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Abstract

Dislocation models based on the Extended Finite Element Method (XFEM) are
developed for thin shells such as carbon nanotubes (CNTs) and thin films. In shells,
methods for edge dislocations, which move by glide, and prismatic dislocations,
which move by climb, are described. In thin films, methods for dislocations with
edge, screw and/or prismatic character are developed in three-dimensions. Singular
enrichments are proposed which allow the Peach-Koehler force to be computed
directly from the stress field along the dislocation line and give improved accuracy.
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1 Introduction

Dislocation modeling has been performed predominantly by Green’s functions
methods and image field methods (1; 2; 3; 4; 5; 6). These methods are quite
powerful in solving problems with relatively simple geometry; however, there
is increasing interest in problems with more complex geometry, such as three-
dimensional thin films, shells, such as nanotubes, and materials with inclu-
sions. In such complex geometries, integral equation methods and image field
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methods are generally inapplicable, since neither Green’s functions nor the
exact solutions for the image field for such geometries are usually available
and are difficult to construct. In three-dimensional bodies, several methods
have emerged to address the challenges of geometry and material interfaces:
the discrete continuum method (7; 8), the superposition method of O’Day and
Curtin (9), and the extended finite element method (10; 11).

In Gracie et al. (11), it was shown that accurate computations of the bulk
strain energy of edge dislocations can be made with models consisting simply
of a discontinuity on the glide plane with the extended finite element method
(XFEM). This method employed no special treatment of the singular core.
However, for such models the computation of the Peach-Koehler force involves
the evaluation of a domain integral, which requires very fine mesh resolution in
problems involving close range dislocation interactions and material interfaces.
In (12) an alternative method for computing the Peach-Koehler force from an
image stress was demonstrated in two dimensions using closed-form analytical
solutions for dislocations in an infinite domain as an enrichment in the vicinity
of the core.

This paper presents further developments in the modeling of dislocations by
XFEM which was initiated in (11; 12; 10; 13) with emphasis on problems with
complex geometry. These methods are based on the partition-of-unity concept
proposed by Melenk and Babus̆ka (14) and Duarte and Oden (15). In particu-
lar, the extension of the XFEM dislocation methods to three dimensions and
cylindrical shells is described along with applications in thin films and nan-
otubes. To the best of our knowledge, this is the first finite element method
for modeling dislocations in thin shells. As in (12), the Peach-Koehler force is
computed without evaluating a domain integral. The enrichment is a transfor-
mation of two-dimensional closed form, infinite domain solutions for straight
dislocations that approaches the correct solution as the distance to the core
decreases to zero. To reduce the computational cost of evaluating this enrich-
ment, a simple discontinuous step enrichment is applied on the glide plane
away from the core.

We also describe the application of this method for modeling dislocations in
single-walled carbon nanotubes (SWCNTs) and thin films. Our interest in dis-
locations in CNTs stems from some recent experiments at high temperatures
(16; 17), where SWCNTs were observed to deformed plastically at 2000oC.
Nardelli et al. (18) proposed a plastic failure mechanism for CNTs based on
dislocation motion. It has been suggested that a Stone-Wales defect (19) can
be seen as a pair of dislocations or as a dislocation dipole. Ding et al. (20)
proposed a mechanism based on a two-atom vacancy defect that can also be
viewed as a dislocation dipole, which can climb and glide. Mori et al. (21) and
Zhang et al. (22) performed molecular mechanics (MM) simulations on small
CNTs under bending and tensile loading, respectively, to obtain glide energet-
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ics of 5-7 pairs. The computational expense of MM analysis is significant, so
as the size of the nanotubes being studied increases, continuum-based analysis
becomes an attractive alternative.

Modeling a CNT in a continuum-based analysis is not without precedent.
Defect-free CNTs have successfully been modeled as thin shells (23; 24; 25;
26; 27; 28). It was shown in (26) that continuum models of pristine CNTs
correctly capture large deformations and buckling instabilities. Therefore it is
not unreasonable to expect that the methods proposed here will accurately
model dislocation defects in nanotubes of any size.

Thin films are the second application area described here. In thin films with
sub-micron dimensions, material interfaces interact strongly with dislocations
to influence the strength of the films and give rise to size effects. Understanding
the behavior of dislocations in thin films is critical for the improvement of the
reliability of many micro-electro-mechanical systems (29). Dislocation models
based on the superposition of infinite domain solutions (30; 3; 4; 5) have been
used extensively to model dislocation threading in thin films (31; 32; 33).
The models are usually based on the superposition of isotropic linear elastic
solutions and idealized material interfaces and boundary conditions. Complex
geometries are difficult to treat by these methods. The method described here
can directly simulate arbitrary complex geometries as it is based on the finite
element method. We will give some representative calculations to demonstrate
the potential of the method.

The paper is organized as follows: in Section 2, methods for modeling dislo-
cations in thin shells by the Extended Finite Element Method (XFEM) are
described. Dislocations are modeled as two-dimensional features on a three-
dimensional manifold. Dislocations created from a Stone-Wales defect are
modeled as a pair of edge dislocations, while dislocations created by a two atom
vacancy are modeled by a pair of prismatic dislocations. In Section 3, meth-
ods for simulating dislocations in thin films by XFEM are described, where
dislocations will be modeled as planar surfaces of slip in a three-dimensional
domain. Results of numerical examples are shown in Section 4, and in Section
5 we give our concluding remarks.

2 XFEM for dislocations in shells

In this section we summarize the Kirchhoff-Love theory for thin shells, describe
the XFEM displacement approximations for modeling edge and prismatic dis-
locations in shells, and derive the discrete equilibrium equations.
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Fig. 1. Sketch of the reference domain Ω0, current domain Ω, and parametric domain
Ω and the mappings between them.

2.1 Shell equations

Let the reference domain and the current domain of the body be denoted
by Ω0 and Ω, respectively, and let Γ0 and Γ be their respective boundaries.
Displacement u is prescribed on Γ0u and traction t0 is prescribed on Γ0t. Let
Γλ

0d represent the interior discontinuities in the reference domain due to the
dislocations, where λ = 1 . . . nD and nD is the total number of dislocations in
the body. Let Γλ

d denote the same discontinuities in the current configuration.
We also define a parametric body Ω with boundary Γ, as shown in Fig. 1.

We will start with a general nonlinear shell theory, but the development will
subsequently be restricted to the linear case. The undeformed reference and
deformed current configurations are mapped to the parametric body by dif-
ferentiable and invertible maps ϕ0 and ϕ, respectively, such that ϕ0(Ω) = Ω0

and ϕ(Ω) = Ω. The deformation map is then given as

Φ = ϕ ◦ ϕ−1
0 . (1)

The position vectors x and X of a material point in the current and the
reference domain, respectively, can be written in terms of the parametric co-
ordinates {θ1, θ2, θ3} such that

X(θ1, θ2, θ3) = R(θ1, θ2) + θ3g
0
3, (2)

x(θ1, θ2, θ3) = r(θ1, θ2) + θ3g3, (3)
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where the functions R(θ1, θ2) and r(θ1, θ2) are the parametric mappings of
the shell in the reference and the deformed configuration, respectively. The
corresponding convected bases of the tangents of the deformed body, gα, and
undeformed body, g0

α, are given by

gα = ϕ,α, g0
α = ϕ0

,α, α = 1, 2. (4)

The covariant components of the metric tensor of the surface of Ω and Ω0 can
be calculated by

gαβ = gα · gβ, g0
αβ = g0

α · g0
β, β = 1, 2, (5)

and the contravariant components of the deformed surface metric tensor, Gαβ,
and the undeformed surface metric tensor, G0

αβ, are obtained by taking the
inverse of the deformed and undeformed covariant metric tensors, respectively.

