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SUMMARY

In the extended finite element method (XFEM), errors are caused by parasitic terms in the approximation
space of the blending elements at the edge of the enriched subdomain. A discontinuous Galerkin (DG)
formulation is developed, which circumvents this source of error. A patch-based version of the DG
formulation is developed, which decomposes the domain into enriched and unenriched subdomains.
Continuity between patches is enforced with an internal penalty method. An element-based form is also
developed, where each element is considered a patch. The patch-based DG is shown to have similar
accuracy to the element-based DG for a given discretization but requires significantly fewer degrees
of freedom. The method is applied to material interfaces, cracks and dislocation problems. For the
dislocations, a contour integral form of the internal forces that only requires integration over the patch
boundaries is developed. A previously developed assumed strain (AS) method is also developed further
and compared with the DG method for weak discontinuities and linear elastic cracks. The DG method is
shown to be significantly more accurate than the standard XFEM for a given element size and to converge
optimally, even where the standard XFEM does not. The accuracy of the DG method is similar to that of
the AS method but requires less application-specific coding. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Enriched finite element methods (FEMs), such as the extended finite element method (XFEM) of
Belytschko and Black [1] and Moés et al. [2] and the global partition of unity method (PUM)
of Melenk and Babuska [3], are a powerful way of augmenting standard finite element (FE)
approximations using known information about the solution of the problem. It is generally desirable
to limit the enrichment to the vicinity of the feature in order to reduce the number of unknowns
and improve the conditioning of the system of equations.

Local enrichments have been applied successfully to numerous problems. Recent applications
include dynamic crack and shear band propagation, Song et al. [4]; cohesive fracture, Asferg
et al. [5]; polycrystals and grain boundaries, Simone et al. [6]; and dislocations, Ventura et
al. [7] and Gracie et al. [8]. The method is more accurate than the standard FEM; however,
when enrichment is applied to problems with singular fields, the reported results often show
the same convergence rate as the standard FEM, which is suboptimal. This degradation of the
convergence rate is attributed in part to parasitic terms in the approximation space that arises in
the blending elements. A blending element is an element where some but not all of the nodes of
the element are enriched. Sukumar ef al. [9] showed that parasitic terms in the blending elements
limit the accuracy of local PUM methods. Chessa ef al. [10] eliminated the parasitic terms by
applying an assumed strain (AS) method in the blending elements. The larger approximation space
of higher-order spectral elements has also been shown to improve the accuracy in the blending
elements [11].

Here, we develop a new method for circumventing the spurious behaviour of the blending
elements through a discontinuous Galerkin (DG) approach. We will refer to the proposed method
as DG-XFEM. The DG method was introduced by Reed and Hill [12] to solve neutron transport
problems. Since then many variants of the original method have evolved, such as the method
of Bassi and Rebay [13], the local DG method of Cockburn and Shu [14], the discontinuous
hp method of Baumann and Oden [15] and the internal penalty (IP) method of Wheeler [16]
and Arnold [17]. Recently, Arnold et al. [18] have presented a unified framework for nine
of the most common DG methods. An introduction to DG methods for solids is given by
Pfeiffer [19].

In the proposed DG-XFEM method, the domain is decomposed into patches where enrichments
are to be added. Each patch is discretized independently. Enrichments are applied over entire
patches but not over the entire domain. As a result the enrichment is local but does not require
blending elements. Continuity between the patches is enforced in a weak sense using the IP method
[16, 17]. The IP method is stable and consistent and has been shown to converge optimally in both
the H' and L? norms for the Poisson equation [18]. This approach is easy to apply and yields
very accurate solutions.

We also develop an AS framework similar to Chessa et al. [10], denoted as AS-XFEM, for
elastic cracks. The AS approximation is designed to eliminate the parasitic terms in the strain
approximation, leading to improved accuracy and optimal convergence rates. The primary drawback
of the AS method is the difficulty in constructing the basis functions for the AS approximation. The
functions must be linearly independent and span the space of the parasitic terms and furthermore
must be constructed for each choice of enrichment. In addition, the method entails the identification
of the blending elements and special formulations for these elements. Thus, it lacks the generality
and ease of implementation of DG-XFEM. We will compare the AS-XFEM method with the
DG-XFEM method for cracks.
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The DG-XFEM presented here is similar to the discontinuous enrichment method (DEM) of
Farhat et al. [20], but in the latter, Lagrange multipliers are used to weakly enforce continuity
between enriched and unenriched subdomains. An advantage of DEM is that the enrichment
degrees of freedom can be statically condensed on the element level, so the only additional degrees
of freedom stem from the Lagrange multipliers. Duarte et al. [21] have used a DG method with
a PUM enrichment for the singularities that arise in a one-dimensional elastodynamics problem.
Laborde et al. [22] improved XFEM for linear elastic cracks with domain decomposition and
pointwise matching between the enriched and unenriched subdomains. The resulting approximation
is discontinuous and is reported to be slightly superconvergent, O (h':).

In the following section, we review the XFEM approximation and blending elements. In
Section 3, the DG formulation for XFEM is described and in Section 4 we briefly recall the
AS formulation. The application of the AS method for elastic cracks is presented in Section 5.
In Section 6 the simplified discrete DG-XFEM equations for dislocation modelling are derived.
Several examples, covering a wide range of applications, are presented in Section 7. Section 8
gives a discussion of our results and our conclusions.

2. BLENDING ELEMENTS

In this section, we describe the standard XFEM formulation and define blending elements. The
XFEM approximation has the form

u=u"+uf (1)

where u® is the standard FEM approximation and u” is the enrichment. The standard part of the
approximation is

uC =Y N;(xu; ()
1eS

where S is the set of all nodes, N; are the shape functions and u; are the nodal unknowns. The
augmentation of the standard FEM, known as the enriched part of the approximation, is

Nenr

=3 3 N;®P ()] 3)

t=1JeS"

where ney, is the number of enrichments, W*(x) are enrichment functions, S° is the set of nodes
enriched by W' (x) and a’, are the unknowns associated with node J for enrichment function t.
We will use boldface to denote tensors and matrices and a superscript T to denote the transpose
operator.

