. 8: Overlapping subdomain of atomistic and continuum model.

The total potential energy is given by

EC
α (u) + EM

α (d) =
∫

ΩC
0

α (X)wC(F)dΩC
0 +

1
2

∑

I,J∈M
(1− αIJ) wM

IJ (18)

whereαIJ = 1
2 (αI + αJ ), αI = α (XI), andd is the vector of atomic displacements. The external potential is scaled

similarly, so

Eext
α =

∫

ΩC
0

αρ0b · udΩC
0 +

∫

Γt
0

αρ0t̄ · udΓt
0 +

∑

I∈M
(1− αI) f̄ext

I · dI (19)

wheref̄ext
I is any external force applied to atomI.
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Let MMC = {I|XI ∈ ΩMC
0 } be the set of atoms initially in the handshaking region. In the initial version of

the bridging domain method [22], displacement compatibility in the handshaking regionΩMC
0 was enforced by the

constraint

gI = ||u (XI)− dI ||2 =
ND∑

i=1

[ui (XI)− diI ]
2 = 0 , ∀ I ∈MMC (20)

whereND denotes number of dimensions. (20) requires that the continuum displacements conform to the atomic
displacements at the discrete positions of the atoms. Later versions of the bridging domain method [21, 30] have used
the following stronger constraint

giI = ui (XI)− diI = 0 , ∀ I ∈MMC & i = 1..ND (21)

We note that by (20) a single constraint is applied per atom inMMC whereas by (21) one constraint is applied for
each component of the displacement of each atom. The use of constraint (20) rather than (21) results in a system of
equation with fewer Lagrange multipliers but it quite peculiar and not recommended. For this reason (21) will be used
in the following derivation.

We first show how the constraint is applied by the Lagrange multiplier method; then we will add the modifications
needed for the augmented Lagrangian method.

In the Lagrange multiplier method, the problem is posed as follows: find the stationary point of

WL = EC
α + EM

α − Eext
α + λT g (22)

whereλ = {λiI} is the vector of Lagrange multipliers andg = {giI} is a vector of constraints. The Lagrange
multiplier λiI is the generalized force that enforces the constraingiI given by (21).

To develop the corresponding discrete equations, we use a finite element method (FEM) inΩC
0 and molecular

mechanics inΩM
0 . The displacements inΩC

0 are given by (3). The Lagrange multiplier field is expressed in terms of
shape functions denoted byNλ (X):

λ (X, t) =
∑

I∈Sλ

Nλ
I (X) λ̄I(t) (23)

whereSλ is the set of all nodes of the Lagrange multiplier mesh. Generally, the shape functions for the Lagrange
multiplier field will differ from those for the displacements,NI (X), and they must satisfy the LBB conditions. The
Lagrange multiplier field is usually constructed by an auxiliary finite element triangulation of the intersection (over-
lapping) domain, as shown in Fig. 9. To distinguish the Lagrange multiplierλI in (22) from the nodal values at the
field, we usēλI to denote the Lagrange multipliers at the Lagrange multiplier nodes.

atom continuum node

Ω
0

M

Ω
0

C

Ω
0

MC

Lagrange multiplier node

Fig. 9: Lagrange multiplier interpolation in the overlapping region.

The discrete equilibrium equations are then obtained substituting (3-23) intoWL (22) and setting the derivatives of
WL with respect touI , dI andλ̄I to zero, which yields the following equations

∂WL

∂uiI
=

(
F int

iI − Fext
iI

)
+

∑

J∈MMC

λiJNIJ = 0, ∀I ∈ S (24)
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∂WL

∂diI
=

(
f int

iI − fext
iI

)
− λiI = 0, ∀I ∈M (25)

∂WL

∂λ̄iI
=

∑

J∈MMC

Nλ
IJgiJ = 0, ∀I ∈ Sλ (26)

whereNIJ = NI (XJ ), Nλ
IJ = Nλ

I (XJ), λiI = λi (XI) and

F int
iI =

∫

ΩC
0

α
∂wC (F)

∂uiI
dΩC

0 (27)

f int
iI =

1
2

∑

I,J∈M
(1− αIJ)

∂wM
IJ

∂diI
(28)

Fext
iI =

∂Eext

∂uiI
(29)

fext
iI =

∂Eext

∂diI
(30)

The augmented Lagrangian method can be developed by adding a penalty to (22) as follows:

WAL = EC
α + EM

α − Eext
α + λT g +

1
2
pgT g (31)

wherep is the penalty parameter; ifp = 0, (31) is identical to (22).
The discrete equations for the augment Lagrangian method form of the bridging domain method are obtained by

inserting (3) and (23) into (31) and setting the derivatives ofWAL with respect touI , dI andλ̄I to zero. This gives

∂WAL

∂uiI
=

∂WL

∂uiI
+ p

∑

J∈MMC

giJNIJ = 0, ∀I ∈ S (32)

∂WAL

∂diI
=

∂WL

∂diI
− p giI = 0, ∀I ∈ S (33)

∂WAL

∂λ̄iI
=

∂WL

∂λ̄iI
= 0, ∀I ∈ Sλ (34)

We have found that in general, the bridging domain method works best when the Lagrange multiplier fields are
Dirac delta functions at the locations of the nuclei. This choice of Lagrange multipliers enforces compatibility exactly
with the finite element approximation for the continuum. We can write this approximation for the Lagrange multipliers
as