The displacement of the mid-surface u is given by

u(θ1, θ2) = r(θ1, θ2)−R(θ1, θ2). (6)

The membrane strain εm and bending strain εb are given by the following
expressions (34):

εm
αβ (u) =

1

2
(g0

α · u,β + g0
β · u,α), (7)

εb
αβ (u) = −g0

3 · u,αβ +
1

|g0| [(g
0
α,β × g0

2) · u,1 + (g0
1 × g0

α,β) · u,2]

+
(g0

α,β · g0
2)

|g0| [(g0
2 × g0

3) · u,1 + (g0
3 × g0

1) · u,2], (8)

where

g0
3 =

g0
1 × g0

2

|g0
1 × g0

2|
(9)

and
|g0| = |g0

1 × g0
2|. (10)

g0
3 coincides with the unit normal to the undeformed surface. In the similar

manner, g3 and |g| are calculated from the deformed surface.

The principal of virtual work for a thin shell under linear elastic assumptions
(34; 35) is given as: find u ∈ U , such that

∫

Ω

[
η1δεmT(v)Cεm(u) + η2δεbT(v)Cεb(u)

]
dΩ−

∫

Ω
q·vdΩ−

∫

Γt

t·vdΓ,∀v ∈ U0,

(11)
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where η1 = Eh/(1− ν2), η2 = Eh3/12(1− ν2), h is the thickness of the shell,
E is Young’s modulus, ν is Poisson’s ratio, q is the body force and t is the
traction applied on boundary Γt and C is given by

C =




(G0
11)

2 νG0
11G

0
22 + (1− ν)(G0

12)
2 G0

11G
0
12

(G0
22)

2 G0
22G

0
12

sym. 1
2
[(1− ν)G0

11G
0
22 + (1 + ν)(G0

12)
2]




.

(12)
Note that Eq. (8) involves the second derivative of the displacement and there-
fore C1 continuity is required for the displacement field. The spaces U0 and U
in Eq. (11) are defined as

U0 = {u ∈ H2(Ω \ Γd),u = 0 on Γu}, (13)

U = {u ∈ H2(Ω \ Γd),u = u on Γu}. (14)

2.2 The tangential space and the exponential map

In the remainder of the development of the method for thin shells, we omit the
superscript and subscript 0 and refer to both the material and reference coor-
dinates as x since we no longer differentiate between coordinates or quantities
in the reference and current configurations. In this section we define a map
that transforms a vector tangent to the cylindrical surface to a vector that
starts and ends on the cylinder surface, so that the dislocation enrichment
can be transformed from the parametric domain to current domain.

We use the exponential map as in Arroyo and Belytschko (36). Let TxA
Ω be the

tangent space to Ω centered at xA with basis vectors g1 and g2 defined in (4).

Let expxA

(
uθ

)
be the exponential map which takes a vector uθ = uθ

1g1+uθ
2g2,

in the tangent space TxA
Ω centered at xA, to a point xB on Ω, such that the

distance from xA to xB along Ω is ‖uθ‖. We denote by Fϕ(θ) the map which
takes a vector uθ = uθ

1g1+uθ
2g2, in the tangent space Tϕ(θ)Ω, centered at ϕ (θ),

θ ∈ Ω̄, into a vector u = u1e1 + u2e2 + u3e3. It is defined as

u (θ) = Fϕ(θ)

(
uθ (θ)

)
= expϕ(θ)

(
uθ (θ)

)
− ϕ (θ) , θ ∈ Ω̄ . (15)

For a cylindrical shell of radius R, where the global basis vector e1 ≡ eθ
1 is

the axis of the cylinder, the maps ϕ, expϕ(θ), and Fϕ(θ) have the following
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e2

e3

R

γ

Aδγ

B

θ2

e1

‖uθ
2
‖

γ = θ2/R

δγ = uθ
2
/R

A

g2

g3u

expA

B

uθ
2

ΩΩ Ω

Fig. 2. Illustration of the definition of the exponential map expA and the map FA

for a cylindrical shell Ω of radius R. The exponential map takes the vector uθ onto
the point B on Ω, while FA maps the vector uθ to u.

analytical forms:

ϕ (θ1, θ2) =





θ1

R cos (θ2/R)

R sin (θ2/R)





, (16)

expϕ(θ)

(
uθ (θ1, θ2)

)
=





uθ
1 + θ1

R cos
(
θ2/R + uθ

2/R
)

R sin
(
θ2/R + uθ

2/R
)





, (17)

and

Fϕ(θ)

(
uθ (θ1, θ2)

)
=





uθ
1

R
(
cos

(
θ2/R + uθ

2/R
)
− cos (θ2/R)

)

R
(
sin

(
θ2/R + uθ

2/R
)
− sin (θ2/R)

)





. (18)

The mappings in (17-18) are depicted in Fig. 2 for a cross-section of the
cylinder perpendicular to e1.

2.3 Displacement approximations

In XFEM, the displacement approximation is decomposed into a standard
continuous part uC and an enriched discontinuous part uD, such that
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u(θ1, θ2) = uC(θ1, θ2) + uD(θ1, θ2), (19)

where uC is given by the standard finite element approximation

uC(θ1, θ2) =
∑

I

NI(θ1, θ2)uI , (20)

where NI are the finite element interpolants and uI are the nodal degrees of
freedom. Let e0

1, e0
2, e0

3 be the basis vectors of the reference coordinate system
and eθ

1, eθ
2, eθ

3 be the basis vectors of the parametric coordinate system.

The geometry of a dislocation pair is described in the parametric coordinate
system by two level set functions f(θ1, θ2) and g(θ1, θ2), such that the glide
plane is given by f(θ1, θ2) = 0 and g(θ1, θ2) < 0 and the dislocation cores are
given by the points of intersection of the contours f(θ1, θ2) = 0 and g(θ1, θ2) =
0, as shown in Fig. 3. In addition, we associate a scalar with each dislocation
core: +1 or -1 when the sense of the dislocation line passing through the core
is in the direction of +eθ

3 and −eθ
3, respectively. For every dislocation pair,

there is always one dislocation with a positive sense and one with a negative
sense.

We also define a local coordinate system at each of these cores. Let êθ+
1 , êθ+

2

and êθ−
1 , êθ−

2 be the basis vectors of the local coordinate system at the core
with positive and negative sense, respectively, as shown in Fig. 3. These basis
vectors are constructed from the level sets f(θ1, θ2) and g(θ1, θ2):

êθ¦
1 = ∇θg|θ¦c

êθ¦
2 = ∇θf |θ¦c
¦ ≡ +,−,

(21)

where θ¦c is the location of the positive or negative core in the parametric coor-
dinate system and ∇θ is the gradient operator with respect to the parametric
coordinate system.

2.3.1 Edge dislocations

The enriched part of the displacement field for an edge dislocation dipole is
given by
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g(θ1, θ2) = 0

f(θ1, θ2) = 0

f(θ1, θ2) > 0

f(θ1, θ2) < 0

g(θ1, θ2) > 0

g(θ1, θ2) > 0
g(θ1, θ2) < 0

g(θ1, θ2) = 0

ê
θ−
1

ê
θ−
2

ê
θ+
2

ê
θ+
1

e
θ
1

e
θ
2

g(θ1, θ2) < 0

g(θ1, θ2) < 0

Fig. 3. Definition of a pair of edge dislocations in the parametric domain by level
sets f(x) and g(x), and the definition of local core coordinate systems (êθ+

1 , êθ+
2 )

and (êθ−
1 , êθ−

2 ).