A blending element of enrichment function t is denoted as Qg . and is defined as an element
with nodes $¢ for which STNS¢ # 8¢ and STNS¢ #M. Let Q8 ={J,,, Qf,e be the blending domain
of enrichment 7. Since only some nodes of the blending elements are enriched, the shape functions
that premultiply the enrichment functions W* in (3) do nor satisfy the PU property, i.e.

> Nix)#1  for xeQB 4)
IeST
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As a result, the enrichment function cannot be reproduced in QF by the enriched approximation,
u®. Furthermore, a linear function cannot be reproduced in the blending elements when a5 #0
for some node J in the blending element.

Failure to satisfy the PU property can lead to large errors in the blending elements and poor
global convergence. Chessa et al. [10] showed that for the ramp enrichment ((x) = (x)), the error
in the blending elements scales linearly with element size, whereas it scales quadratically in fully
enriched and unenriched elements.

When XFEM is applied to linear elastic fracture mechanics with three-node triangular elements,
the parasitic terms in the approximation space of the blending elements lead to poorly satisfied
traction boundary conditions along the crack faces. We will study the case of a crack subjected
to Mode I loading in Section 7.3.1, but here we indicate the extent to which the standard XFEM
does not satisfy the traction-free boundary conditions, see Figure 7(b). The normal stress should
be close to zero (the natural boundary condition); however, it can be seen to deviate substantially
from zero. While a natural boundary condition will not be satisfied exactly in any FE solution,
the error here is too large. We observe that the parasitic terms in the blending elements appear to
affect the accuracy of the solution in all elements that are enriched.

3. DISCONTINUOUS GALERKIN METHOD

In this section we describe XFEM with a DG formulation, DG-XFEM, which eliminates the need
for blending elements. In this approach the domain is decomposed into a set of non-overlapping
patches. Enrichments are then applied over these patches and continuity is enforced on the edges
of the patches by an IP method.

Consider the domain Q with boundary I'. On a section of the boundary I',, the displacement
boundary conditions are u=1 and on I, =T"/T,, the tractions are t=t . The domain Q is partitioned
into n, non-overlapping patches Qﬁ, p=1 to n,. Each patch B is enriched by the enrichment

functions, pop ;o=1to n%“r, where n%“r is the number of enrichment functions for patch 5. When
patch f3 is not enriched by any enrichment functions n%“rzo. The boundary of patch f is denoted

by 6Qg . Let 0Qpp= 5!25 0695 be the intersection of the boundaries of patches f§ and 6. Note that
several patches may be enriched by the same enrichment function; this will occur whenever the
domains of two enrichment functions overlap. We have chosen to denote the enrichment functions
of each patch as separate functions because it is convenient for the discretization of the governing
equations.

An example of the decomposition of a domain into patches is shown in Figure 1; it illustrates
a domain, Q; enrichments W' and W? are applied over subdomains Qf and QF respectively. The
boundaries of QF and Qf decompose the domain, Q, into four patches. Patches Qf and Qf are
enriched by P! and ¥, respectively. Patch Q§ is enriched by both P! and ¥? and patch Qf is
unenriched.

The displacement approximation on patch f is

enr

n
B
o
VYo=Y M [uf+ > v xal (5)
I1es? a=1
B
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Figure 1. (a) Illustration of a domain with two overlapping enrichment domains and (b) decomposition
of the domain in (a) into four patches defined by the boundaries of the enrichment domain.

(a)

where & g is the set of nodes in patch 5. When patch f is not enriched by any enrichment functions
enr

ng =0 and (5) simplifies to the standard FEM approximation. We note that the PU property is
satisfied everywhere on each patch. We define the displacement jump across d€2g by

wN=1w’-u’, p=1...n, and 0=1... n, (6)
and the average traction by

Wh=1tP+1%, p=1...n, and 0=1... n, (7)

where uf, t# =6 -nf and nf are the displacement, traction and normal on the boundary of patch
p and o” is the stress on the boundary of patch f.

Continuity between patches is enforced in a weak sense by the penalty method of Wheeler [16]
and Arnold [17]. The DG-XFEM weak form is: find u={u1, ..., u'r}, w? e #P such that

np np
ST = 3 / e@vh)-oeh)da+ Yy (= / [ov” N dr
p=1 QII; 0=p A 0Qpp

—1 / (0t%)[[u1dT—p, /
aQpp o

0Qp

[16v7P11(£9F) drﬂ —sW==0 vovPev Pt (8)

where A is a measure of the domain of an element. In the present work we take y; =u,=1; ais a
penalty-like constant and the term it multiplies is a stabilization term. This penalty-like parameter
is problem dependent. The spaces of admissible trial and test functions are

%/”={u|ueyf1(g/§’), u=1ion I} )

~/l’={u|ueyf1(§z;;),u=0 on [} (10)

respectively. We, as other authors, have found that « can be much smaller than standard penalty
parameters; the specific values used here are presented later.
We adopt the linear elastic stress strain law, which in Voigt notation is

o(e)=Cse (11)

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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and the strain—displacement equation
cw)=V u (12)

where ¥V 'u is the symmetric gradient of u.
The discrete equations are obtained by substituting (11), (12) and the displacement approximation
for each patch (5) into the weak form (8), which gives

where d' = {d1 d1 ...,d}nl,...,d’;p,dgp, ...,d,’;ﬁp} is the vector of nodal degrees of freedom

and mg is the number of nodes in patch f. The nodal vector for node / of patch f8 is (df )=
{ul,g, (a})ﬁ, e, (a’;ﬁ )ﬂ}. The stiffnesses are

