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Abstract

A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the
neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two
or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated
geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based
on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations
constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A new finite element method (FEM) for modeling dislocations has been described in Gracie et al. (2007) and
Belytschko and Gracie (2007). In this method, dislocations are modeled by lines or surfaces of discontinuity,
where one surface of the discontinuity is displaced relative to the other by the Burgers vector, as in the
dislocation model of Volterra (1907), who conceptualized a dislocation as a cut, followed by a displacement
and then a reattachment of the material of the two sides of the cut.

The method has a high degree of generality and it is straight-forward to apply it to problems with grain
boundaries and material interfaces, and to anisotropic and nonlinear materials. The method can easily be
incorporated into existing finite element software since the effect of the interior discontinuities that model the
dislocations appear in the discrete equations only as external forces.

The methodology described here falls in the class of extended (generalized) finite element methods (XFEM),
where local features of the solution are added to the standard finite element approximation. This concept was
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introduced for discontinuous fields in Belytschko and Black (1999) and Moés et al. (1999); the tangential
enrichment adopted here was introduced in Belytschko et al. (2001) for modeling shear bands. We use the
methodology with level sets, as introduced in Stolarska et al. (2001) and Belytschko et al. (2001). To
reinitialize the level sets, a fast marching method is employed as described by Chopp (2001).

Recent work with the method has shown that modeling the core of a dislocation by simple discontinuous
models such as in Gracie et al. (2007) does not yield an optimal numerical method. The difficulty is that the
Peach—Koehler force can then only be computed by a J-integral. Since the J-integral requires a patch with a
radius of at least three elements, this requires very fine meshes to resolve the stress fields generated by
dislocation interactions.

In this paper, we introduce a method where the dislocation is modeled by a discontinuity away from the
core but an enrichment is employed around the core. This enrichment is based on closed-form solutions for
dislocations that can be quite different than the problem at hand. For example, the infinite domain screw
dislocation can be used in problems with interfaces and complex finite geometry. Adding this enrichment
entails no additional complications and with some new developments described here, is as fast as the previous
method. With this method, the Peach—Koehler force can be directly computed from the finite element stress
field with a high degree of accuracy.

We also develop the equations for dislocations in media with nonlinear material properties and large
deformations. These equations are given for the fully nonlinear case. In problems where the deformation is
small, the effect of the dislocation appears only in the right-hand side of the linearized equations. This is an
attractive attribute as it allows the method to be easily incorporated into standard finite elements, and for the
case of dislocation dynamics (DD) simulations, the stiffness matrix need only be assembled and factored at the
initial time step.

The majority of current DD methods are based on the superposition of infinite domain dislocation
solutions, (Amodeo and Ghoniem, 1990; Kubin and Canova, 1992; Hirth et al., 1996; Schwarz and Tersoff,
1996). In two dimensions, these solutions are known analytically for isotropic materials; however, in three
dimensions they take the form of integral equations. In general, isotropic material models are used in the
above methods, though this assumption is known to introduce errors of 20-30% for crystal lattices (Hirth and
Lothe, 1982). Even in single material systems, the solution of infinite domain integral equations for anisotropic
materials can be very computationally demanding. Furthermore, multi-material Green’s functions are
available for only a few geometries; a recent one for layer materials was given by Han and Ghoniem (2005).

An alternative class of methods are those where the image field is computed. One of the most popular is the
method of van der Giessen and Needleman (1995), where the image field is computed by the FEM. The
solution on a finite domain is obtained by applying the image tractions from infinite domain solutions of all
dislocations to the boundary of the model. The Peach—Koehler force at each dislocation is obtained by
summing the contributions of all other dislocations. This superposition character of this method is one of its
weaknesses when applied to large problems. On the other hand, the image field which is computed in the
method is quite smooth, so the resolution requirements are modest. Other image-field methods are those of
Schwarz (1999) and Fivel et al. (1996).