Fig. 4. An XFEM model of an edge dislocation pair in a CNT. The bigger and
darker nodes belong to S∞,¦ and the smaller and lighter nodes belong to SH .

uD(θ1, θ2) =
∑

J∈SH NJ(θ1, θ2)[Ψ
H(θ1, θ2)−ΨH

J ]

+
∑

K∈S∞,+ NK(θ1, θ2)[Ψ
∞,+(θ1, θ2)−Ψ∞,+

K ]

+
∑

L∈S∞,− NL(θ1, θ2)[Ψ
∞,−(θ1, θ2)−Ψ∞,−

L ] ,

(22)

where ΨH
J = ΨH

J (θJ
1 , θJ

2 ), Ψ∞,+
K = Ψ∞,+

K (θK
1 , θK

2 ) and Ψ∞,−
L = Ψ∞,−

L (θL
1 , θL

2 ).
θJ
1 and θJ

2 are the parametric coordinates of node J . A node K is in S∞,+ if
||θK − θ+

c || < ρ+, is in S∞,− if ||θK − θ−c || < ρ− or is in SH if node K is not
in S∞,+ nor S∞,− and the support of node K is cut by f(θ1, θ2) = 0. Fig. 4
shows the nodes in the sets S∞,+, S∞,− and SH for a mesh of a CNT with a
dislocation pair.

The enrichment vector fields at ϕ (θ) are first defined in the tangent space and
are then mapped by Fϕ(θ) to displacements in the global coordinate system.
For example,

ΨH(θ1, θ2) = Fϕ(θ)

(
ΨH

θ (θ1, θ2)
)

, (23)

where
ΨH

θ (θ1, θ2) = bθH(−f(θ1, θ2)g(θ1, θ2)) , (24)

9



Fig. 5. Prismatic dislocation in a two-dimensional sheet.

H(·) is the Heaviside step function and bθ is the image of the Burgers vector
b in the parametric domain. This means that the dislocation is defined by a
constant slip across the glide plane in the parametric domain. Its image in the
shell will vary with the location of the discontinuity.

The singular core enrichment Ψ∞,¦(θ1, θ2) is defined in a similar way, so

Ψ∞,¦(θ1, θ2) = Fϕ(θ) (Ψ∞,¦
θ (θ1, θ2)) , ¦ = +,− , (25)

where

Ψ∞,¦
θ (θ1, θ2) = T¦ · u∞,¦(θ¦1, θ

¦
2), ¦ = +,− , (26)

The point (θ¦1, θ
¦
2) is defined with respect to the local core coordinate system

(êθ¦
1 , êθ¦

2 ) in the parametric domain and T¦ is the rotation matrix between
the local parametric coordinate system (êθ¦

1 , êθ¦
2 ) and the global parametric

coordinate system (eθ
1, e

θ
2). So, the rotation matrix in (26) is

T¦ =



eθ

1 · êθ¦
1 eθ

1 · êθ¦
2

eθ
2 · êθ¦

1 eθ
2 · êθ¦

2


 , ¦ = +,− . (27)

and u∞,¦(θ¦1, θ
¦
2) is the plane stress solution for an edge dislocation in an infinite

domain given by

u∞,¦(θ¦1, θ
¦
2) = bθ

1

2π




(
tan−1

(
θ¦2
θ¦1

)
+

θ¦1θ¦2
2(1−ν)(θ¦1

2+θ¦2
2)

)

−
(

1−2ν
4(1−ν)

ln(θ¦1
2 + θ¦2

2) +
θ¦1

2−θ¦2
2

4(1−ν)(θ¦1
2+θ¦2

2)

)


 . (28)

where bθ is the magnitude of the Burgers vector in the parametric domain.
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Fig. 6. An XFEM model of a prismatic dislocation pair in a CNT with nodes in SP

indicated. For clarity only the top surface is shown.

We note here that both the magnitude and direction of bθ are constant in the
parametric domain, but in the reference domain, b depends on the location
and orientation of the dislocation and the curvature of the shell.

2.3.2 Prismatic dislocations

A prismatic dislocation dipole can be created by either removing a row of
atoms from the lattice or inserting an extra row of atoms, as shown in Fig. 5.
We have used a step enrichment function to model this type of dislocation as
proposed in (11). The discontinuous part of the displacement approximation
for a prismatic dislocation is

uD(θ1, θ2) =
∑

J∈SP

NJ(θ1, θ2)[Ψ
P (θ1, θ2)−ΨP

J ], (29)

where ΨP
J = ΨP

J (θJ
1 , θJ

2 ). The nodal set SP is the set of all the nodes of the
elements cut by f(θ1, θ2) = 0 and g(θ1, θ2) < 0. Fig. 6 shows the enriched
nodes of a CNT containing a prismatic dislocation pair. Following the same
procedure as with the edge dislocation enrichment, ΨP (θ1, θ2) is defined in
terms of a two-dimensional field ΨP

θ (θ1, θ2) defined as:

ΨP
θ (θ1, θ2) = bθH(−f(θ1, θ2)g(θ1, θ2)). (30)

where bθ is perpendicular to f(θ1, θ2) = 0.

2.4 Discrete equations

Substituting Eqs. (20) and either (22) or (29) into Eq. (19) and Eq. (19) into
Eq. (11) yields the following discrete equations

Kd = f ext + fd, (31)
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where
f ext
I =

∫

Ω
NT

I qdΩ +
∫

Γt

NT
I tdΓ, (32)

and where d is a vector of nodal unknowns. The stiffness matrix K is given
by

KIJ =
∫

Ω

[
η1(MI)TCMJ + η2(BI)TCBJ

]
dΩ , (33)

where

MI =




NI ,1g
0
1 · e1 NI ,1g

0
1 · e2 NI ,1g

0
1 · e3

NI ,2g
0
1 · e1 NI ,2g

0
1 · e2 NI ,2g

0
1 · e3

(NI ,2g
0
1 + NI ,1g

0
2) · e1 (NI ,2g

0
1 + NI ,1g

0
2) · e2 (NI ,2g

0
1 + NI ,1g

0
2) · e3




,

(34)





BI
1j

BI
2j

BI
3j





=




(
−NI ,11g

0
3 + 1

|g0| [NI ,1g
0
1,1 × g0

2 + NI ,2g
0
1 × g0

1,1+

g0
3 · g0

1,1(NI ,1g
0
2 × g0

3 + NI ,2g
0
3 × g1)]

)
· ej(

−NI ,22g
0
3 + 1

|g0| [NI ,1g
0
2,2 × g0

2 + NI ,2g
0
1 × g0

2,2+

g0
3 · g0

2,2(NI ,1g
0
2 × g0

3 + NI ,2g
0
3 × g0

1)]
)
· ej(

−NI ,12g
0
3 + 1

|g0| [NI ,1g
0
1,2 × g0

2 + NI ,2g
0
1 × g0

1,2+

g0
3 · g0

1,2(NI ,1g
0
2 × g0

3 + NI ,2g
0
3 × g0

1)]
)
· ej




, (35)

and where j = 1 to 3 and e1, e2 and e3 are the global basis vectors.

The forces due to the dislocation fd are given by

fd
I = −

nD∑

λ=1

∫

Ω

[
η1(MI)TCεm(uDλ) + η2(BI)TCεb(uDλ)

]
dΩ , (36)

where uDλ is the discontinuous part of the displacement approximation for
dislocation pair λ given by (22) or (29), εm is the membrane strain (7), and
εb is the bending strain (8).

Note that K is the standard finite element stiffness matrix, which remains un-
altered by the enrichment. The effects of the dislocations appear only through
the external nodal forces. This is a major advantage for dislocation dynamics
problems (which we have not treated here), since solving the above system
for moving dislocations only requires one triangulation of the stiffness matrix
when a direct solver is used. For further details on this method see (11; 12; 13).
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While the above is limited to a linear elastic formulation, nonlinear materials
can be formulated in a similar manner (13).