KXFEM ﬁle"ﬁ K/ = X B/CB,dQ, I.Jes} (14)
np np 0 0
=> S —KL - &) (15)
f=10>p
where
Kﬁszi/ N/)TCNYAr, 1egt, sest (16)
4A Jogy,
1
Kﬁ%:Z/ ®B)) CNY T, 1esf. Jes) (17)
59/39
B B RO .07
—p0 [B;-n”, Bj-n"] if xesup(/) and xe€sup(J)
J(x) = ) (18)
if x¢sup(/) and x ¢ sup(J)
B .
—B0 [N, —NY 71 if xesup(/) and xesup(J)
NJy ) = (19)
if x¢sup(/) and x¢sup(J)

and where sup(/) denotes the support of node /. The nodal matrices Bf and Nf (for node I on
: Bab BB
patch f) are defined in the standard way such that Vsuﬁzzles}; B;d;, and “ﬁZZIES;j N;d;.

Bf and Nf can be decomposed into continuous and enriched parts: Bf = [BIC’B , Bf’ﬁ ] and N =

[Nf’ﬁ , Nf’ﬁ ], respectively. In two dimensions, the matrices are

Nrx O
C,
BSP=| 0o Wi, (20)
Nl,y NI,x
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)

DOI: 10.1002/nme



BLENDING IN XFEM BY DG AND AS METHODS

YN, 0 "IN 0

BEF = 0 PN, 0 &N, 1)
LN, (PN &N, N
[N, 0

NG = (22)
0 N

rp | ¥PNC 0 w0

N[ = enrﬁ (23)
0 wAN, 0 w5 P,

where a comma denotes derivatives with respect to the variable that follows. Note that assembly is
implied by the summation operators in (14) and (15). KXFEM consists of the assembled standard
XFEM stiffness matrices of each patch, while KPC contains the DG terms that enforce continuity
between patches.

We will refer to the above formulation as the patch-based DG-XFEM. We will also consider an
element-based DG-XFEM. In the element-based DG-XFEM each element in the mesh is treated
as a patch as in the standard DG formulations; hence, the nodes of each element are independent
and the DG terms are applied over all element edges.

3.1. Other possible DG implementations

For many enrichment functions, it is effective to evaluate the DG terms only for the enriched part
of the displacement approximation. The DG terms tend to cause the enrichment to vanish at the
edge of the enrichment domain. Although it is less convenient in some applications, we have found
that DG-XFEM is more accurate if the constraint terms are applied to the entire field and not just
the enrichment. This is similar to what has been reported with the Lagrange multiplier method of
Farhat et al. [20, 23].

4. ASSUMED STRAIN FORMULATION

The AS method [24] has previously been applied in blending elements to eliminate the parasitic
terms in the strain approximation [10]. The AS method is a special case of the Hu—Washizu
variational principle, which is known as a multi-field method because separate approximations for
the displacement, u, strain, g, and stress, o, are used. The AS-XFEM method approximates the
displacement, u, by the standard XFEM approximation (1)—(3). The strain is approximated by

g=¢(u)+&* (24)
where g(u) =V uand £ is the AS given by
g

=) Nixoaf (25)

i=1
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where Nf are the AS shape functions, n¢ is the number of AS shape functions for element e
and af are the AS degrees of freedom associated with AS shape function i. The superscript e
on of indicates that these degrees of freedom are element specific since the strain field is not
continuous. The coefficients a} can be eliminated on the element level before the assembly of the
global stiffness matrix. The AS shape functions must be orthogonal to a constant field, i.e.

/ NE(x)dQ=0 (26)
Qe

It has been shown by Stolarski and Belytschko [25] that the AS, &“, yields no benefits when
used to enrich the strain approximation space. It can, however, be used to eliminate parasitic terms
from the strain approximation space. Here, the AS shape functions are chosen so as to eliminate
the parasitic terms in the blending elements, as described later.

The discrete AS element equations are

Ke‘ KET dé’ f e
od Kax o 0

where d° is a vector of element nodal degrees of freedom, a is a vector of the AS unknowns,
f¢ is the standard FEM vector resulting from the body loads, K¢, is the standard XFEM element
stiffness matrix and

¢ = f NéTCBdQ (28)

€

K¢, = / NeTCNEdQ (29)

e

where B is the standard B-matrix resulting from the XFEM approximation, (20) and (21), and Né¢
is the matrix containing the AS shape functions. The AS degrees of freedom, a¢, are evaluated on
the element level by static condensation. The choice of the AS shape functions for elastic cracks
will be discussed in the following section. See Chessa et al. [10] for a detailed description of
the AS method for blending and Belytschko et al. [26] for a discussion on the applications of
multi-field methods.

5. ELASTIC CRACKS

The enrichments of linear elastic cracks considered here are based on [1, 2, 27]. The enrichment
of the displacement approximation will be presented only in terms of DG-XFEM. The definition
of the enrichment functions for AS-XFEM is identical to the standard XFEM. For clarity we will
omit the superscripts on the enrichment functions denoting the patches and will only consider a
single crack, denoted as 7.

We define the geometry of the crack using two level set functions, f,(x) and g,(x), as in
Stolarska et al. [28] and Belytschko et al. [29]. The crack surface is given by all x such that
f5(x)=0 and g,(x) > 0, while the crack front (or tip in two dimensions) is given by all x such that
fy(x)=0 and g,(x) =0, see Figure 2.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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e ™\
Q
= / t
(e iy
Nad|

Figure 2. Notation for the representation of a crack I'c by two level set functions f(x) and g(x).