λ (X) =
∑

I∈MMC

λ̂Iδ (X−XI) (35)

whereλ̂I are the unknown values of the Lagrange multipliers andδ(•) is the Dirac delta function. For the strict
Lagrange multiplier method, the discrete equations are

∂WAL

∂uiI
=

(
F int

iI − Fext
iI

)
+

∑

J∈MMC

λ̂iJNIJ

+ p
∑

J∈MMC

giJNIJ = 0, ∀I ∈ S (36)

∂WAL

∂diI
=

(
f int

iI − fext
iI

)
− λ̂iI − p giI = 0, ∀I ∈M (37)

∂WAL

∂λ̂iI

= giI = 0, ∀I ∈ Sλ (38)

Ghost Forces. In an ideal coupling scheme the forces acting on the atoms in the handshaking domain should be
exactly those that would occur if the whole domain were modeled by atomistics. The difference between the ideal
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forces acting of the atoms and the actual multiscale model forces are termedghost forces. In many multiscale methods
the ghost forces occur, even for linear homogeneous deformations and harmonic atomistic potentials - a study of the
solutions to this problem for the various quasicontinuum methods can be found in Curtin and Miller [31].

In this subsection will we address the issue of ghost forces in the bridging domain method. We will show that
for a linear elastic continuum and a molecular model with nearest neighbor interaction and a harmonic potential,
ghost forces are eliminated when the pointwise Lagrange multiplier approximation (35), which we will also call strict
coupling, is used; however, when the Lagrange multipliers are interpolated by finite element shape functions as in (23)
ghost forces exist.

Consider the one-dimensional lattice depicted in Fig.10a with a harmonic potential with constantk. This is equiv-
alent to a linear elastic constitutive model for the continuum with the elastic modulusY = ak, wherea is the lattice
constant. For this simple molecular system a consistent multiscale method ( i.e. one without ghost forces) should
satisfy the patch test, i.e. be able to reproduce a constant strain field exactly.

i j k m p k r s t

1

b=1-a

i j k m p k r s t

x

lambda

1

0.5

a)

b)

Fig. 10: Illustration of the bridging domain in one-dimension. Red circles represent atoms and grey squares represent
FEM nodes

Let βi = β(Xi) = 1 − α(Xi) andβij = (βi + βj) /2. For the coupled model shown in Fig.10a, the weight
functionβ has a value of unity at atoms and decreases linearly to zero at atomj. The coupling domain spans only
one element and so the energy scaling function is given by

β(x̄) =
x̄

he
=

x̄

a (n− 1)
(39)

wherehe is the element length,a is the lattice spacing,n is the number of atoms in the handshaking domain. Note
that both atomsj ands are assumed to be in the coupling domain.

Consider the uniform straining of the lattice in Fig.10a, such that each atomistic bond is elongated by∆. For
simplicity we will only study the Lagrange multiplier method withp = 0. The equilibrium equations, given by (26)
or (38), for atomsj, p ands are respectively given by

rj = k∆(βij − βjk) + λ (Xi) = −k∆βij + λ (Xi) (40)

rp = k∆(βmp − βpq) + λ (Xp) (41)
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rs = k∆(βrs − βst) + λ (Xs) = k∆(βrs − 1) + λ (Xs) (42)

whereri is the residual force on atomi and is equal to the ghost force of atomi. For the bridging domain method to
satisfy the patch test, the residual at all atoms must be zero, which gives

λ (Xj) =
1
2

k∆
(n− 1)

λ (Xp) =
k∆

(n− 1)
(43)

λ (Xs) =
1
2

k∆
(n− 1)

(44)

The discrete Lagrange multipliers required to satisfy the patch test are shown in Fig.10b. We can see from this
figure and equations (43-44) that in general a linear Lagrange multiplier field cannot provide the Lagrange multipliers
needed to satisfy the patch test. Therefore, ghost forces will always exist in the bridging domain method when the
Lagrange multipliers are interpolated by shape functions as in (23); however, when strict Lagrange multipliers (35)
are used no ghost forces occur.

The conclusions of the previous paragraph are verified numerically in the following example. Consider a one-
dimensional domain of length 128, with the origin of the coordinate system located at the left end. The atomistic
subdomain is0 ≤ x ≤ 80 and the continuum subdomain is64 ≤ x ≤ 128, so the handshaking domain is64 ≤ x ≤ 80.
The lattice spacing is taken to bea = 1 and a uniform finite element mesh is used with the element size is selected so
that the handshaking domain is spanned exactly by a single element, sohe = 16a. The atom atx = 0 is fixed and a
displacement of magnitude1 is applied to the node atx = 128.

In Fig. 11 the value of the Lagrange multipliers at each atom in the handshaking domain are shown for the bridging
domain method with weak coupling (23) and strict coupling (35). The values are normalized byk∆

(n−1) . The normalized

L2 error norm in the displacements given by

NormalizedL2 error norm=
1

nA

√√√√
nA∑

I=1

(
dI − uexact(XI)

)2

(
uexact(XI)

)2 (45)

For strict coupling the error is zero to within machine precision and therefore the strict coupling method passes the
patch test. We can observe that the Lagrange multipliers required to satisfy the patch test, as shown in 11, are those
given by equations (43-44). The normalizedL2 error norm is1.9× 10−4 for the bridging domain method with weak
coupling (23) and so it does not pass the patch test. This is because a linear field cannot exactly interpolate the required
Lagrange multipliers given by (43-44). We note that although the bridging domain method with weak coupling does
not exactly satisfy the patch test, the error in the solution is small.
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Fig. 11: Lagrange multipliers solution from the bridging domain method for a patch test on a one-dimensional lattice.