3 Dislocations in three-dimensional thin films

In this section we develop the discrete equations for modeling dislocations
in thin films in three dimensions. We begin by introducing the weak form,
followed by the definitions of dislocations by level sets. Next we discuss the
enrichment of the standard finite element approximation and finally we give
the discrete equations.

3.1 Weak Form

Consider a domain Ω with boundary Γ. The boundary Γ is decomposed into
two parts Γt and Γu. On Γt tractions t̄ are applied and on Γu displacements ū
are prescribed. The domain contains dislocations which are the result of slip
across planar surfaces Ωα

D, where α = 1 to nD and nD is the number of such
surfaces. We will refer to the surfaces Ωα

D as slip surfaces. The boundaries Γα
D

of the Ωα
D are the dislocations lines. We denote the union of all slip surfaces

by ΩD = ∪αΩα
D and the union of all slip surface boundaries by ΓD = ∪αΓα

D.
The equilibrium equations are obtained from the principle of virtual work for
a linear elastic body in the absence of body forces: Find u ∈ V such that

∫

Ω

δε> (v)D ε (u) dΩ =
∫

Γt

t̄ · v dΓ , ∀v ∈ V0 , (37)

where ε is the strain in Voigt form and D is the Hookean tensor such that the
Cauchy stress in Voigt form is given by σ = D ε. The spaces V and V0 are

V = {u | u ∈ H1 (Ω\ΓD) , u = 0 on Γu} (38)

and
V0 = {u | u ∈ H1 (Ω\ΓD) , u = ū on Γu} . (39)

3.2 Description of dislocations by level sets

As in the thin shell, we describe each slip surface α by two level sets fα (x) and
gα (x), such that slip surface Ωα

D is defined as Ωα
D = {x|fα (x) = 0 ∩ gα (x) < 0}

13



and the corresponding dislocation line Γα
D is defined as Γα

D = {x|fα (x) = 0 ∩ gα (x) = 0}.
In addition, we require that ∇fα (x) be perpendicular to ∇gα (x). The sense
or tangent of the dislocation curve α is given by ξα (x) = ∇gα (x)×∇fα (x).
The level sets f (x) and g (x) are shown in Fig. 7 for a single circular disloca-
tion loop. The slip surface ΩD is the circular area in the slip plane bounded
by the dislocation loop, ΓD, and with normal n.

ẽ
1

ẽ
2

ẽ
3

g(x) = 0

f(x) = 0

n = ∇f

ΓD

ΩD

Fig. 7. Level set description of a single dislocation loop. The glide plane is defined by
the f (x) = 0 and the intersection of g (x) = 0 and f (x) = 0 defines the dislocation
line ΓD.

Because of the packing arrangements of various crystal lattices, each crystal
has a finite number of energetically favorable slip systems. To simplify the
tracking of the level set functions, we limit the slip surfaces to be planar,
with normal directions corresponding to the close packed planes. Therefore,
∇fα(x) = nα, where nα is the normal to slip plane α. The number of possible
planes with a given normal direction is constrained by the domain size and
the lattice dimension, so all possible dislocation structures can be tracked on
families of planes that correspond to the different slip systems in the crystal
structure.

Since ∇gα (x) is perpendicular to ∇fα (x), gα (x) need only be known on
the plane fα (x) = 0, and the value of gα (x) for any point not on the glide
plane is then determined by a projection. Therefore, a two-dimensional level
set implementation is used for gα (x).

To simplify the following discussion, we will limit ourselves to a domain with
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a single dislocation and omit the superscript α. Let the plane f(x) = 0 be
denoted by Π and the normal of Π be denoted by n. We define a local co-
ordinate system (ê1, ê2) on the plane, centered at the point xQ in the global
coordinate system. The level set f(x) is given by

f (x) =
(
x− xQ

)
· n . (40)

Let φ(x̂) be the two-dimensional projection of g(x) on Π and x̂′ be the local
coordinates of the projection of x onto Π. We interpolate g(x) and ∇g(x)
with the finite element shape functions NI(x), so

g (x) =
∑

I

NI(x)φI (41)

∇g (x) =
∑

I

NI(x)∇φI = g,i e
0
i , (42)

where φI = φ(x̂′I), ∇φI = ∇φ(x̂′I), xI are the global coordinates of node I
and e0

i are the basis vectors of the global coordinate system. Since ∇g(x) is
interpolated, generally ‖∇g(x)‖ 6= 1. Therefore we define ĝ(x) as the scalar
function such that

∇ĝ (x) =
∇g

‖∇g‖ = ĝ,i e
0
i . (43)

3.3 Construction of a local dislocation coordinate system

For convenience, a local curvilinear coordinate system is constructed from the
gradients of the level set functions g(x) and f(x). The basis vectors of the
curvilinear coordinate system are

ẽ1 = ∇ĝ

ẽ2 = ∇f

ẽ3 = ẽ1 × ẽ2

. (44)

These basis vectors are illustrated in Fig. 7 for a circular dislocation loop. ẽ1

is the local normal to the dislocation line in the plane of the slip surface, ẽ2 is
normal to the slip surface and ẽ3 is the local tangent to the dislocation line.

For later developments, the gradients of the three local basis vectors with
respect to the global coordinate system are defined. These are given by
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ẽ1
i,j = ĝ,pj

ẽ2
i,j = 0

ẽ3
i,j = εipqĝ,pjf,q

, (45)

where

ĝ,ij = (g,kg,kg,ij − g,ig,jkg,k) (g,kg,k)
−3/2 (46)

3.4 Displacement approximations

The core enrichment strategy is based on using a two-dimensional solution
for a dislocation in the plane normal to the tangent of the dislocation line
to model the near core behavior. This is combined with a tangential step
function enrichment away from the core. A similar strategy was used for crack
modeling in (37). We will refer to approximations that combine singular core
and step function enrichments as the core enrichment or as the core enriched
approximation. We call the approximation with no core enrichment the step
enrichment.

The displacement field is again decomposed into a continuous part uC (x) and
a discontinuous part uD (x), where

uC (x) =
∑

I

NI (x)uI (47)

and

uD (x) =
nD∑
α

∑

J∈ Sα

NJ (x) (Ψα (x,bα)−Ψα
J) , (48)

where NI (x) are the shape functions, uI are the standard degrees of freedom
of node I, Sα is the set of enriched nodes for slip surface Ωα

D, bα is the
Burgers vector of dislocation α, Ψα (x,bα) is the enrichment vector field for
the dislocation due to slip surface Ωα

D and Ψα
I = Ψα (xI ,b

α). In this form, the
displacement at each node has been shifted; the nodal degrees of freedom uI

are the nodal displacements.

For each slip surface Ωα
D, two enrichment subdomains are defined. The first

subdomain contains the dislocation line, Γα
D, where the stress and strain fields

are singular. It is denoted by Ωα
S and is defined as the union of all elements

such that the shortest distance from each node in the element to the disloca-
tion line Γα

D is less than the enrichment radius. The second subdomain, Ωα
H ,

is the union of all elements not contained in Ωα
S, but that are cut by Ωα

D. The
set of enriched nodes Sα is therefore defined as the nodes of all elements in
Ωα

S ∪Ωα
H . Figure 8 illustrates the definition of the subdomains Ωα

S and Ωα
H for
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a two-dimensional cross-section of a dislocation loop. We note that the dis-
placement field does not satisfy compatibility on the boundary of Ωα

S; however,
since the enrichment always vanishes at the nodes due to the shifting of the
approximation, compatibility is ensured at the nodes, and the gap between
the elements at the border of Ωα

S will decrease as element size is reduced.