For a given crack, each patch that contains the crack or is near the crack front will be enriched
by one of the two types of enrichments. Patches near the crack front are enriched by a set of
singular enrichment functions, developed by Fleming et al. [27], based on the near-field asymptotic
solution. These functions are often referred to as the branch functions and are given by

{(Wc(ry,0))= { 7y sin % /Ty cos %, 7y sin % sin0,, /7, cos % sin 9},} (30)
where r, and 0, are the polar coordinates of the local coordinate system defined with an origin
at the tip of crack y and with basis vectors defined by the unit vectors tangent and normal to the
crack at the crack tip, see Figure 2. The discontinuity across the crack surface is introduced into
the approximation by the first term in (30).

All patches that are not enriched by (30) but are crossed by crack y are enriched by

VYr(x)=H(f,(x)H (g,(x)) (3D
where H is the Heaviside step function given by

1 ifz>0 -
H(z)= (32)
0 otherwise

Methods for treating branching cracks and intersecting cracks are given in [29].

5.1. AS shape functions

Next we describe the construction of the AS shape functions, N7, for the blending elements arising
from the enrichment functions (30) for linear elastic cracks. The step function enrichment (31)
does not involve any blending elements. For the singular enrichment functions (30) the parasitic
terms in the approximation space of the blending elements are spanned by the set

0¥c(x) }
ax]'

{7)= {‘I’c(X), Si (33)

where & are the coordinates of x in the parent domain. Here we have assumed that the Jacobian
between the parent and global coordinate system is constant. Applying (33) to constant stress

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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triangular elements, we have found that the parasitic terms of the strain approximation in the
blending element are spanned by a set of functions:

o))

A7 cos <9> sin(0), +/r sin (g) sin(0)

fn(3) (1)
& (ren(Z)veon(2)) 2 (s () res(2))
& (2 (2) S 02 ()

?)sin(z)),j;(sm(?)sin(i))

It is desirable to adopt these functions as the AS shape functions used in (25); however, these

functions do not satisfy the orthogonality condition (26). The AS shape functions are obtained by
orthogonalizing the functions %, i.e.

1
=& ——
A() Q.

Z;dQ (35)

where A is the area of the element defined by domain €, and i ranges over all members in {Z’;}.

6. EDGE DISLOCATIONS

In Gracie et al. [8] and Belytschko and Gracie [30], edge dislocations were modelled by a tangential
step enrichment function. Ventura et al. [7] treated dislocations by a singular enrichment. We
have found that the Peach—Koehler force is most effectively computed by using a combination of
singular and tangential step enrichments [31]. The geometry of an edge dislocation y is defined by
two level sets, in a manner similar to that for a crack described in the previous section. The glide
plane of the dislocation is defined as: all x such that f,(x)=0 and g,(x) >0 and the location of
the dislocation core is defined as: all x such that f,(x)=0 and g,(x)=0.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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All patches in the vicinity of the core of dislocation y are enriched by

arctan — L
b, | —e-Vg e-Vf g 2(1—v)r2
Weore(X) = — (36)
21 | —e,-Vg ey-Vf|| 2v— 1ln( '+ f2—g?
4(1—v) 4(1—v)r?

where f= f,(x),g=g,(%), r?=f%4+g% and by is the magnitude of the Burgers vector of disloca-
tion 7.

All patches that are not in the vicinity of the core of dislocation 7y but are cut by the glide plane
of dislocation y are enriched by

¥, (x)=b,H(f,(x))H (g)(x)) 37)

where b, is Burgers vector and H is the Heaviside step function given by (32).

6.1. Application of DG-XFEM to dislocations

In dislocation modelling the enriched degrees of freedoms in (5) are all prescribed, since the
Burgers vectors are given. Hence, we prescribe all enriched degrees of freedom as unity, i.e.
a?ﬁ =1. This introduces a jump across the glide plane with magnitude and direction given by the
Burgers vector. Since in the DG-XFEM the PU property is satisfied by the shape functions which
premultiply the enrichment functions, (5) can be simplified to

enr
l’l

V= Y Neul+uFfx= 3 N1<x)u’f+Z‘Pcore<x) (38)

P —
Ieyﬁ Ieéﬁﬁ a=1

where uf-#(x) is the enriched part of the approximation of patch  which for dislocations is known
from the input of the problem. This simplified form of the displacement approximation leads to a

simplification of the discrete DG-XFEM equations.
Let NC A ()and NE o be the standard continuous and enriched parts of N%, respectively. Also, let
=h0

+C.p0 . .
B, Jﬂ and B, Jﬁ be the standard continuous and enriched parts of Bj;, respectively. The discrete
equations are

(K™ +Kgg)de =f —£P £ (39)
where KFE is the standard FE stiffness matrix for an unenriched domain and d¢ are the standard

continuous degrees of freedom. Kgc is the DG stiffness matrix for an unenriched domain and is
given by

np np
C,po C,po C,p0T
[)’ 10>p
=2 | ®OTNGar, resf. ses) (41)
* 4A Qg
1
K= [ BTN ar, 1evt, seo? (42)
Wi =4 B 0
08280
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The effect of the dislocations appears on the right-hand side of (39) in the nodal force vector, f°.

We define [[uf-#|] as the jump in the enriched part of the displacement and (t* B9y as the average

traction due to the enrichment. The nodal forces £PC are
& 20 B0 B0 o pO
PG 3~ gPGF ¢DGA— v (e g0 ¢ (43)
f=1 0=p
where
i, =2 &GO TeqEnar, resl. sesl (44)
* 4A aQp
0 1 —C,p0
£/, :Z[ o, Bl ShTeiuERar, rest, Jesl (45)
gho 1 / NSOYTEBOYar, 1egt, Jest (46)
Hz” 4/, ’ B> 0
CQ/;()

The dislocation force from the XFEM approximations is

p
b_y /P(BCﬁ)TcEJ’dQ 47)
where o£-# is the part of the stress computed from u” b1 we drop the superscripts in (47) and

recall the definition of BC-A, (47) can be rewritten for an element as

oN
&= —Lokda (48)
ax]

where Q, is the domain of the element. By Green’s theorem, the above right-hand side can be
replaced by

(D) = /ﬁ  Nigngar- / Nyob, 0 (49)
where 0Q, is the boundary of the element and n is the outward facing normal to the element

boundary. When the enrichments are equilibrium solutions, as they are for the dislocations, the
last term vanishes.