Recently, several dislocation methods have been developed that are related to our method (Wang et al.,
2001a; Lemarchand et al., 2001; Ventura et al., 2005; Denoual, 2004; Roy and Acharya, 2005). These methods
are not based on superposition of infinite domain fields; instead the equilibrium fields are determined directly,
often by FEM. In the discrete-continuum model (DCM) of Lemarchand et al. (2001) the dislocations are
treated as plastic strains. This model has been used to study a threading dislocation in an anisotropic thin film
(Groh et al., 2003). Acharya (2001) and Roy and Acharya (2005) have developed a field theory DD model.
Most of the above methods have only been applied to relatively simple problems. An exception is the phase
field method (PFM) of Wang et al. (2001a,b) where dislocation multiplication was modeled in three
dimensions. The PFM is similar to our method, but the dislocation is smeared (i.e. regularized) and a rather
coarse model of the core is employed. The elastic strain energy contribution in the evolution equation is
computed by a fast Fourier transform (FFT). In the Denoual (2004, 2007) the FFT calculations are replaced
by FEM simulations, leading to a more flexible method.

An outline of the paper is as follows. Section 2 describes the basic concept of our method. In Section 3, we
present the discrete FEM equations for linear and nonlinear models. The computation of the Peach—Koehler
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force is presented in Section 4. In Section 5, several examples are considered. In the first, the convergence of
the error in the Peach—Koehler force is studied for a single edge dislocation interacting with a bimaterial
interface. We also compare the XFEM solution with analytical expressions for stresses in a dislocation loop.
In a third problem we study a dislocation loop constrained in a thin Cu film between two Ni layers.

2. XFEM approximation

We denote the reference domain of the body by @y and its boundary by I'y. The boundary consists of a
prescribed displacement boundary I'y, on which displacements @ are given and prescribed traction boundary
I'o; where tractions o are given. The image of Q, in its current configuration is denoted by Q and the images of
the other entities are denoted by the same symbols with the subscript “naught” omitted, as shown in Fig. 1.
We will distinguish tensors and matrices from scalars by boldface; we will also use Einstein notation with
repeated indices denoting sums and commas denoting partial derivatives.

The np dislocations are modeled as discontinuities in the displacements on surfaces I'j;, « = 1...np. For
convenience we denote the union of all discontinuities by I'oy where I'os = |J, I, We denote the spacial
coordinates by x, the material coordinates by X. The motion is described by

x = ¢(X,1) (1
and the displacement is given by
u=x-—X. 2)

The displacement field at material point X and at time ¢ is additively decomposed into two parts
uX, 1) = u"(X, 1) +u’(X, 1), 3)

where u€(X, ) is the standard continuous part of the displacement field and uP(X, 7) is the discontinuous or
enriched part. The continuous part is given by the standard finite element approximation

uC(Xa Z‘) = Z N[(X)ll[(t), (4)

IeS

Xy

Fig. 1. Notation convention for the reference and current domain of a body with dislocations I'}.
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where u} = {uyy, uyr,uz1} are the nodal displacements, N;(X) are the shape functions and S is the set of all
nodes, and

np
X, )= WX, (5)
=1
The function ¥*(X, ) is often called an enrichment function since it enriches the standard approximation with
what is locally known about the solution.

Two enrichment functions W*(X, 7) are used in our method. The first adds a discontinuity on a closed-
surface in the domain; e.g. an edge dislocation enrichment introduces a tangential jump of constant magnitude
across the slip plane. This enrichment can be modified in the vicinity of the core to produce slip profiles
consistent with Peierls—Nabarro models. The second enrichment adds a field defined by analytical functions
characteristic of core mechanics in the vicinity of the core.

To define the discontinuous part of the displacement approximation, (5), we use level set functions as in
Belytschko et al. (2001), Stolarska et al. (2001), and Gravouil et al. (2002); level sets have been used to model
dislocations by Xiang et al. (2003, 2004), but by a different method. We define the surface of the glide plane of
dislocation o at time ¢ by f*(X,7) =0 and ¢*(X,#)>0; the core of the dislocation is then given by the
intersection of the surface f*(X, ) = 0 and the surface g*(X, ) = 0, see Fig. 2.

In the XFEM method, undesirable errors occur at the edge of the core enrichment; this has previously been
noted by Chessa et al. (2003) in another XFEM application. These are particularly troublesome in DD
methods because they affect the Peach—Koehler forces. To circumvent these difficulties we use a discontinuous
Galerkin formulation at the edge of the core-enriched subdomain.

2.1. Discontinuous enrichment

In the following we describe the enrichment functions used in Egs. (3) and (5) to model the dislocations.
Two enrichment functions are used: a discontinuous enrichment, as in Gracie et al. (2007), which is always
employed to model the discontinuity across the glide plane far from the core, and a core enrichment which is
added in the vicinity of the core.