Ω
J

α

Ω
S

α

f 
α > 0, gα > 0

f 
α < 0, gα < 0

f 
α < 0, gα > 0

gα = 0

f 
α > 0, gα < 0

f 
α = 0

Fig. 8. Illustration of element-wise enrichment subdomains, Ωα
S and Ωα

H and the
level sets fα (x) and gα (x) for a cross-section of a dislocation loop.

3.4.1 Enrichment function

The enrichment vector field, Ψα (x,bα), for dislocation α is expressed as a
function of the level set fields, fα (x) and gα (x) and of Burgers vector bα.
The enrichment is

Ψα (x,bα) =





R (fα (x) , gα (x)) · Ψ̃ (fα (x) , gα (x) ,bα)

H (fα (x))bα

0

, for x ∈ Ωα
S

, for x ∈ Ωα
H

, otherwise

,

(49)

where H is the Heaviside step function. The rotation matrix is

R (fα (x) , gα (x)) =




ẽ1
1 ẽ2

1 ẽ3
1

ẽ1
2 ẽ2

2 ẽ3
2

ẽ1
3 ẽ2

3 ẽ3
3




=




ĝα
,1 fα

,1 ĝα
,2f

α
,3 − ĝα

,3f,2

ĝα
,2 fα

,2 ĝα
,3f

α
,1 − ĝα

,1f
α
,3

ĝα
,3 fα

,3 ĝα
,1f

α
,2 − ĝα

,2f
α
,1




(50)

and Ψ̃ (fα, gα,bα) is the fine-scale enrichment field (or the core enrichment)
in the local coordinate system.
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The fine-scale enrichment field can be obtained either from analytical solutions
or numerical computations (e.g. closed-form solutions for infinite straight dis-
locations, or refined finite element computations on a subdomain near the
dislocation core.) The fine scale enrichments used here are based on two-
dimensional infinite domain solution for straight dislocations in an isotropic
material. The singular dislocation core enrichment function is

Ψ̃ (f, g,b) = b1̃Ψ̃
E

(f, g) + b2̃Ψ̃
P

(f, g) + b3̃Ψ̃
S

(f, g) , (51)

where bk̃ = Rjk̃bj are the components of Burgers vector in the local coordinate
system; b1̃, b2̃, and b3̃ are the edge, prismatic and screw components of Burgers

vector, respectively. The vector fields Ψ̃
E

(f, g), Ψ̃
P

(f, g), and Ψ̃
S

(f, g) are
the two-dimensional analytical displacement solutions for edge, prismatic and
screw dislocations, respectively. They are given by

Ψ̃
E

1̃ (f, g) = 1
2π

[
tan−1

(
f
g

)
+ fg

2(1−ν)(f2+g2)

]

Ψ̃
E

2̃ (f, g) = −1
8π(1−ν)

[
(1− 2ν) ln (f 2 + g2) + g2−f2

f2+g2

]

Ψ̃
E

3̃ (f, g) = 0

Ψ̃
P

1̃ (f, g) = 1
8π(1−ν)

[
(1− 2ν) ln (f 2 + g2) + f2−g2

f2+g2

]

Ψ̃
P

2̃ (f, g) = 1
2π

[
tan−1

(
f
g

)
− fg

2(1−ν)(f2+g2)

]

Ψ̃
P

3̃ (f, g) = 0

Ψ̃
S

1̃ (f, g) = 0

Ψ̃
S

2̃ (f, g) = 0

Ψ̃
S

3̃ (f, g) = 1
2π

tan−1
(

f
g

)

(52)

where ν is Poisson’s ratio.

3.5 Discrete equations

The discrete equations are obtained by the substitution of (47), (48) into
(37). The resulting system of equations is in the same form as that of the shell
dislocation model and is given by

Kd = f ext + fΨ , (53)
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where the nodal displacement are d, the stiffness matrix is

KIJ =
∫

Ω
B>

I DBJ dΩ (54)

where B is the standard finite element B-matrix, such that the strain in Voigt
form is ε = B d. The nodal forces due to the external forces are

f ext
I =

∫

Γt

N>
I t̄ dΓ , (55)

where NI = NII and I is the identity matrix.

As was the case for the discrete shell equations, the stiffness matrix is the
standard finite element stiffness matrix, and so does not depend on the number
or the location of the dislocations. Therefore, it needs to only be assembled on
the first time step of any dislocation dynamics simulation (we do not report
any results of dislocation dynamics simulatons here).

The nodal forces due to the dislocations are

fΨ
I =

∑
α

∫

Ω
B>

I σα
D dΩ . (56)

The enriched part of the stress due to dislocation α is

σα
D = D εα

D , (57)

where εα
D is the corresponding enriched part of the strain. Stress and strain

are decomposed as
σα

D = σ̄α
D + σ̂α

D (58)

and
εα

D = ε̄α
D + ε̂α

D , (59)

where
σ̄α

D = Dε̄α
D , (60)

σ̂α
D = Dε̂α

D , (61)

ε̄α
D =

∑

J∈Sα

BJΨ
α
J (62)

and

ε̂α
D =




Ψα
1,1

Ψα
2,2

Ψα
1,2 + Ψα

2,1




. (63)

Using the definition (58), equation (56) is rewritten as

fΨ
I =

∑
α

∫

Ωα
S∪Ωα

H

B>
I σ̄α

D dΩ−∑
α

∫

Ωα
S

B>
I σ̂α

D dΩ , (64)
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where we have used the fact the σ̄α
D is only non-zero for x ∈ Ωα

S ∪ Ωα
H and

that σ̂α
D is only non-zero for x ∈ Ωα

S.

To reduce the cost of numerically integrating the singular fields in (56) and
(64), the integration of the nodal forces due to the dislocations is transformed
as proposed in (10; 38; 39). First, integration by parts is applied to the second
term in (64), followed by the application of the divergence theorem, which
gives

fΨ
I =

∑
α

∫

Ωα
S∪Ωα

H

B>
I σ̄α

D dΩ−∑
α

∫

∂Ωα
S

N>
I σ̂α

D · nα
S dΓ+

∑
α

∫

Ωα
S∪Ωα

H

N>
I ∇ · σ̂α

D dΩ,

(65)
where ∂Ωα

S is the boundary of Ωα
S and nα

S is the normal to ∂Ωα
S. Since the

enrichments are two-dimensional equilibrium displacement fields, ∇ · σ̂α
D = 0

for straight dislocation segments. In this work we neglect the slight violation
of ∇ · σ̂α

D = 0 for curved dislocation lines. Therefore, the nodal forces due to
the dislocations are approximated by

fΨ
I ≈ ∑

α

∫

Ωα
S∪Ωα

H

B>
I σ̄α

D dΩ−∑
α

∫

∂Ωα
S

N>
I σ̂α

D · nα
S dΓ . (66)

Thus, for the elements containing the singularity, the integral in (56) has been
transformed to a surface integral. The computation of the nodal forces due
to the dislocation by (66) rather than (56) is critical for the computational
efficiency of the model.

The integral in (66) can be written in an equivalent form as an integral over the
surfaces of all element boundaries. Though such an approach maybe be simpler
to implement, it should be avoided. The evaluation of the integrand in (66) over
an element surface through which a dislocation line passes is computationally
expensive since the enriched part of the stress σ̂α

D is singular. Furthermore,
σ̂α

D is continuous across the faces shared by enriched elements, so the surface
integrals over these shared surfaces will cancel each other out. Therefore, only
the surfaces on enriched elements which are adjacent to unenriched elements
or domain boundary will contribute to (66). The computational efficiency of
this surface integral approach is largely due to the fact that the enriched part
of the stress σ̂α

D is never evaluated near the dislocation line where it is singular,
except in the case where the dislocation line intersects the boundary of the
domain.