If we consider a patch f§ consisting of mg elements, then from the above, it follows that
np me
tI_Z Z NIU]; ]dr (50)
p=1e=1J0Q,

The contributions of boundaries shared by any pair of elements to the above vanishes. Therefore,
the contour integral consists only of the contour around the patch; hence,

l,_z Nyot:Pullar (51)
p=170Qy

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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where n? is the outward facing normal to the boundary of patch f. In the matrix form (with the
superscripts) the above can be expressed as

np
tP=> | NSHTiELar (52)
p=1 09;;

where t£-f =¢£-fnf is the traction computed from the enriched part of the stress on the boundary
of patch f. This transformation to contour integrals over the boundaries of the patches saves a
tremendous amount of computer time.

7. NUMERICAL STUDIES

In this section several numerical examples are given. In most of the problems, the accuracy of the
standard XFEM, AS-XFEM and DG-XFEM will be compared using the relative energy norm

Jo&—¢"):C:(e—€")dQ 12
Jo:C:edQ

relative energy norm= < (53)

where &” is the FE solution and ¢ is the exact solution.

7.1. Material interfaces

Consider a circular domain of radius R, containing a circular inclusion of radius R, as shown in
Figure 3. Both the inclusion and the bulk materials are elastic with material properties 1; =0.4,
H#;=0.4 and 4, =5.769, u, =3.846, respectively. The domain is subject to displacements u, = R,
and uyp=0 along the outer boundary of the domain. The exact solution for this problem in polar

coordinates is
R? R?
Uy = |:<1—R—;)a+R—3:| r, up=0

R7\ R R\ R o _
tr=\1=g5 ot gy =175 Jat gy OSr<R oD
8rf?:O
( Rz) &
u,=|r——=)a+—=, uy=0
r r
R?\ R RZ\ | R:
Err = 1—|——2 a——2, o= 5 a+_2, R<r<R, (55)
r r r r
SrOZO

where r is the distance from the centre of the inclusion and

1+ +m)?

a= (56)
(Aa+ ) R2+ (A + )2 — R2+ 115
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Figure 3. (a) Notation for the problem of a circular domain with a circular inclusion. (b) Convergence

of the energy norm for the patch-based discontinuous Galerkin XFEM (DG-XFEM), XFEM with

assumed strain blending elements (AS-XFEM), the standard XFEM and the FEM. M is the rate of
convergence obtained by linear regression.

The strain across the material interfaces is discontinuous. The weak discontinuity, wedge enrichment
developed in Belytschko et al. [29] and Sukumar et al. [9], is used. It is

Yx)=[fX) (57)

where f(x)=0 defines the location of the interface. This problem was previously solved in Chessa
et al. [10] with an AS formulation in the blending elements. The problem is solved by the patch-
based DG-XFEM with constant strain triangular elements and a penalty parameter = 10* and by
AS-XFEM with bilinear elements. Figure 3(b) shows the convergence of the energy norm relative
to element size for the standard XFEM with bilinear elements, the DG-XFEM and the AS-XFEM.
We see that the accuracy of DG-XFEM and AS-XFEM is similar and superior to the standard
XFEM. The convergence rate of both DG-XFEM and AS-XFEM is optimal, while the standard
XFEM is slightly suboptimal, O (h*-86). FEM gives the poorest accuracy and the least optimal rate
of convergence, O (h°79).

7.2. Problems with sources

In the next two examples, enrichment is added to better approximate the response to body forces.
In these examples, DG-XFEM computations are performed with o= 10.

7.2.1. One-dimensional Laplace equation with harmonic source. In this example we consider a
one-dimensional bar, x € [0, 1], of unit stiffness subject to a harmonic body force b. The displace-
ments at the ends of the bar are constrained to be zero. The problem is governed by the one-
dimensional Laplace equation

Viu+b=0 (58)
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The body force is

0, x <0.25
3
b=1 > A;cos(kix), 0.25<x<0.75 59)
i=1
0, x>0.75

where k=[2m, 67, 18n] and A=[—1, 10, 50]. The solution to this problems is

apx, x <0.25
3
d(x)= Z 2 cos(k x), 0.25<x<0.75 (60)
i=1 z
azx+ai, x>0.75
where
3 A; a 3 A 3 A;
Z k_ sin(k; /4), ax= Zl —Z k—zlcos(3kl-/4), az= Z k_ sin(3k; /4) 61)

i=1 i
We use the enrichment function

W(x)=¢(x) (62)

In the patch-based DG-XFEM computations, the domain is decomposed into three patches, Qg ,

f=1-3. The domains of patches Qf, QF and Qf are 0<x<0.25, 0.25<x<0.75 and 0.75<x<1,
respectively. We enrich patch Q; by (62) and patches Qf and Qg) are unenriched. In the AS-XFEM
and the standard XFEM computations all nodes such that 0.25<x;<0.75 are enriched by (62).
This problem was solved in Chessa et al. [10] with an AS formulation for the blending elements,
and it was shown that AS-XFEM gives the exact result. Figure 4 shows the displacement and
strain fields from the standard XFEM and DG-XFEM with a uniform mesh of eight elements. We
can see that the solution from the standard XFEM is not accurate in the blending elements, i.e.
0.125 <x <0.25 and 0.75 < x <0.875. In contrast, DG-XFEM, like the AS formulation, gives the
exact result to within machine precision. We note that the pollution of the standard XFEM solution
by the parasitic terms is clearly visible in both the displacement and strain fields (Figures 4(a) and

4(b)).