4 Molecular Dynamics Systems 15

Stability of Lagrange Multiplier Methods. The development of molecular/continuum methods parallels recent
work in the finite element community on thegluing of disjoint meshes in an overlapping subdomain. Ben Dhia and
Rateau [26, 27] were the first to study these methods and developed a new method which is discussed below. They
called these methods Arlequin methods. They showed that for a constant scaling in the overlapping domain, such as
in the original handshake methods of Abraham et al. [12], instabilities appear in the Lagrange multiplier problem.
In [27], a comparison of two coupling methods was made. To be more specific, in terms of an atomistic/continuum
coupling, the energy of the coupled model is given by

E = EA(α) + EC(α) + (λ, δu) (46)

whereE is the total energy,EA(α) in the scaled atomistic energy,EC(α) in the scaled continuum energy and(λ, δu)
is a scalar product of the Lagrange multiplier fieldλ and the difference in displacements, as in the bridging domain
method [22, 21]. The two types of coupling studied by Ben Dhia were calledL2 andH1 couplings in [27] and are
given respectively by

(λ, δu) = (λ, δu)L2(ΩB) =
∫

ΩB

λ · δudΩ ≡
∫

ΩB

λiδuidΩ (47)

(λ, δu) = (λδu)H1(ΩB) =
∫

ΩB

(
λ · δu + l2ε(λ) : ε(δu)

)
dΩ

≡
∫

ΩB

(
λiδui + l2λi,jδui,j

)
dΩ (48)

It was shown in [27] that for the linear scaling of the energy, theL2 coupling used in the bridging domain method
is also stable. These conclusions also apply to atomistic/continuum coupling.

3.4 Quasicontinuum Method

The quasicontinuum method, as presented in Tadmor et al. [8], is a landmark work in atomistic/continuum coupling.
It was one of the first works to introduce the concept of using Cauchy-Born rule in the continuum part of the model, so
that the two models are compatible. Many of the difficulties in atomistic/continuum coupling, such as internal modes,
are also dealt with in the subsequent papers.

From coupling point of view, the quasicontinuum method [8] is basically a direct atomistic-continuum coupling
scheme where real atoms are coincident with the finite element nodes. Therefore, as in any direct coupling method,
the mesh size must be decreased to the atomistic lattice spacing wherever atomistic potentials are to be used, which
complicates mesh generation. For example, for a problem with several interacting dislocation in three dimensions,
meshing could be quite difficult.

The pioneering contribution of the method is the seamless way it transitions from an atomistic description to a
continuum description based of the Cauchy-Born rule. Because of this uniformity of the underlying material model,
no abnormalities are introduced by differences in the material models at each scales. This concept has been widely
adopted in other concurrent atomistic/continuum methods such as the bridging domain method.

It is also of interest that the quasicontinuum method avoids ill-posedness of the continuum model, i.e. in areas of
bond breaking, for in these areas the method transitions to atomistic potentials, which are called nonlocal models. This
process introduces a length scale wherever there is bond breaking. Thus, although an instable process is modeled, the
system remain well posed.

4 Molecular Dynamics Systems

Most of the methods for coupling atomistic to continua are also applicable to dynamics. The major difficulty that
arises in extending these methods to dynamics is that when the cutoff frequency of the continuum model is below that
of the molecular dynamics model, spurious reflections occurs at the interface. This relationship of cutoff frequencies
is almost always the case, since there is no benefit in using continuum model unless the internodal spacing is greater
than the lattice constant. The cutoff frequency of a continuum model with low order elements is given by
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ωC
max =

c

hmin
(49)

wherec is the wavespeed andhmin is the smallest distance between nodes. It can be shown with the Cauchy-Born
rule that the atomistic cutoff frequency is of a crystal lattice

ωA
max =

c

l
(50)

wherec is the group wave velocity (an atomic lattice is dispersive) andl is the lattice constant. It is clear from the above
that phonons in the atomistic domain with frequencies aboveωC

max will not be able to penetrate into the continuum
model. This results in spurious reflections of high frequency phonons, which needs to be mitigated. The phonons
above the atomic cutoff frequency represent thermodynamic energy that is not represented in the continuum model. It
can be treated by linking the energy equation to a thermostat. One such approach is discussed in [21].

We next consider the concurrent coupling of molecular dynamics with continuum mechanics by the bridging
domain method. For simplicity, we consider only pair potentials. The Hamiltonians of the atomistic and continuum
subdomains are

HM =
1
2

∑

I,J∈M
wM

IJ +
1
2

∑

I∈M
MM

I ḋiI ḋiI (51)

HC =
∫

ΩC
0

wC(F)dΩC
0 +

1
2

∑

I∈S
MC

I u̇iI u̇iI (52)

whereMM denotes the mass of atoms andMC the mass of nodes in the lumped mass matrix. Indicial notation
convention applies to lower case indices, so repeated indices indicate summation.