To further clarify this point, Figure 9a illustrates a dislocation line passing
through a cubic domain. The enrichment domain, ΩS, for the singular enrich-
ment function is chosen so that it completely encloses the dislocation line, as
in Figure 9b. Figure 9c illustrates the elements in ΩS. It is only the outer
surfaces of these elements over which the nodal forces due to the dislocation
(66) need be computed.
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∂ΩS
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(c)

Fig. 9. Illustration of a dislocation line passing through a cubic domain. a) disloca-
tion line ΓD and slip surface ΩD. b) Singular enrichment domain ΩS . c) Elements
enriched by the singular enrichment functions.

Finally, we note that the gradient of the enrichment field is a function of the
first and second derivatives of the level set fields fα (x) and gα (x), see (46).
As a result, the gradient of the enrichment is not continuous across element
boundaries unless the level set fields are at least C2 continuous. In this study
the level sets gα (x) and their gradients are represented by C0 fields (see (41)
and (42)) and so the enrichment is also C0 and does not meet the required
continuity; however, our numerical studies suggest that the loss in accuracy is
not significant.

3.6 Peach-Koehler force

The configurational forces, i.e. the Peach-Koehler forces, on the dislocation
lines are computed as the rate of change in internal energy released from the
system with respect to displacement of the dislocation line. In this study, two
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methods for computing the dislocation force are compared. The first is the J-
integral method derived by Eshelby (40) for linear elastic bodies and by Batra
(41) for non-linear elastic bodies. Here we use the equivalent domain form of
the J-integral of Moran and Shih (42), which is known to be more accurate
than the contour form when applied to fields obtained by finite element ap-
proximations. We follow the implementation in (43), where the J-integral is
used to compute the stress intensity factors for cracks in three dimensions.

The second method is based on the Peach-Koehler formula (44) and was de-
scribed in (13) for dislocations modeled with XFEM in two dimensions. The
Peach-Koehler force acting at a point xα on dislocation Γα

D is given by:

fPK (xα) = ξ × (σ̃ (xα) · b) , (67)

where ξ is the local tangent to the dislocation line, b is Burgers vector and
σ̃ (xα) is the stress acting on the dislocation line at xα. This stress is additively
decomposed into two parts:

σ̃ (xα) = σC (xα) + σ̃α
D (xα) , (68)

The first part, σC , is the stress from the standard FEM approximation uC ,
i.e. σC = Cε(uC). It incorporates the stress induced by the applied loads,
the finite boundaries (image stress) and by the self stress of the dislocation α.
In addition, in contains contributions from far field dislocations. The second
part, σα

D is the contribution of any other dislocation whose core enrichment
is nonzero at xα.

4 Results

4.1 Dislocations in CNTs

To validate the continuum dislocation method for CNTs, we compared the
results to atomistic simulations. The atomic simulations were performed us-
ing the modified Tersoff-Brenner (MTB-G2) potential (45; 46). MTB-G2 is a
modified reactive empirical bond order (REBO) potential (45), where inter-
atomic interactions are included only for atom pairs with a separation of less
than 2 Å in the reference configuration (47; 46).

The total energy of the system was minimized at 0 K to obtain the equilib-
rium geometry. The locations of carbon atoms at the ends of the tube were
prescribed to apply the displacement boundary conditions and dangling bonds
were terminated with hydrogen atoms. At each strain increment, an energy
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Fig. 10. Stone-Wales defect can be seen as a pair of dislocations, where each 5-7
pair represents a dislocation.

Fig. 11. 5-7 pairs gliding away form each other due to bond reconstructions.

mimimization determined the equilibrium atomic positions by a large scale
BFGS quasi-Newton algorithm (48).

4.2 Glide of dislocation by bond rotation

We begin by studying the energetics of a pair of edge dislocations in a CNT
under axial loading using both MM and XFEM. In the MM model, the edge
dislocation pair is generated by creating a Stone-Wales defect, as shown in
Fig. 10. Ding et al. (20) suggested a glide mechanism in CNTs: the side bond
of one of the heptagons of the Stone-Wales defect is rotated by 90o and the
bonds are reconstructed so that two separated 5-7 defect pairs are generated,
as shown in Fig. 11. As this process repeats, the tube diameter shrinks as the
length increases.

We consider a [15,15] CNT, 249.6 Å long, containing 6120 atoms. In the MM
computations, a Stone-Wales defect was created in the center of the tube
and the energy was minimized with carbon atoms along the boundary fixed
to obtain an equilibrium geometry. The 5-7 pairs were then allowed to glide
away from each other by bond rotation and reconstruction, as shown in Figure
11. The entire glide process was repeated with the CNT stretched by applying
appropriate displacements to the carbon atoms at the ends of the tube.

Figure 12(a) shows the dependence of the energy on the separation distance
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Fig. 12. Energy change at various strains with glide calculated by (a) MM and (b)
XFEM for a [15,15] CNT. One glide step corresponds to the Stone-Wales rotation
of one bond and ∼ 12o separation between the two dislocation cores.
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Fig. 13. Energy change at various strains with glide calculated by XFEM using only
step function enrichment for a [15,15] CNT.

between two 5-7 pairs at different applied strains. It is observed that when
the applied strain is less than 1.2%, the energy of the tube increases as the
5-7 defects move away from each other, suggesting that the gliding process is
not energetically favorable. However, as the applied strain becomes more than
1.2%, a decrease in the energy is observed, suggesting that the process of glide
becomes energetically favorable when the applied strain is greater than 1.2%.
Similar energetics were also observed by Zhang et al. (22) for CNTs in tension
and Mori et al. (21) for CNTs under bending. Note that energy is plotted
relative to the energy of the tube when the dislocation was 4 glide steps (10
Å) apart at each strain, so the plots show the change in total energy as the
dislocation advances. Note that a single glide step separates the dislocation
pair by a single hexagon, which is a ∼12◦ angular separation for a [15,15]
CNT.

We considered the same problem using a continuum shell with a core enriched
dislocation model. A cylindrical mesh of the same radius and length as the
[15,15] CNT used in the above example was constructed. We used the subdi-
vision surface elements proposed in (34; 35). A finite element mesh of 1440
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Fig. 14. Energy change at various strains with glide calculated by (a) MM and (b)
XFEM for a [50,50] CNT. One glide step corresponds to the Stone-Wales rotation
of one bond and ∼ 7.2o separation between the two dislocation cores.

elements of uniform size and 765 nodes was used in the XFEM computations
compared to 6120 atoms for the MM calculations. The material properties
E = 730 GPa and ν = 0.4 were calculated using the MTB-G2 potential and
the Burgers vector was bθ = 2.46 Å. The singular core enrichment was used
for nodes within a two Burgers vectors (4.92 Å) from the core. The dislocation
cores were moved away from each other along their glide planes to replicate
the movement of the 5-7 defect pairs in the MM calculations. Displacement
boundary conditions were applied by fixing all degrees of freedom at the ends
of the cylinder.

In the continuum model the total energy of the system diverges because u∞,
(28) is singular. A standard approach to computing the strain energy is to omit
a small region around the core in computing the total strain energy. The size of
the omitted region was calibrated by matching the energy of the XFEM model
with that of the MM model at 0% applied strain and a separation distance of
four glide steps between the two dislocation cores. The radius of the omitted
region was 2.6 Å, or slightly more than 1 Burgers vector.