Let & be the set of nodes belonging to the elements in &* where &~ is the set of all elements with at least one
edge crossed by the glide plane of dislocation «. The enrichment functions ¥Y*(X, ¢) for the discontinuous (or
jump) enrichment are

WX, =b" > N, X)H((X, 1) — H3)H(g*(X, 7). (6)
Jeg”*

In the above H(e) is the standard Heaviside step function, H% = H(f*(Xy, t)), b* is the Burgers vector, and N
are the enrichment shape functions.

a
_9 }'
AP
o 2
9(X) > 99(X) <0
< |
X

Fig. 2. (a) Definition of an edge dislocation by level sets f(X) and g(X); (b) definition of a dislocation loop by level sets f(X) and g(X).
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The enrichment function for dislocation o vanishes outside of the domain formed by the union of
the elements in &*. So the jump enrichment for a particular dislocation is included only in a small part of the
finite element model. The jump enrichment function vanishes at all nodes, i.e. ¥%(X;) =0,VI € ¥* so
essential boundary conditions can be applied directly to the standard nodal degrees of freedom as in the
standard FEM.

2.2. Singular core enrichment

Let Q, be a circular domain of radius r, with boundary 08, centered at dislocation core «, as shown in
Fig. 3(a). Let #%° be the set of all nodes in Q, and &’ be the set of all nodes of elements cut by glide plane o
not in #%°. The nodes in sets #2° and &# are illustrated in Fig. 3(b) for a single dislocation. Nodes in set #°
are enriched with the singular core enrichment, while nodes in yf are enriched with the jump enrichment
described (6) in the previous section.

The local singular core enrichment depends on the type of dislocation, but in all cases are derived from
general solutions to infinite domain problems. For the edge component of a dislocation the enrichment is

B y/ x/y/
tan ‘(—) + )e
b e, ( x' 21 —v)(x2 +y2)) "

Ve =—— 22 : (7
1-2 —
|- (V In(x* + y?) + 2 ) )en

4(1 —v) (1 —v)(x?+y?)
For the screw component the enrichment is

o /
Y = Wtan_l (%) (e, x e,), (8)
where X' = (X —X?) - e, Y = (X — X)) - ¢, (see Fig. 2a), thus the enrichments are not problem specific. In the
above, the unit vectors are expressed in terms of the level set functions that describe the configuration of the
dislocation by e, = —Vg(X) and e, = Vf(X). In two dimensions, the basis vectors of the dislocation are
prescribed by the problem. The complete enrichment for a dislocation with a core at X, is the sum of (6) and
the edge and screw components given in Egs. (7) and (8).

The core enrichment considered here is slightly different from that considered in Ventura et al. (2005). Here
we have introduced the jump enrichment for the nodes of elements cut by the glide plane that are sufficiently
far from the dislocation core. Since the strain gradients are small far from the core, the adoption of the
tangential enrichment away from the core reduces the computational cost of the singular core enrichment.
Here we would like to remark that:

(1) The infinite domain solution is applicable for dislocations interacting with material interfaces, i.e. Q% is
allowed to span material interfaces. This is because the FEM solution will supply the necessary image field
which when added to the enrichment produces the correct solution.

Fig. 3. (a) lllustration of the local domains ©, with boundaries 0Q, surrounding each dislocation core; (b) definition of the sets #7° and
y’f The nodes in &’5° are represented by blue circles and the nodes in y’f are represented by red squares.
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(2) Non-singular dislocations can be modeled by using the non-singular dislocation solutions derived by Cai
et al. (20006).

(3) The accuracy of the singular core enrichment may be improved by increasing the size of the enrichment
domains Q°.

3. Governing equations

We next derive the finite element equations for a dislocation model applicable to nonlinear hyperelastic
materials and large deformations. The nonlinear models of dislocations should become of importance as
problems with large deformations and large rotations become of interest. A significant advantage of this
method is that it can easily be applied to nonlinear problems. After developing the fully nonlinear equations,
we specialize the equations to linear elastic materials.