7.2.2. Two-dimensional elastic domain with a singular body force. Consider an L x L domain
with L =1. The origin of the coordinate system is located at the centre of the domain. The material
is elastic with modulus E =1 and the Poisson ratio v=0.3, and is in plane strain. The boundary
conditions are

ul,—o=u’, u|y:O:uS
, , (63)
thet = 0@)n,  tlp =o@")n
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Figure 4. (a) Comparison of the results from the standard XFEM and the patch-based
discontinuous Galerkin XFEM (DG-XFEM) for the harmonic source problem: (a) the
displacement field and (b) the strain field.

where n is the normal to the boundary, and u® will be defined below. The body is subject to a
body force, which is chosen so that equilibrium is satisfied:

_E(y—y0)Bx—=x0—(y—y0)+2vr?)

21y 1),7/2
b 82v +v—1Dr (64)
_EG@( —x0)(y = yo— (x —x0)) +2vr?)

8(2v2+v—1)r7/2

where r = \/ (x —x0)2+(y — y0)2. The displacement field is given by

u = [ﬁ } (65)
ﬁ

We adopt the enrichment function ¥ =u’. The domain is discretized uniformly with bilinear
elements. We use the same element topology for both the standard XFEM and DG-XFEM compu-
tations. In the standard XFEM computations, the nodes within a distance of r9g=0.2 from the
singularity are enriched. In the patch-based DG-XFEM computations, the domain is decomposed
into two patches—one which is enriched and the other which is not enriched. The enriched patch
consists of all elements for which all the nodes of the element are within a distance ro=0.2 from
the singularity.

Figure 5(a) shows the shear strain along the line y=0.5 obtained by the standard XFEM and
the DG-XFEM for a mesh of 11x 11 bilinear elements. We note that in the blending region,
0.63<x<0.74, the standard XFEM solution differs substantially from DG-XFEM and the exact
solutions. The error in the blending element also pollutes the solution near the singularity, i.e. in
elements with all nodes enriched.

In Figures 5(b) and (c) the convergence of the energy norm is shown for the standard XFEM
and for both the patch-based and element-based DG-XFEM methods. Here we see that all methods
converge at the optimum rate. For a given mesh both the element-based and patch-based DG-XFEM
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Figure 5. (a) Comparison of the shear strain, plotted along the line y=0, by the standard XFEM, the

element-based discontinuous Galerkin XFEM (DG-XFEM) and the exact solution (EXACT), for an elastic

body with a singular body force. (b) Convergence of the energy norm versus element size and (c) versus
number of degrees of freedom (DOF). M is the rate of convergence.

methods are significantly more accurate than the standard XFEM. For a given number of degrees
of freedom, the element-based DG-XFEM and the standard XFEM have similar accuracies, while
the patch-based DG-XFEM is substantially more accurate than either of the other two methods.

7.3. Cracks and dislocations

Next we examine crack and edge dislocation problems. These problems are particularly challenging
for the standard FEM since in addition to discontinuities in the displacement field, they include the
singular stress fields. We will apply the DG method with bilinear elements and a penalty parameter
a=100E, where E is the elastic modulus of the material.

7.3.1. Mode I crack. Consider an infinite body with elastic modulus, E=1000 and the Poisson
ratio, v=0.3 with a centre crack of length 2a =10, loaded by a remote stress 6o, =1 normal to the
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D x c

Figure 6. Illustration of the infinite body with a Mode I crack and the subdomain ABCD
that is approximated with XFEM.

crack. The FE model ABCD is of size 1 x 1 with a=0.55, as shown in Figure 6. The point D is
chosen as the origin of the coordinate system; the crack tip is at (a, 0.5). Displacement boundary
conditions are applied to the boundary of ABCD corresponding to the asymptotic solution for a
crack of length 2a in an infinite body.

The displacement field of the asymptotic plain strain solution is

2(1 K
Mx:mﬁcosg(2_2v—cos2g) (66)
V2n E 2 2
2(1 K; . 0 0
Uy = (v v Isin—(2—2v—cos2—> (67)
21 E 2 2

where r and 0 are defined as in Figure 2 and the Mode I stress intensity factor (SIF) is given by
K ] =0 \/ﬁ .

We will first compare the standard XFEM with the AS-XFEM. We use enrichments (30) and
(31); all nodes within a radius of r9=0.15 from the crack tip are enriched by (30) while all nodes
with support cut by the crack but not enriched by (30) are enriched by (31). SIFs are calculated
using the domain form of the J-integral of Moran and Shih [32] with a circular domain of radius
0.2.

One question that arises in AS-XFEM is the choice of the strain approximation for postpro-
cessing. The strain can be computed either from (24) or by taking the symmetric gradient of the
displacement. In Figure 7(a), the normal stresses along the crack (y =0.5, 0=0) obtained from both
the displacement gradient and the strain approximations are shown for a cross-triangular mesh as
in Figure 6 with 7 x 7 cells (196 elements). The two are identical except in the blending elements,
0.36 <x <0.43 and 0.64 <x <0.74. The normal stresses obtained from the strain approximation
are better ahead of the crack tip than those obtained from the displacement gradient. The energy
norm is also smaller when the stresses are derived from (24); hence, we consider the stress from
(24) as more effective and we will use it in our comparisons with the classical XFEM and for the
calculation of SIFs.