To derive the equations of motion, it is convenient to transform Hamiltonian to the corresponding LagrangianL.
The same energy scaling function as for equilibrium systems (17) is used in the bridging domain. Lagrange multipliers
are used to enforce the constraints between the atoms and the continuum mesh. In this case, the pointwise Lagrange
multiplier field is used, so

L =
1
2

∑

I∈M
(1− αI)MM

I ḋiI ḋiI −
∑

I∈M

∑

J∈M>I

wM
IJ (1− αIJ)

+
1
2

∑

I∈S
αIM

C
I u̇iI u̇iI −

∫

ΩC
0

αwCdΩC
0 + G (53)

where

G =
∑

J∈M
λiJ

(∑

I∈S
NIJuiI − diJ

)
(54)

After this transformation, the equations of motion can be obtained by using Lagrange’s equation

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (55)

whereq = [{diI}, {uiI}, {λiI}]. This yields

M̄M
I d̈iI + f int

iI + f̄GM
iI = 0 i = 1 . . . nSD (56)

M̄C
I üiI + F int

iI + f̄GM
iI = 0 i = 1 . . . nSD (57)∑

J∈S
NJIuiJ − diI = 0 i = 1 . . . nSD (58)

whereM̄C
I is a diagonalized mass matrix.
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M̄M
I = (1− αI)MM

I (59)

M̄C
I =

∑

J∈S

∫

ΩC
0

αρ0NINJdΩC
0 (60)

(61)

The equations are integrated by a predictor-corrector central difference method (which is equivalent to the Verlet
method) for time integration. The acceleration at time stepn can be expressed as

d̈n =
dn+1 − 2dn + dn−1

∆t2
(62)

ün =
un+1 − 2un + un−1

∆t2
(63)

Substituting (62) and (63) into (56) and (57), respectively, we get the displacements at stepn + 1

dn+1
iI = − f int

iI

M̄M
I

+ 2dn
iI − dn−1

iI +
∆t2

∑
J∈M λn

iJδIJ

M̄M
I

(64)

un+1
iI = −F int

iI

M̄M
I

+ 2un
iI − un−1

iI − ∆t2
∑

J∈M λn
iJNIJ

M̄C
I

(65)

The equations for the Lagrange multipliers can be obtained by substituting the above displacements into the con-
straint (58)

∑

L∈M
λn

iLAIL = − f int
iI

M̄M
I

+
2dn

iI − dn−1
iI

∆t2
+

∑

J∈S
NJI

(
F int

iJ

M̄C
J

− 2un
iJ − un−1

iJ

∆t2

)
(66)

where

AIL = −
∑

J∈S

NJINJL

M̄C
J

− δIL

M̄M
I

(67)

is called the consistent constraint matrix. These Lagrange multipliers are then used in (56) and (57) for a corrector
calculation because that is essential for suppressing spurious reflections so a diagonalized constraint matrixB is used
in the implementation

BIJ =
{

0 I 6= J∑
L∈MAIL I = J

(68)

This is discussed further in Section 5.

4.1 Conservation Properties of Bridging Domain Method

In the following we show the conservation of both linear momentum and the energy of the system in the bridging
domain method. The conservation of angular momentum is shown in [33]. The work of Hairer et al. [34] shows
that for the central difference method (symplectic Verlet), the energy is conserved in time if the ordinary differential
equations in time are conservative. Therefore we only examine the time derivatives of the conservation variables.

The analysis shows that the bridging domain method exactly conserves linear momentum and energy. This presents
the dilemma: how can the method suppress spurious reflections? As will be shown with numerical results, the answer
lies in the diagonalization, which renders the method to be dissipative and remarkably effective in suppressing spurious
reflections.

Conservation of Linear Momentum. The system linear momentumpi is
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pi = pM
i + pC

i =
∑

I∈M
M̄M

I ḋiI +
∑

J∈S
M̄C

J u̇iJ (69)

whereM̄M
I andM̄C

I are defined in (59) and (60), respectively. The rate of change of the total linear momentum of the
discrete system is given by

dpi

dt
=

d

dt

( ∑

I∈M
M̄M

I ḋiI +
∑

J∈S
M̄C

J u̇iJ

)
(70)

Substituting Eq. (56-61) into Eq. (70)

dpi

dt
=

∑

I∈M
λiI −

∑

I,J∈M

∂wM
IJ

∂diI
αIJ −

∑

I∈M
λiI

∑

J∈S
NJI

−
∑

I∈S

∫

ΩC
0

(1− α)
∂NI

∂Xj
PjidΩC

0 (71)

By the partition of unity property of finite element interpolants,
∑

J∈S NJ(X) = 1 for ∀X, thus the first and the third
terms cancel. The fourth term vanishes, which can easily be seen if the summation is pulled into the integral and the
partition-of-unity property of the shape functions is invoked. This partition of unity property has also been used to
show the conservation properties of meshfree methods in Belytschko et al.[35]. The second term vanishes because of
its antisymmetry onI andJ , for example,wM

IJ is a function of||xI − xJ || for a two body potential, so

∑

I,J∈M

∂wM
IJ

∂diI
=

1
2

∑

I,J∈M

(∂wM
IJ

∂diI
+

∂wM
IJ

∂diJ

)
= 0 (72)

It can be shown that this term also vanishes for other potentials, such as the angle bending potential. Sodpi/dt = 0,
which shows that linear momentum is conserved. The conservation property is independent of the form of the scaling
function in the coupling domain.