The discrete equations are obtained by the theorem of minimum potential energy, which states that the
solution u(X) is a stationary point of

I = W(F(ll)) d.Q() — / u- b() dQ() — / u- t-() dr() (9)
Qo/Toa Qo Ty,
among all kinematically admissible displacements u, where W (F(u)) is the stored potential energy in terms of
the deformation gradient F = 0¢/0X, by is the body force, and €, are the prescribed tractions. Note that the
internal energy in Eq. (9) excludes the dislocation surfaces.
If we substitute Egs. (3)—(5) into Eq. (9), take the derivative with respect to u;; and set it equal to zero to
determine the stationary points, we obtain

oo oW ON,

0= - Av dQO _f?Xla (10)
auil Qo/Toq aFl] aX] 1
where
f?]xt = Niboifo — N]l-()idro. (11)

Qo Lo

We note that the first Piola—Kirchhoff stress is given by

ow
P; = 12
/T OF; (12)
so we can write the first term in Eq. (10) as
; ON
it / NI p(FWC + uP)) dQy. (13)
Qo/Toa an

Thus the discrete equations of equilibrium are the standard equations (see e.g. Belytschko et al., 2000)

ri =1t =0, (14)
where the effect of the dislocations enters in the computation of the internal forces through the dependence of
P on uP in Eq. (13).

In the small deformation linear case, a segregation of the effects of the dislocation, so that they appear
entirely on the right-hand side of the linear equations, is possible. The above large displacement nonlinear
formulation can be reduced to the linear case by replacing P with the Cauchy stress o, and restricting the
constitutive equations to the linear elastic law.

o(u) = Ce(u), (15)
where

&u) = VsymU- (16)
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The reference and current configurations do not need to be distinguished in the linear case, so we drop the
subscripts “naught”. Similarly, x and X need not be distinguished, so we use x.
Then Eq. (13) becomes

. 0
o= / ﬂa,-j(a(uc +uP))dQ. (17)
Q/Ty axf

Invoking the strain displacement equation (16) and the finite element approximation (4), (5) and (6) gives

i _ / BT6 (¢(uC + uP))dQ = / BTC(Bd+ Y D) d, (18)
Q/T, Q/Ty o
where for a 2D mesh of nn nodes d' = {u;,u,...,u,,}" and
Nix O
B,=| 0 Ny, (19)
NI,y NI,x
e -V
DY) = e, - ¥, : (20)
ey - ‘l"fv +e,- W%
The linear equations are then
np
> Ky + 17— =0, 1)
Jes =1
where f' is given by Eq. (11) and K;; is the standard linear stiffness given by
afint
Ky=-1L= / B;CB,; dQ. (22)
Ouy /Iy

The term f7* represents the effect of dislocation a, and is given by

int
P = af'“ b = / B;CD"b" dQ = / B/o(u®)dQ for e 9 (23)
ob Q/r, Q/r,

It can be seen from Eq. (21) that the finite element stiffness matrix for this method is identical to the standard
linear stiffness and that the effect of the dislocations enter the equations entirely through the forces f})“ given
by Eq. (23).

For the tangential jump enrichment, the force due to the dislocations (23) is given by

(s _ JoBICD*(¥;)b*dQ for I € ¥4, (24)
! 0 otherwise.
The force due to the dislocations (23) for the local singular core enrichment is given by
[, B CD('¥¢) dQ for I € &%,
2% =< [ BICD*(¥%)b*dQ for I € 9%, (25)

0 else

and D(¥?) is given by Eq. (20).
In the element containing dislocation core o, the integrand in Eq. (25) is singular and therefore numerical
integration is expensive. To reduce the computational cost, we recast the domain integral in Eq. (25a) into
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an equivalent contour integral as suggested in Ventura et al. (2005). Applying Gauss’s theorem we obtain

P = N;6™(x,x%) - n*dl" — / B/ div(e™(x, x*))dQ for I € S*, (26)
Gled foX
where 6™ is the stress corresponding to uP in Egs. (7) and (8).
By equilibrium div (6°°(x,x%)) = 0, so Eq. (26) can be simplified to

D = /a N N;6®(x, x¥)-n*dl" for I € S% (27)

where n” is the outward unit normal to domain Q*, see Fig. 3, so that the evaluation of the dislocation forces is
reduced to a contour integral.

4. Peach—Koehler force and dislocation motion

The Peach—Koehler force provides the driving force for dislocation motion. Peach and Koehler (1950)
derived the force F* acting on dislocation a per unit length os of a dislocation line as
oF*
ds
where & is a unit vector along the dislocation line s, & is the stress from all sources except the self-stress of
dislocation o and b”* is its Burgers vector.

We have used two methods to compute the Peach—Koehler force: (1) J-integrals and (2) direct computation
of Eq. (28) with 6 computed from the FEM solution. In the J-integral approach (Eshelby, 1951), the Eshelby
tensor is integrated over a closed contour about the dislocation core. The domain form of the J-integral of
Moran and Shih (1987) was adopted due to its improved accuracy.