Figure 7(b) compares the normal stresses, Oyys from the standard XFEM and the AS-XFEM
with constant strain triangular elements. We can see that AS-XFEM more accurately satisfies the
traction-free boundary conditions on the crack faces. As a result, the assumption of traction-free
crack surfaces made in the calculation of SIFs by the J-integral or by the interaction integrals is
adhered to more closely.
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Figure 7. Results for the normal stresses along the line defining the crack surface for the infinite plate

problem. (a) Comparison of the normal stress, oy, computed form both the strain approximation

and the displacement gradient. ¢y, (Vyu) and oy, (€) are denoted as XFEM-AS-u and XFEM-AS-¢,

respectively. (b) The normal stresses from the XFEM with AS blending elements are compared
with the stresses from the classical XFEM.
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Figure 8. Convergence plots for the cracked infinite plate problem relative to element size for

the standard XFEM and for XFEM with assumed strain blending elements (AS-XFEM). (a) The

relative energy norm and (b) Mode I stress intensity factor. M is the rate of convergence; ‘fit’
indicates a linear regression fit to the data points.

Convergence of the relative energy norm is shown in Figure 8(a). Here we can see that AS-

XFEM achieves the optimal convergence rate of O (%) in the energy norm and that its accuracy is

im

proved over the standard XFEM. Figure 8(b) shows the convergence of the Mode I SIF for AS-

XFEM and the standard XFEM. Here again AS-XFEM increases the accuracy while maintaining
the optimal convergence rate of O (h?). It should be noted that the SIFs were calculated with the
assumption that the crack surface traction is zero.
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Figure 9. Comparison of the convergence of the energy norm for the standard XFEM and the discontinuous
Galerkin XFEM (DG-XFEM) for the cracked infinite plate problem. M is the rate of convergence; ‘fit’
indicates a linear regression fit to the data points.

Next we compare the standard XFEM with DG-XFEM. We solve the same problem but using
the singular crack tip enrichment of Liu et al. [33]. We use a uniform discretization of bilinear
elements. The same element topology is used for the computations of both the standard XFEM
and the DG-XFEM.

In the standard XFEM computations, the enriched nodes are as previously defined. In the patch-
based DG-XFEM computations, the domain is decomposed into three patches—the first is enriched
by the crack tip enrichment of Liu et al. [33], the second is enriched by the jump function (31)
and the third is unenriched. The first patch is composed of any element such that all nodes of
the element are within a distance of 0.15 from the crack tip. The second patch is composed of
elements that are cut by the crack but are not in the first patch and the third patch is composed of
all elements not in the first two patches.

Figure 9 shows the convergence of the energy norm for uniform meshes of bilinear elements.
The standard XFEM converges optimally while DG-XFEM is slightly superconvergent. DG-XFEM
is seen to be more accurate than the standard XFEM with respect to element size.

7.3.2. Edge dislocation. Consider an edge dislocation in an infinite elastic domain with elastic
modulus E = 10° and the Poisson ratio v=0.3. We model an L x L finite domain, with L =1. The
origin is located at the bottom left corner of the domain; the core is located at x =y =0.5. The glide
plane of the dislocation is along the line y =0.5, and the Burgers vector is in the x-direction with
a magnitude b=1073. The solution is given by Equation (36). We apply displacement boundary
conditions equivalent to the exact solution (36) on the four boundaries and use the enrichment
functions (36) and (37).

A uniform element topology is used for all simulations. In the standard XFEM computations,
we enrich all nodes within a distances of 0.2 from the core with (36). Any node that is not enriched
by (36) but with support cut by the glide plane is enriched by (37). In the patch-based DG-XFEM
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Figure 10. Convergence of the relative energy norm obtained with the standard XFEM, the

element-based discontinuous Galerkin XFEM (DG-XFEM) and the patch-based DG-XFEM

for the problem of an edge dislocation in an infinite domain. M is the rate of convergence;
“fit’ indicates a linear regression fit to the data.

computations, the domain is decomposed into three patches—the first is enriched by the core
enrichment functions (36), the second is enriched by the tangent jump function (37) and the third
is unenriched. The first patch is composed of any element such that all nodes of the element are
within a distance of 0.2 from the core. The second patch is composed of elements that are cut by
the glide plane but are not in the first patch and the third patch is composed of all elements not
in the first two patches.

The strain energy of the dislocation is infinite at the core; hence, we neglect a region of radius
0.05 about the core when computing the energy norm. The convergence of the energy norm for
the standard XFEM, the element-based DG-XFEM and the patch-based DG-XFEM are shown in
Figure 10.

In this application, the standard XFEM converges suboptimally in the energy norm, while the
DG-XFEM schemes are both slightly superconvergent with respect to element size. From Figure
10(a) we observe that the accuracy of the element-based and patch-based DG-XFEM is almost the
same for a given element size, but from Figure 10(b) we see that the patch-based DG-XFEM is
significantly more accurate for a given number of degrees of freedom. Both DG-XFEM schemes
are more accurate than the standard XFEM for a given number of degrees of freedom. This is
in contrast to the previous examples, where the accuracy of the element-based DG-XFEM was
similar to that of the standard XFEM for a given number of degrees of freedom.

8. DISCUSSION AND CONCLUSIONS

A significant part of the error in local enrichment methods such as the extended finite element
method (XFEM) is known to originate in the blending elements, i.e. the partially enriched elements.
We have described two discontinuous Galerkin (DG) forms of XFEM (DG-XFEM), which eliminate
these blending elements: a patch-based and an element-based form. In the patch-based formulation,
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the domain is decomposed into non-overlapping patches. Enrichments are applied over these
patches and continuity between the patches is enforced with an internal penalty (IP) method. In
the element-based form, each element is treated as a patch.

Both DG forms of XFEM have the desirable characteristic that the enrichment is local and that
all shape functions form a partition of unity (PU). This is in contrast to the standard XFEM where
the PU property of the shape functions that pre-multiply the enrichment functions do not satisfy
the PU property everywhere in the domain.

In all problems studied here, DG-XFEM provides excellent results with a modest penalty factor
(I0E-100FE). Therefore, the conditioning of the equations is not significantly impaired and iterative
methods for the solution of the linear system equations are still effective. In fact, we have observed
that the accuracy of DG-XFEM is often reduced when very large penalties are used. This is because
the approximation spaces of adjacent patches are often incompatible. When adjacent patches are
incompatible, very large penalty terms have the effect of driving the enriched degrees of freedom
to zero.