Conservation of Energy. The time derivative of the total energy reads

Ėtot = ṪM + ẆM + ṪC + ẆC (73)

where

ṪM =
∑

I∈M
M̄M

I d̈iI ḋiI (74)

ẆM =
∑

I∈M

∑

J∈M>I

(∂wM
IJ

∂diI
ḋiI +

∂wM
IJ

∂diJ
ḋiJ

)
(1− αIJ) (75)

ṪC =
∑

I∈S
M̄C

I üiI u̇iI (76)

ẆC =
∫

ΩC
0

α
∂wC

∂F
: ḞdΩC

0 =
∫

ΩC
0

αP : ḞdΩC
0 (77)

Substituting (56-57) into (74-77)

Ėtot = −
∑

I∈M
(f̄ int

iI +
∂G

∂diI
)ḋiI −

∑

I∈S
(F̄ int

iI +
∂G

∂uiI
)u̇iI

−
∑

I∈M

∑

J∈M>I

(∂wM
IJ

∂diI
ḋiI +

∂wM
IJ

∂diJ
ḋiJ

)
(1− αIJ ) +

∫

ΩC
0

αP :
∂NI

∂X
dΩC

0 u̇iI

=
∑

I∈M

∂G

∂diI
ḋiI −

∑

I∈S

∂G

∂uiI
u̇iI = −Ġ (78)
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SinceG is the constraint term which vanishes by the Karush-Kuhn-Tucker condition, the energy is conserved.

4.2 Master-Slave and Handshake Methods

The master-slave method can be applied to MM/CM coupling by either edge-to-edge to overlaid domain decompo-
sition. In either case, the position of any atom which is common to the continuum and atomistic domains is given
by

dJ =
∑

NI (XJ)uI or d = NuC (79)

The nodal forces and mass of the atoms are distributed to the nodes of the continuum elements or edges that are
overlaid by the atoms. Using standard master slaving coupling formulas based on energy (see [5]), these additional
forces and masses

fI =
∑

J

NI (XJ) fM
J or f = NT fM (80)

MIJ =
∑

I,J

NI (XK)MM
KKNK (XI) or M = NT MMN (81)

The resulting equations can then be solved by explicit or implicit methods.
In the handshake method, the nodes of the two coupled systems are coincident. Therefore the same Lagrangian as

in (53) can be used with the constraint termG omitted. Generally, a constant energy scaling functionα is used in the
overlapping domain, i.e. handshake domain. The overlapping nodes are often coupled with dampers which suppress
some of the spurious reflections at the interface.

4.3 Bridging Scale Method

In the bridging scale method as originated in Wagner and Liu [14], the atomic displacements are decomposed into
coarse scale and fine scale displacements. The decomposition of the matrix of atomistic displacements is

uI = NIJdC
J + ũA or uA = NdC︸ ︷︷ ︸

ū

+ũA (82)

whereū is the coarse scale field, which as indicated, is usually a finite element continuum field;d are the nodal
displacements of a coarse scale mesh. The notation is the opposite of that in previous sections to conform to [14], so
we have added superscriptsA andC for atoms and continua, respectively, for clarity.

The key concept in their work is that the coarse scale displacements are obtained by a least square projection
weighted by the atomic masses. This projection is

dC = M−1MANuA (83)

whereM is the matrix of the coarse scale masses, given by

M = NT MAN (84)

which is the mass that would be obtained by a master-slave relationship, see (81). It can be seen from (83) that the
nodal displacements of the finite element mesh can then be obtained at any time from the atomistic displacements.

Combining (82) and (83) gives

uA = NM−1MANu+ũA = PuA + ũA (85)

P = NM−1MAN (86)

It follows from the above that

ũA = (I−P)uA (87)
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In the implementation of Wagner and Liu [14] and the subsequent improvements [36, 37], this projection is ap-
parently only used at the interface. By using this concept, they are able to obtain an equation for the fine scale (i.e.
relative acceleration) at the interface without any Lagrange multipliers. They use the approach of Adelman and Doll
[38].

The approach has been improved and then streamlined by computing the interface nodes by Green’s functions for
lattices. Green’s functions have been developed for various lattices [36, 37]. The method also entails the computation
of Fourier transforms at the interface.

To and Li [19] and Li et al. [39] have enhanced the method by joining the coarse-scale to the fine-scale on an
overlapping domain by the perfectly matched layer (PML) method. The perfect matched layer method is very efficient
in suppressing spurious reflections. Comparisons of the Li-To PML method with the bridging domain method are
given in Section 5.

5 Numerical Results

This section describes some models and solutions obtained by concurrent multiscale methods. The first set of examples
are for coupling of molecular dynamics with continuum dynamics by the bridging domain method. The second set are
coupled QM/MM, QM/CM and QM/MM/CM equilibrium solutions of graphene sheets with a defect.