The primary limitation of the contour integral approach is that the integral must be taken over a domain
that does not contain any other dislocation cores. It was found in Belytschko and Gracie (2007) that for
cylindrical domains, a minimum internal radius of 3/, where /. is the average element size in the vicinity of
the dislocation core, was required for accurate results. So to obtain accurate Peach—Koehler forces, the mesh
size must be smaller than one third of the distance separating two dislocation cores.

When the singular core enrichment is used, the stress & in Eq. (28) is given by

F(x) =0 (D) + > e (xxh), (29)
peshr

—& x (6 -b"), (28)

where 6(x?) is the stress from the standard part of the displacement approximation, Eq. (4) and SPI* s the
set of all dislocations f with Q° containing x? and f# #«; this is a counterpart of the equation derived in van der
Giessen and Needleman (1995). For example, in Fig. 3(a), %' = (2}, ##/*> = {1}, and 9" = {¢}. For
clarity, the stress due to dislocations 0, 0¢ 9#/* and 0+« is included in Eq. (29) through &€.

The evolution of the dislocation line is computed by the evolution of the level sets f and g, introduced in
Section 2. The velocity of the dislocation line is projected throughout the level set domain and the level sets are
advected by the method given in Chessa et al. (2002). The dislocation line velocity can be determined using
standard relationships between velocity and the Peach—Koehler force, see for example Bulatov and Cai (2006).

5. Examples
5.1. Dislocation near a bimaterial interface

We consider a 1 um x 1 um bimaterial domain with an edge dislocation near the interface. The material
interface bisects the domain along the plane x = 0.5 um, as shown in Fig. 4(a). For x<0.5um the material
properties are E = 94.7 GPa and v = 0.276, while for x>0.5pum E = 31 GPa and v = 0.276. A dislocation core
is located at x. = (0.75 um, 0.5 pm) with Burgers vector b = 0.25nm in the x-direction, and with a horizontal
glide plane extending to the left. The domain is discretized by a structured mesh of bilinear elements, and the
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Fig. 4. (a) Nomenclature for an edge dislocation near a bimaterial interface between two semi-infinite domains; (b) convergence of the
relative error of the glide component of the Peach—Koehler force.

singular core enrichment given in Eq. (7) is used over a circular domain of radius r = 0.15um. On the
boundaries of the model traction boundary conditions corresponding to the analytical solution of an edge
dislocation near a bimaterial interface separating two semi-infinite domains are applied (Head, 1953; Dundurs
and Sendeckyj, 1965). Rigid body motion is eliminated by fixing the displacement of the bottom left corner of
the domain in both directions and by fixing the displacement of the bottom right corner in the y-direction.
The convergence of the relative error in the glide force on the dislocation core with decreasing element size is
shown in Fig. 4b. A convergence rate of two is obtained, which is the optimal rate for the 4-node element
employed here. Convergence is monotonic with the Peach—Koehler force underestimated for coarse meshes.

5.2. Circular dislocation loop

We next study a dislocation loop in three dimensions. Consider a circular dislocation loopinan L x L x L,
L = 120 nm, domain with material properties £ = 100 GPa and v = 0.34, as shown in Fig. 6. The dislocation
loop is centered at (L/2,L/2,L/2) and has a radius ¢ = 30 nm. The dislocation lies on a plane with normal
parallel to the z-axis and with a Burgers vector of magnitude » = 0.25nm and direction parallel to the x-axis.
We apply displacement boundary conditions corresponding to the solution of the dislocation in an infinite
domain (Hirth and Lothe, 1982) and evaluate the accuracy of XFEM in recovering the solution inside the
domain. The analytical solution requires the evaluation of three integrals which we numerically integrate using
an adaptive Gauss quadrature procedure. We compare the XFEM result to the exact solution by plotting the
stress components (Fig. 5), g,,, and o, along a line given by y = L/2 and z = L/2 + ¢, where ¢ = 5b. As seen
from Fig. 5, the stress approximations from the discontinuous enrichment exhibit a noticeable amount of
jaggedness but this is easily corrected by numerical smoothing (Fig. 6).