Figure 12(b) shows the energy of a dislocation pair calculated by XFEM at
different applied strains versus the distance separating the dislocations. Similar
to the MM calculations, we observe that after an applied strain of 1.2%, the
dislocation motion becomes energetically favorable. The XFEM calculations
have the same dependence on applied strain and closely replicate the MM
calculations.

We repeated the same set of XFEM calculations using only the tangential step
enrichment function (24). Figure 13 shows the energy versus the dislocation
separation distance at various applied strains. The results match reasonably
well with the MM calculations and with the XFEM computations using the
combined singular and tangential step enrichments, (24) and (25), but nearly
8% error was observed in comparison to the singular enrichment XFEM cal-
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Fig. 15. Tensile strain at which glide becomes energetically favorable with increasing
CNT radius.

culations, so the step enrichment is evidently sometimes inadequate for this
degree of mesh resolution.

We performed the same set of calculations on a [50,50] CNT of length 249.6 Å
using both the MM and XFEM methods to judge the applicability to larger
nanotubes where MM becomes expensive. The XFEM model consists of a uni-
form mesh of 4800 elements and 2550 nodes, in comparison to 20400 atoms in
the MM model. The singular core enrichment was used for the nodes within
a distance equal to twice the magnitude of the Burgers vector from the cores.
The change in energy of the system for different separations between disloca-
tion cores is shown in Figure 14. Similar to the [15,15] CNT, for small applied
strain, the energy of the [50,50] tube increases and for high strains the energy
decreases as the two dislocations glides away from each other. However, glide
becomes energetically favorable at applied strain 2.2%, which is higher than
the strain at which the same happens in a [15,15] CNT. In Figure 15, we have
plotted these transition strains calculated using XFEM for CNTs with radius
as large as 67.8 Å ([100,100] CNT). It is observed that as the tube radius
increases the transition strain increases. This is reasonable, since a small CNT
has higher initial bending strains, which increase the total strain energy of the
tube and cause dislocation glide to become energetically favorable at a smaller
applied strain.

4.3 Climb of dislocation by atom removal

We next consider the climb of dislocation pairs due to the removal of atom
pairs from the CNT lattice. It was proposed in (20) that the loss of mass
observed during CNTs experiments (16) was due to the removal of atom pairs,
which leads to the climb motion of a prismatic dislocation. As shown in Figure
16, a two-atom vacancy can be viewed as a dislocation pair. Removal of pairs
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Fig. 16. Climb motion of dislocation due to sequential removal of two-atom pairs
(circled atoms).
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Fig. 17. Energy change at various strains with climb calculated by (a) MM and (b)
XFEM for a [10,0] CNT. One climb step corresponds to the removal of two carbon
atoms and ∼ 2.1 Å separation between the two dislocation cores.

of atoms followed by the reconstruction of bonds induces separation of the
dislocation dipole.

We modeled the climb motion first using MM. A two-atom vacancy defect
was first created in a 143.5 Å long [10,0] CNT containing 1360 atoms. Pairs
of atoms were then removed sequentially so that the climb direction is along
the axis of tube. At each step, the energy for the optimized structure was
calculated. The same process was repeated after applying tensile strains to
the tube. The energy of the tube with respect to the distance between the
two cores is shown in Figure 17(a). It increases as the dislocations move away
from each other at all applied strains. This suggests that, unlike in the case of
dislocation glide, the climb motion is always energetically unfavorable. Note
that Figure 17 shows the energies relative to the energy of the tube when both
of the dislocation cores have climbed one step away from each other.
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The same scenario was modeled by the XFEM dislocation model with a pris-
matic dislocation pair approximated by (29). The tube geometry was rep-
resented by a uniform mesh of 750 elements and 420 nodes. The material
properties E = 915 GPa and ν = 0.4 were computed from the MTB-G2 po-
tential and Burgers vector is bθ = 2.46 Å. Note that the Young’s modulus of a
[10,0] CNT is significantly different from that of a [15,15] CNT. This is one of
the idiosyncracies of the MTB-G2 potential (49). While quantum mechanical
computations show a constant Young’s modulus across all the chiralities of
CNTs, the MTB-G2 potential generates anisotropic behavior and hence sig-
nificantly different Young’s moduli in the axial direction for small radii CNTs
with different chiralities (49).

As in the glide example, a small region around the dislocation core was omit-
ted in the strain energy calculations. The size of this region was calculated by
equating the MM strain energy of the tube after two climb steps (six carbon
atoms removed) with the XFEM strain energy of the tube containing a dis-
location dipole separated by the same distance. Note that the removal of the
first pair of carbon atoms creates a dislocation pair and the removal of next
two atom pairs moves the dislocation cores away from each other. The radius
of the region omitted about the core was 1.86 Å.

The energies calculated using the XFEM are shown in Fig. 17(b). The results
match quite well the MM calculations: the energy increases at all the strains
with dislocation climb. Thus, the XFEM model calculations agree closely with
the MM models in predicting that the climb motion of dislocation is not
energetically favorable. However, at very high temperatures this behavior can
be realized due to high thermal energies available to overcome the energy
barrier.

4.4 Dislocation loop

In the remainder of this section, we report numerical studies of dislocations
in three-dimensional bodies and thin films.

In the first three-dimensional example we compare the accuracy of the stress
fields from the XFEM dislocation model with step enrichment versus that
with core enrichment. In addition, the Peach-Koehler force computed by the
domain form of the J-integral (42) is compared to that computed directly from
the XFEM stress field by (67). Consider a dislocation loop of radius 0.25µm
centered in a cubic domain of dimensions 1× 1× 1µm, as shown in Figure 18.
The dislocation loop lies in the plane parallel to the x-y plane. The Burgers
vector is parallel to the x-asis and has a magnitude of 5Å. The elastic material
properties are µ = 62.25 GPa and λ = 45 GPa. The domain is subject to a
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Fig. 18. Illustration of a circular dislocation loop in a cubic domain under a pure
shear loading σxz.

pure shear loading σxz = 182 MPa.

Figure 19 compares the stresses σxx and σxz along the line passing through the
center of the dislocation loop parallel to the x-axis. The stresses are plotted
for meshes from 30×30×30 to 131×131×131 8-node brick elements. We see
that even with the coarsest mesh, the XFEM solution with core enrichment has
nearly converged. On the other hand, the XFEM solution with step enrichment
converges slowly. In both cases the computation time is dominated by solving
the standard finite element equations, so the core enrichment offers superior
accuracy at negligible cost.

Figure 20 compares the Peach-Koehler force computed by the domain form of
the J-integral (42) with the solution of the step enriched XFEM and a direction
computation of (67) using the solution of the core enriched XFEM (48). The
Peach-Koehler forces are shown as vectors radiating from the dislocation line.
Results are reported for a fine mesh of 100 × 100 × 100 trilinear elements.
The magnitude of the Peach-Koehler force along the dislocation line is nearly
constant, as would be expected for a pure shear loading. The results from both
methods show good agreement. The maximum difference is about 3%, which
we attribute to inaccuracies in the solution obtained with the tangential step
enrichment.

4.5 Threading dislocations in layered systems

In this example, we model a layered system with a threading dislocation on
a [111] glide plane running along the [1̄10] direction, as shown in Figure 21a.
The dimensions of the sample are 2µm×2µm×1µm, where the height of each
layer is 500nm. The elastic properties of the system are µ1 = 62.25, µ2 =

29



singular 303

singular 503

singular 1003

jump 303

jump 1003

jump 1313

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2 x 108x 108

Position along x-axis (μm)
0 0.2 0.4 0.6 0.8 1

Position along x-axis (μm)

σ
x

z s
tr

e
ss

 c
o

m
p

o
n

e
n

t 
 (

P
a

)

σ
x

x
 s

tr
e

ss
 c

o
m

p
o

n
e

n
t 

 (
P

a
)

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 19. Comparison of the stresses σxx and σxz for the dislocation loop problem
computed by XFEM with step enrichment and XFEM with core enrichments for
meshes from 30× 30× 30 to 131× 131× 131 trilinear elements.