5.1 Molecular/Continuum Dynamics with Bridging Domain Method

To examine the performance of the bridging domain method, we investigate the reflection and the transmission prop-
erties at the molecular-continuum interface. We will also check how well the conservation properties we have proven
hold when the equations are integrated numerically. For these purposes, we consider several one- and two-dimensional
problems. In all problems, we evaluate the conservation properties by measuring the change of the conserved variable
normalized by its initial absolute value, except in the cases where the initial value is zero. For example, for the energy,
the erroreen is given by

een =
E(t)− E0

E0
(88)

whereE0 is the initial energy of the system. In these examples, all of the energy and momentum is imparted to the
system by initial conditions in the velocities and displacements. There are no external forces applied. The central
difference method (symplectic Verlet) is used for time integration in all examples.

One-dimensional studies. In the first set of examples, we consider a one-dimensional model as shown in Fig.
12. The domain consists of 400 equally spaced atoms with a lattice constantr0 = 1.23, and 400 elements of length
h = n1r0, son1 is the number of bonds in an element. We denote the number of elements in the coupling subdomain
by n2; n1 andn2 are varied in the examples to determine the effect of the element size and overlaid domain size on
the performance of the bridging domain method. No dummy atom is introduced at the interface between the atomistic
and continuum model, because the scaled masses of these atoms vanish according to (59). The motions of these atoms
are determined by the compatibility constraints.

overlapping
0 1α

molecular (M)   ΩΜ

continuum (C)  ΩC

molecular (atomic) node [M]

continuum node [C]

ΩCM = ΩΜ∩ΩC

ΩCM

Fig. 12: Schematic of one dimensional coupling model.

The Lennard-Jones potential is chosen to represent the atomic interaction with nearest neighbour assumption.
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wM
IJ = 4β1

[(
β2

rIJ

)12

−
(

β2

rIJ

)6]
(89)

whererIJ =‖ xJ − xI ‖ is the bond length between the nearest neighboring atoms, i.e.|I − J | = 1. β1 andβ2 are
parameters. In these examples,β1 = 0.2eV andβ2 = 1.1. This corresponds to a Young’s modulusEY =11.66eV/3.
The atomic massMM = 1.036×10−4eV·ps2/2. The initial displacements and velocities for the atoms withX ≤ 100
are obtained from linear combinations of the following solutions of the wave equation by lettingt = 0.

u(X, t) = (a1 + a1 cos (2πa2 (X − ct) + π)) (1 + a3 cos (2πX)) (90)

u̇(X, t) = ca1 sin (2πa2 (X − ct) + π) (1 + a3 cos (2πX)) (91)

u(X, 0) = u̇(X, 0) = 0 for X > 100 (92)

wherec = (E/ρ)1/2 = 372.82/ps is the wave speed,a1 = 6.17× 10−4, a2 = 0.01, a3 = 0.1. The initial conditions
include waves at four different frequenciesω1 = 2πc, ω2 = 2πa2c, ω3 = ω1 + ω2, ω4 = ω1 − ω2.

Fig. 13 shows the linear momentum as a function of time; we do not use the error measure (88) because the
initial momentum is zero. As can be seen, the momentum is exactly conserved until the wave reaches the overlapping
subdomain. At that point, there is a moderate fluctuation in the total momentum, but it is restored perfectly after the
wave passes. We have no explanation for this temporary violation of momentum conservation.

consistent constraint

diagonalized constraint

Fig. 13: History of linear momentum of one dimensional coupled model withn1 = n2 = 3 for consistent and
diagonalized constraints methods.

The effectiveness of the bridging domain method can be seen from Fig. 14 which shows the reflection and transmis-
sion factors for the interface for various combinations of overlapping elements and atoms per element. In these figures,
the cutoff frequencies of the finite element and atomistic models are indicated by vertical lines. The cutoff frequency
of the finite element model is given by (49). In the atomistic model, the cutoff frequency is given byωM

cut = (k/m)1/2,
wherek is the tangent of the force-elongation curve of the bond; for a Lennard-Jones potential,k = 36× 22/3β1/β2

2 .
An ideal coupling scheme would suppress all reflections of phonons between the cutoff frequencies of the atomistic
model and the continuum model (frequencies above the atomistic frequency are due to aliasing and can be ignored). It
is noted that the coupling should transmit all phonons with frequencies below the cutoff frequency of the continuum,
so ideally the transmission factor should be unity below the continuum cutoff frequency. Both the diagonalized and
consistent constraints show nearly perfect transmission of these phonons. However, the consistent form exhibits sub-
stantial reflection of phonons with frequencies between the cutoff frequencies of the atomistic and continuum models.
These spurious reflections are far less severe in the diagonalized form.
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Fig. 14: Reflectivity (blue dashed line) and transmissity (red line) forn2 overlaid elements withn1 atoms per element.
(a)n1 = 4, n2 = 3, diagonalized constraint; (b)n1 = 4, n2 = 6, diagonalized constraint; (c)n1 = 7,
n2 = 3, diagonalized constraint; (d)n1 = 7, n2 = 6, diagonalized constraint; (e)n1 = 7, n2 = 3, consistent
constraint; (f) To et al. (20). (The dashed and solid vertical lines are the cutoff frequencies of the continuum
and the atomic models, respectively.)

Fig. 14f shows the reflectivity and transmissity of the interface for the To et al. [19] method based on PML. It can
be seen that its performance is comparable to that of the bridging domain method with diagonalized constraints.