5.3. Dislocation motion in thin films

In small systems domain boundaries and material interfaces play a critical role in the stresses driving
dislocation motion. In very thin films, dislocation sources cannot emit multiple dislocations and the
Hall-Petch mechanism is not dominant. Instead dislocations will glide along the thin film, parallel to the
material interfaces under the influence of an applied stress; this is illustrated in Fig. 7 as the transition from
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Fig. 5. Comparison of stress across a circular dislocation loop between the exact analytical solution, and the XFEM approximation with a
finite element mesh of 90 x 90 x 90 elements, (2 MDOF).
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Fig. 7. Illustration of the dislocation motion along the (111) plane of a very thin FCC film between two stiffer material layers.
Deformation from configuration 1 to 2 occurs by slip confined to the thin film, while the deformation from configuration 2 to 3 occurs by
overcoming the Koehler barrier between the thin film and bottom stiff layer.

states 1 to 2. If the slip parallel to the material interfaces is impeded by obstacles such as other threading
dislocations on intersecting slip planes, the applied stress can be sufficient to overcome the Koehler barrier of
the interface, illustrated as the transition from states 2 to 3 in Fig. 7.
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Most theoretical and numerical models for thin films are based on simplified treatments of the image
stresses on the material interfaces. For example, in many superposition based dislocation methods, thin film
boundaries are simply modeled as rigid interfaces (Schwarz and Tersoff, 1996; Blanckenhagen et al., 2003; van
der Giessen and Needleman, 2003). The importance of accurately accounting for free surfaces has been
illustrated in Han et al. (2006). The influence of material interfaces on dislocation motion has been treated by
Ghoniem and Han (2005) and Groh et al. (2003). The former is limited to parallel material interfaces, whereas
the accuracy of the latter is limited by mesh resolution.

5.3.1. Slip across a material interface: the Koehler barrier

Here we consider a 120nm x 120 nm x 120 nm cubic domain as shown in Fig. 8(a) consisting of two parallel
Ni layers (u, = 94.5GPa, v, =0.276) of thickness 7nj = 40nm separated by a Cu layer (u; = 31GPa,
v; = 0.416) of thickness 7¢, = 40 nm. The Ni—Cu interfaces are perfectly coherent. The [100], [010] and [00 1]
directions are coaxial with ey, e, and e., respectively. Slip in the Cu film will occur along the (1 1 1) plane with
Burgers vector of magnitude » = 0.256nm and direction [T 10]. So the dislocation line nearest the material
interface is of screw character while that in the middle of the film is of edge character. The bottom of the
domain is fixed and the top of the domain is subjected to a state of biaxial stress.

We first study the applied stress required for the screw component of a dislocation loop in the Cu layer to
overcome the Koehler barrier with a 2D model using the DG formulation with the singular core enrichment.
In linear elasticity, a dislocation in a soft material will experience an infinite barrier when approaching a stiffer
material (Dundurs and Sendeckyj, 1965). Dislocation motion across such a material interface can therefore
only be modeled empirically in any linear elastic dislocation model. The applied stress required to overcome
the Koehler barrier will be taken as that required to drive the dislocation to within a distance of 2b from either
material interface (Koehler, 1970).

A 2D representation of the dislocation loop is a good first order approximation since the dislocation line
near the material interfaces are known to be nearly parallel to the interface. Our 2D model consists of a screw

dislocation dipole, with the slip plane at an angle of cos™! \/% from the X’-axis, as shown in Fig. 8(b) and (c).

The mobility of the dislocations is isotropic with a magnitude of 10*Pa~!s~!. Fig. 9 shows the equilibrium
distance between the upper screw dislocation and the upper Ni—Cu interface as a function of the applied stress.
The Koehler barrier is overcome by an applied shear stress of about 425 MPa. This stress is smaller than that
from the Koehler model (Koehler, 1970), which does not consider free surfaces. Such forces would tend to
drive the dislocations towards the interfaces, decreasing the applied stress required to overcome the Koehler
barrier. Therefore, it can be seen that rigorous consideration of the influence of material interfaces is crucial in
modeling thin films.