We have also considered the assumed strain (AS-XFEM) approach, in which the error due to
blending is reduced by eliminating the parasitic term in the strain approximation of the blending
elements. An advantage of AS-XFEM, in comparison with DG-XFEM, is that the additional AS
coefficients are solved for at the element level; as a result, it is more easily implemented into
standard FE programs. However, the selection of the AS shape functions can be quite difficult.
Moreover, the AS shape functions depend on the enrichment; hence, the method has to be refor-
mulated specifically for each enrichment. In contrast, the DG-XFEM implementation is more
independent of the enrichments. As a result, incorporation of additional enrichments into an existing
DG code is straightforward.

In the modelling of interfaces by the wedge enrichment, it was found that neither the FEM nor
the standard XFEM converges optimally, although the accuracy of XFEM is much better than the
standard FEM and may be acceptable for many purposes. It was shown that the patch-based DG-
XFEM and AS-XFEM converge optimally and are more accurate than the FEM and the standard
XFEM. The AS-XFEM and DG-XFEM have similar accuracy for a given element size.

Several manufactured solutions were considered. In the one-dimensional problem, the standard
XFEM solution deviates significantly from the exact solution, while the patch-based DG-XFEM
gives the exact result, as is the case for AS-XFEM.

We also considered manufactured solutions for two-dimensional domains with singular stress
fields. Enrichment was added to the approximation to augment the standard FEM approximation
near the singularity. It was shown that the standard XFEM and both the element-based and the
patch-based DG-XFEM converge optimally in the energy norm. For a given element size, both
DG-XFEM forms have similar accuracy and are more accurate than the standard XFEM. However,
for a given number of degrees of freedom, the standard XFEM and the element-based DG-XFEM
have similar accuracies, while the patch-based DG-XFEM is significantly more accurate than the
other two methods.

For elastic cracks under Mode I loading, it was shown that for constant stress triangular elements,
the standard XFEM does not accurately satisfy the traction-free boundary conditions along the
crack faces. The AS-XFEM was shown to improve the approximation of the traction-free boundary
conditions and to improve the accuracy as compared with the standard XFEM. It was shown that
the standard XFEM, AS-XFEM and both the element-based and the patch-based DG-XFEM all
converge optimally in the energy norm. For a given element size, AS-XFEM and both DG-XFEM
forms have similar accuracies and are significantly more accurate than the standard XFEM.
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In dislocation modelling, in contrast to the other numerical problems studied, the enriched
degrees are prescribed. As a result, the effect of the enrichment appears as nodal forces on the right-
hand side of the discrete equations. For the DG-XFEM, we developed a particularly efficient form
of the nodal force equations. The standard domain integrals over each element were transformed
into contour integrals over the boundaries of the patches. This contour form is significantly more
computationally efficient.

It was shown that for dislocations, the convergence of the energy error is suboptimal for the
standard XFEM but was optimal for both DG-XFEM methods. In addition, both DG-XFEM
methods are more accurate than the standard XFEM for a given number of degrees of freedom
and for a given element size. The patch-based and the element-based DG-XFEM have similar
accuracies for a given element size; however, the patch-based DG-XFEM is more accurate for a
given number of degrees of freedom.

When DG-XFEM is used for dislocation dynamics, the element-based form can be advantageous
over the patch-based form because the same stiffness matrix can be used for an entire simulation.
By contrast the stiffness matrices for AS-XFEM and the patch-based DG-XFEM change when the
enrichment patches are moved.

The accuracy of XFEM in dislocation modelling is more severely impaired by blending than
in crack and weak discontinuity models because the enriched degrees of freedom are prescribed.
This reduces the flexibility of the approximation to correct for the parasitic terms. The accuracy of
the standard XFEM can be slightly improved by not prescribing the singular enrichment degrees
of freedom of the nodes at the edge of the enrichment domain; however, the accuracy is still much
less than that of DG-XFEM.

We have found that the element-based DG-XFEM is easier to implement because the boundaries
of the enrichment subdomains do not have to be identified. This is especially significant when the
enrichments evolve during a simulation. We have found that when only a single feature requires
enrichment, as in the problems studied here, the element-based DG-XFEM generally involves
significantly more degrees of freedom than the patch-based DG-XFEM and that the accuracy of
the patch based is superior to that of the element-based DG-XFEM for a given number of degrees
of freedom. Since the accuracy of the element-based and the patch based DG-XFEM are similar
for a given element size, we have concluded that the application of DG between two unenriched
patches neither impairs nor improves the accuracy of the simulation.

When the boundaries of the enrichments are restricted to a small set of element edges it will
generally be desirable to use a patch-based DG-XFEM rather than an element-based DG-XFEM.
However, when many enrichments are used, the number of element edges where the DG penalty
term is applied will approach the total number of element edges in the domain. Therefore, the
performance of the patch-based DG-XFEM and element-based DG-XFEM for a given number
of degrees of freedom would be similar. In such situations the adoption of the element-based
DG-XFEM will be attractive because of its ease of implementation.

From the numerical studies conducted, we observe that the degree to which blending affects
the accuracy and the convergence rate of the XFEM depends greatly on the enrichment. The DG-
XFEM is most effective when the standard XFEM converges suboptimally, as in the modelling of
intra-element material interfaces and dislocations.

The accuracy of AS-XFEM and DG-XFEM is generally similar for a given element size; in
addition, both methods have been shown to converge optimally for all enrichments considered.
Therefore, the choice of which method to implement is governed by ease of adoption to a given
application. Clearly, both methods eliminate the spurious effects arising from the blending elements

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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in the XFEMs. Since the locality of enrichment is crucial for efficiency, both the AS and DG
methods are of substantial practical interest.
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