Table 2 shows the energy dissipation of the high frequency (ω > ωC
cut) and the low frequency (ω < ωC

cut)
incident waves for the diagonalized constraint matrix in one dimension. It is observed that more than90% of the high
frequency energy emanating from the atomistic domain is eliminated, but the low frequency dissipation is less than
1%. The diagonalized constraint matrix damps out the high frequency of the incident wave and effectively eliminates
the spurious reflection at the boundary of different scales.
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Tab. 2: Energy dissipation of low and high frequency waves forn1 overlaid elements withn2 = 3

n1 = 7 n1 = 4

Low Frequency 0.9% 0.2%
High Frequency 92% 91%

When the diagonalized constraint matrix is used instead of the consistent constraint matrix, compatibility inside
the coupled subdomain is not satisfied exactly. ThereforeĠ no longer vanishes, and energy is not conserved. The
computations show the time derivative ofG is always positive, which implies energy is dissipated when the wave goes
through the coupling domain (Fig. 15) according to (78). The amount of energy loss increases as the element size
increases relative to the lattice constant.

Fig. 15: Error in total energy of coupled model withn2 = 3 (blue),n2 = 6 (red) andn2 = 9 (green) for diagonalized
constraints methods.

Two-dimensional studies. In the two-dimensional example, we consider the square lattice (shown in Fig. 16) of
38000 nodes and 40401 atoms. No dummy atoms are introduced at the interface between the atomistic and continuum
model for the same reason as in one-dimensional problems. The lattice constants of the atomic model arer0 = 1.23Å
andθ0 = 90o. Harmonic potentials are used for both stretch and angle bending

WM =
∑

I∈M

∑

J∈M>I

1
2
kr(rIJ − r0)2 +

∑

L

1
2
kθ(θL − θ0)2 (93)

In the aboveθL is the bond angle,kr = 14.418eV/2 andkθ = 5.618eV/ are the stretch and angle bending constants,
respectively, andL is summed over the number of unique three-body interactions. The internal force of atomI, f intM

I ,
is given by the derivative of the potential function with respect to the atomic coordinates.

f int
iI = −∂WM

∂xiI
= −

∑

J∈M
kr(rIJ − r0)

∂rIJ

∂xiI
−

∑

L

kθ(θL − θ0)
∂θL

∂xiI
(94)
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atomic nodes

continuum nodes

Fig. 16: Schematic of two dimensional coupled model (in calculations, more elements and nodes were used).

We consider the model shown in Fig. 16; four-fold symmetry is used. We initiate a cylindrical wave at the bottom
left in the atomistic model with the initial conditions

u1(XI) =
[
a1 + a1 cos(2πa2rI + π)

][
1 + a3 cos(2πrI)

]
cos γ

u2(XI) =
[
a1 + a1 cos(2πa2rI + π)

][
1 + a3 cos(2πrI)

]
sin γ

u̇1(XI) = 2πca1 sin(2πa2rI + π)
[
1 + a3 cos(2πrI)

]
cos γ

u̇2(XI) = 2πca1 sin(2πa2rI + π)
[
1 + a3 cos(2πrI)

]
sin γ (95)

for the atoms withrI ≤ 100, whererI = ||xI || is the distance of atomI to the origin, andγ is the angle between the
positivex direction andxI . The initial displacements and velocities vanish for the rest of the atoms. The values ofa1,
a2 anda3 are the same as in the one-dimensional examples. The incident wave contains four different frequenciesω1

to ω4.

Fig. 17: Rate change in total energy for two dimensional example with consistent (solid line) and diagonalized (dashed
line) constraints (n1 = 4, n2 = 1).

The linear momentum of the system is perfectly conserved for both the consistent and diagonalized constraints.
There is no temporary loss of linear momentum as observed in the one-dimensional examples when the wave reaches
the overlapping domain. The initial total angular momentum is zero, and remains so when using the consistent con-
straint. For the diagonalized constraint, the angular momentum in the coupling domain oscillates about zero with an
amplitude of10−3.
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The error in energy is shown in Fig. 17. The energy is conserved with the consistent constraint. For the diagonal-
ized constraint, about 45% of the energy is dissipated after the waves passes the coupling domain; most of this energy
is in the high frequency part of the spectrum.

5.2 Fracture of Defected Graphene Sheets by QM/MM and QM/CM Methods

Here we describe coupled QM/MM and QM/CM calculations of defected graphene sheets. The coupled method uses
the modified Tersoff-Brenner (MTB-G2) potential for the molecular mechanics model and a linear elastic finite element
model for continuum mechanics. The quantum mechanics calculations were made with the semi-empirical method
PM3 [41]. MTB-G2 [42, 43, 44, 45] is a modified version of the standard reactive empirical bond order (REBO) [44]
potential, in which the cutoff function is removed and interatomic interactions are included only for those atom pairs
that are less than 2.0 Å apart in the initial unstrained configuration. This was found [42, 45] to be necessary to prevent
spuriously high values of the fracture strength due to the cutoff function.

Fig. 18: A QM/CM model of a graphene sheet containing an asymmetric two-atom vacancy defect. Pink (light, ball
and stick) atoms in the center constitute the strictly QM region, red (dark, ball and stick) atoms constitute the
overlapping region, and blue (light, stick) region represents the strictly CM region.