The 2D model presented has some notable limitations. First, it does not consider partial dislocations. The
applied stress required for partial dislocations to slip across material interfaces is known to be lower than that
of perfect dislocations (Koehler, 1970; Rao and Hazzledine, 2000). Second, the model cannot account for the

Fig. 8. Illustration of (11 1) slip plane (cross-hatched surface) of a thin FCC copper film in the bimaterial problem. Burgers vector is in the
[T10] direction: (a) 3D domain; (b) perspective of 3D domain cut along the (110) plane orthogonal to the (111) plane; (c) 2D screw
dislocation model of the domain in (a).
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Fig. 9. Equilibrium distance of the screw dislocations from the Ni—Cu interface as a function of the applied stress.
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Fig. 10. Evolution of a circular dislocation loop in a layered material subjected to a shear stress: (left)—initial condition of the loop;
(middle)—Iloop has reached equilibrium distance between top and bottom material interfaces; (right)—loop continues to expand via a
threading mechanism. The blue planes indicate the interfaces between material layers and the direction of view is parallel to the (111)
normal of the slip plane.

influence of any highly curved section of the dislocation line. High curvature may reduce the applied load
required to cause slip across the material interfaces.

The stress predicted by XFEM is also greater than that of the threading dislocation model of Freund (1990)
which predicts a critical stress of approximately 260 MPa for a Cu film with a thickness of 40 nm. This finding
is consistent with the results of Ghoniem and Han (2005). Since according to our method the applied stress
required for the dislocation to slip across the interface is higher, deformation in Cu films of 40 nm is therefore
expected to occur by threading and not by slip across the Ni—Cu interface. This provides the motivation for a
3D model.

We next study the forces on a dislocation loop in a thin film in three dimensions using the same domain and
materials as in the previous problem, see Fig. 8(a). Initially, the domain contains a single circular shaped
dislocation loop on the (11 1) plane, in the center of the domain. The initial dislocation loop radius is 17 nm.
Since the current implementation of our 3D method still utilizes the J-integral to compute the Peach—Koehler
force, it is not practical to estimate the applied stress necessary to overcome the Koehler barrier because the
element length would have to be on the order of a fraction of the Burgers vector. Instead, a lower stress of
75 MPa is applied, and the forces computed at the core are shown as the loop evolves in time (Figs. 10 and 11).
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Fig. 11. Initial and evolved shapes of the dislocation loop core when subjected to a shear load of 75 MPa in a layered material (red)—

initial shape; (blue)—displaced shape.

The model correctly captures the equilibrium distance between the material interfaces and the dislocation
loop and shows the growth of the dislocation loop by a threading mechanism.

6. Conclusions

An improved version of a new method for modeling dislocations has been presented. The advantages of the
method are that:

(1) it can be applied to nonlinear and anisotropic materials;

(2) the method is finite element based, so geometrical complexity is easily dealt with;

(3) the Peach—Koehler force is computed directly without superposition, which is of order ()(n) complexity, as
opposed to ¢(n?) for superposition methods, where n is the number of dislocation segments;

(4) the method is simple to parallelize.

A disadvantage of the method as compared to image-field methods such as van der Giessen and Needleman
(1995) is that greater resolution is required.

In the previous form of this method (Gracie et al., 2007), the discontinuity was simply terminated (with a
resultant incompatibility) or terminated smoothly. In either case, the Peach—Koehler force could be evaluated
quite accurately with a J-integral. However, the J-integral requires a domain of radius 3/, and in DD
applications this is a handicap. In the improved method, we have introduced enrichment functions based on
the infinite domain, closed-form solution at the vicinity of the core. This enables the Peach—Koehler force to
be computed directly from the finite element solution.

The applicability of the method to interface problems has been illustrated by several examples. The first
example examined the convergence of the Peach—Koehler force for a bimaterial problem in two dimensions.
The method is convergent both with and without core enrichment. However, the core enrichment provides a
significant increase in absolute accuracy. The second example shows that the method matches the analytical
expression for the stress of a dislocation loop. In the third example, the Koehler barrier was studied by
determining the applied stress required to bring a screw dislocation to within two Burgers vectors of a material
interface. The fourth example shows the evolution of a dislocation loop in a layered material using a
discontinuous enrichment and the J-integral to calculate dislocation forces.

The singular enrichment shows many advantages over methods that only use the discontinuous enrichment,
such as lower requirements in mesh refinement, and the ability to calculate the Peach—Koehler force directly. It
is quite remarkable that a singular enrichment based on infinite domain solutions enables us to dramatically
increase the accuracy of the method for more complex problems, such as those with interfaces. An accurate
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computation of the Peach—Koehler forces needed for DD simulations then becomes possible with relatively
coarse meshes. The proposed method makes possible the solution of dislocation problems which have so far
been largely avoided but are nevertheless of importance.
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