0 1/2π π 3/2π 2π
0

1

2

3

4

5

6

7

8

9

10

θ

%
 d
if
fe
re
n
c
e

PK equation

J-integral

θ

Fig. 20. Comparison of the Peach-Koehler force computed by the domain form of
the J-integral (42) and by the Peach-Koehler equation (67).

68.1, λ1 = 45, and λ2 = 52.4 GPa. The σxx stress component is plotted in
Figure 21b, showing a discontinuity in the stress at the material interface as
expected due to the mismatch of material properties. In this problem, the
J-integral is problematic because the integration domain is not homogenous
when the dislocation approaches the material interface, and therefore singular
enrichments are advantageous.
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Fig. 21. (a) Epilayer on substrate with a misfit dislocation segment running parallel
to the material interface and connected to the free surface by threading segments.
(b) σxx stress contours near the dislocation core computed with a uniform mesh of
100x100x100 elements (3.1 million degrees of freedom).

4.6 Dislocations in misfit layered systems

The singular enrichment is particularly useful when the dislocation is near
material boundaries. In the next example, we study a layered system where the
lattice mismatch leads to a 1% strain at the material interface. The mismatch
is induced by applying a uniform thermal strain in the top material layer. The
domain is a unit cube (in microns) with one corner at the origin; the height
of each layer is 500nm and the normal direction of the material interface is
along the z-direction. The elastic properties of the system are the same as
in the previous example. A circular dislocation loop with a 110 nm radius is
centered 100 nm above the material interface and 100 nm from the two free
surfaces x = 1 and y = 1, as shown in Figure 4.6. The dislocation loop lies
on the [111] plane, and the Burgers vector is in the [1̄10] direction. Boundary
conditions are applied on the surfaces x = 0, y = 0, and z = 0 such that the
displacement normal to these surfaces is zero. The top surface, z = 1, is also
a free surface.

The results of the analysis are shown in Figure 23. These forces are due to
a combination of the self force on the loop, the interaction with the free sur-
faces at x = 1, y = 1, and z = 1, the material interface, and the large strain
caused by to the mismatch of the materials at the interface. Unlike in super-
position methods, the standard finite element field automatically provides the
contributions from each of these image fields, without the need to individually
compute their contributions. These fields act to shrink the height of the loop,
but cause the sides to bow out and travel along the material interface in a
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Fig. 22. Illustration of the problem of a dislocation loop in the [111] plane in a thin
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threading motion.

Fig. 23. Peach-Koehler forces computed on a circular dislocation loop in a
strained-layered system with misfit strain of 1%. The darkened triangular area shows
the [111] glide plane on which the dislocation loop resides, and the contours show
the σxx stresses for a slice at x = 0.9.
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5 Conclusions

We have demonstrated the capabilities of the Extended Finite Element Method
(XFEM) for modeling dislocations in problems involving complex geometry
such as carbon nanotubes and three-dimensional thin films. The extended
finite element method allows for the addition of local enrichments to the dis-
placement field that model the displacement discontinuity across the glide
plane. It also makes possible the addition of singular enrichments around the
core by two-dimensional analytical solutions that are transformed to problem-
specific local coordinate systems. For thin shells, the near-core singular en-
richment is based on a plane stress solution for an edge dislocation in an
infinite domain, while in three-dimensions, the near-core singular enrichment
are based on plain strain solutions for edge, screw and prismatic dislocations
in an infinite domain. In both the shell and three-dimensional models, the ef-
fects of the dislocations appear as nodal forces, which arise from integrals over
the domains of the elements. In the core-step enrichment scheme, we have em-
ployed a transformation, similar to that proposed in (10; 38; 39), which allows
the nodal forces to be computed much more efficiently by surface integrals
over the boundaries of the singular core enrichment domain.

It was found that the combined core-step enrichment scheme converges much
more quickly than the discontinuous step enrichment scheme. Furthermore, the
computation of the Peach-Koehler forces in three-dimensional models using
core-step enrichments is much less computationally demanding and easier to
implement than the evaluation of the J-integrals that are required for models
using the discontinuous step enrichment. However, such core enrichments are
not available for anisotropic materials, so their applicability is more limited.
Step enrichments are applicable to both anisotropic and nonlinear materials.

The thin shell dislocation model was verified by comparison to a Molecular
Mechanics (MM) model with a modified Tersoff-Brenner (MTB-G2) potential.
The parameters of the continuum model (elastic modulus, Poisson’s ratio, and
the core cut-off radius) were calibrated by simple MM tests. Simulations of the
motion of a pair of edge dislocations in a [15,15] and a [50,50] carbon nanotube
by both the continuum and the discrete atomistic models showed that the
continuum model predicts very accurate energies. The energies for the XFEM
model with the core-step enrichment scheme are nearly indistinguishable from
the MM energies; for instance, both models predict that the dislocation motion
becomes energetically favorable at 1.2% and 2.2% applied tensile strains for
a [15,15] and a [50,50] carbon nanotube, respectively. The energies computed
by the XFEM model with the step enrichment scheme are less accurate, but
the maximum error is less than 8%. In carbon nanotubes of large radii (up to
[100,100]), where MM computation would be very expensive, we have found
that the CNTs with larger radii require higher applied strains for the glide
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of edge dislocations to become favorable. For example, dislocation motion
becomes favorable at 3.3% applied strain in a [100,100] nanotube versus 1.2%
strain for a [15,15] nanotube.

We validated the thin shell dislocation model for prismatic dislocations by
comparison to MM computations. The energies computed by the XFEM model
strongly agree with the MM computations and both methods predict that
climb is not energetically favorable at the applied strains studied here.

To the authors’ knowledge, the thin shell models presented here is the first
continuum model for dislocations in thin shells. Many of the mechanisms of
plasticity in carbon nanotubes can now be studied by this computationally
more efficient dislocation model.

The modeling of dislocations in three-dimensional bodies by the proposed
method with core-step enrichment was validated by comparison to the sim-
pler, yet less efficient, step enrichment. Solutions with these two enrichment
schemes were compared for a dislocation loop in a cubic domain under pure
shear. In was shown that the stress from the combined core-step enrichment
is more accurate and converges more rapidly than that from only the step
enrichment - which is similar to what has been found for cracks modeled with
XFEM. In addition, it was shown that the Peach-Koehler force computed di-
rectly from the stress field of the XFEM solution with both core and step
enrichments compares well with that computed by domain integrals with only
step enrichment.

We have also studied problems of dislocation loops in thin films. The core-step
enrichment was applied to a threading dislocation and to a circular dislocation
loop near a material interface with a 1% lattice misfit strain. These examples
are difficult for XFEM with step enrichment since the computation of the
Peach-Koehler force by domain integrals must be made over a homogeneous
domain and illustrate the advantages of the combined core-step enrichment, in
which the Peach-Koehler force can be directly computed from the stress. These
computations indicate that when a singular near-core enrichment is used, the
standard part of the finite element approximation can accurately capture the
combined effects of image stresses arising from material interfaces and domain
boundaries, dislocation self-stresses, and stresses from other dislocations.

These dislocation models offer substantial promise in the simulation of dislo-
cations in thin films and in thin shells due to their computational efficiency
and accuracy and due to the ease by which they can be incorporated into
existing FEM software. These are only preliminary developments, but they
provide a framework for dislocation dynamics, nonlinear computations, and
other challenges.
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