Three coupling methods were used to calculate the stress-strain curves and fracture stresses of a graphene sheet
containing defects. In these calculations, the end carbon atoms of the graphene sheet were displaced with increments of
0.5% of the sheet length until the sheet fractures. At each strain increment, the atomistic configuration was optimized
with the carbon atoms at each edge constrained to lie within a plane. Once the geometry was optimized at a given
applied strain, the tensile stress in the sheet was calculated by taking derivatives of the energy using finite differences
with respect to the strain. An effective thickness of 3.4 Å was used for the stress calculations; this corresponds to the
interlayer spacing in graphite, and is widely used for stresses on graphene sheets.

We first consider a graphene sheet containing an asymmetric two-atom vacancy [46, 47]. It was stretched in
the direction perpendicular to the zigzag edge. The coupled models of this system for the three coupling methods
considered are shown in Figs. 18-19. The sheet was 27 Å by 21 Å and contained 248 carbon atoms with 64 carbon
atoms in the QM domain and 38 carbon atoms in the overlapping domain for the modified ONIOM (called QtMMOD)
scheme, see [30]. The results were compared to those calculated by pure QM calculations. In addition to the two
QM/MM models, a QM/CM model (shown in Fig. 18) using triangular elements was also used.
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Fig. 19: A QtMMOD model of a graphene sheet containing an asymmetric two-atom vacancy defect. Pink (light, ball
and stick) atoms constitute the strictly QM region, red (dark, ball and stick) atoms constitute the overlapping
region, and blue (light, stick) atoms constitute the strictly MM region.

The stress-strain curves for the three methods are shown in Fig. 20. The stresses calculated by the QtMMOD and
ONIOM coupling methods are almost indistinguishable. Both results match quite well with the benchmark pure QM
results although there are small differences near the fracture strain. The QtMMOD and ONIOM methods calculated
fracture stress values of 87.4 GPa and 87.2 GPa, respectively, in comparison to 88.1 GPa obtained from the strictly
QM calculations. The stress-strain curve for the QM/CM coupled calculations matches the stresses from the other
methods quite well and yields a fracture stress value of 87.3 GPa. However, small differences are observed, which
may be due to several reasons, such as the fact that a finite element model does not reflect the physics near the defect
as accurately as the MM method. Nevertheless, the QM/CM model is still sufficiently accurate to be useful for studies
of large systems, such as calculations of the fracture stress of a graphene sheet containing a crack [1]. In such models,
the region near the crack tip can be modeled quantum mechanically and the CM model can be applied elsewhere.
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Fig. 20: Stress-strain curves obtained by the ONIOM, QtMMOD, QM/CM coupling, and pure QM methods for the
graphene sheet models shown in Figs. 3-5.

Fig. 22 shows the comparison of elasticity solution of the strainεy at stress intensity factor K = 3 MPa
√

m with the
results calculated by the QM/MM methods. The strains were computed from the configuration by the MLS scheme
[48, 49]. The agreement is quite good, although the atomistic strains are not as localized near the crack tip as in the
elastic solution.

Fig. 21: QM/MM model of a graphene sheet with a crack. Red (dark) atoms represent the QM subdomain and the
Grey (light) atoms represent additional atoms treated at the MM level.
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Fig. 22: εy obtained from (a) elasticity solution and (b) MLS method for the sheet shown in Fig. 21

Crack propagation in graphene sheet: comparison with Griffith’s formula. In this example we consider the
fracture strength of a graphene sheet with slit defects of various lengths and compare the calculated strengths to those
predicted by Griffith’s formula for a crack in an infinite sheet. Slit defects were created by removing four rows of
atoms and then saturating the dangling bonds by hydrogen atoms [1, 43]. In order to be able to compare with the
results for an infinite sheet, very large sheets were required, so we used a QM/MM/CM concurrent calculation [2],
where the QM/MM coupling was obtained by using the modified ONIOM scheme and the bridging domain method
was used to link the MM model to a finite element model. The PM3 method [41] was used for the quantum calculation.

A representation of the QM/MM/CM model for one slit size is shown in Fig. 23. The dimensions of the full sheet
are 393.5 Å by 411.8 Å, the QM model consists of 76 atoms around the slit. The atomistic region is 115.5 Å by 82.3
Å and located in the center of the sheet.

In Fig. 96 the numerical results are compared with the results of the Griffith formula, which is given by

σ =

√
2Y γ

πa
, (96)

whereσ is the Griffith formula stress,Y is the Young’s modulus,a is the half length of the slit, andγ is the surface
energy density. We calculatedγ as the difference between the PM3 energy of a geometry optimized pristine square
sheet and the energy of the two fragments after they are separated to a large distance, and subsequently optimized
to yield their equilibrium geometries, divided by twice the surface area. The factor of two is included because two
surfaces are produced by fracture.

Fig. 23: QM/MM/CM model of a graphene sheet containing a slit-like defect.

The QM/MM/CM results agree well with the prediction of the Griffith formula and decrease approximately as
the inverse of the square root of the crack length. The Griffith stress is a lower bound on the fracture stress, but
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the approximate stress estimates of the Griffith formula need not be, and as seen in Fig. 24, the Griffith formula
results fall below the numerical ones for slits longer than 20 Å. Note that on the whole, remarkably good agreement
is obtained between the Griffith formula and the QM/CM/MM calculation, which indicates that the Griffith formula is
also applicable to nanoscale fracture.

Fig. 24: Results of the Griffith formula versus QM/MM/CM fracture strengths for a graphene sheet containing a
slit-like defect.
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