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Abstract

A method for modelling dislocations in systems with arbitrary materials interfaces is described.
The method is based on the extended finite element method (XFEM) where dislocations are mod-
elled in the manner of the Volterra dislocation model. A method for calculating the Peach–Koehler
force by J-integrals in this framework is studied. The method is compared to closed form solutions
for interface problems and excellent accuracy is obtained. The convergence and accuracy of the
method is studied in two problems where analytical solutions are available: an edge dislocation inter-
acting with a free-surface and an edge dislocation interacting with a bimaterial interface. The appli-
cability of the method to more complicated problems is illustrated by the modelling of slip
misorientation of an edge dislocation with a glide plane intersecting a material interface and dislo-
cations in a multi-material domain with non-parallel interfaces.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Computational Dislocation Dynamics (DD) is increasingly being applied to the
resolution of important questions in nonlinear bulk material behaviour and plasticity,
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e.g. Amodeo and Ghoniem (1990), Canova et al. (1993), Van der Giessen and Needleman
(1995), Zbib et al. (1998), Ghoniem et al. (2000), Shehadeh et al. (2005). Of interest more
recently are applications involving micro/nano scale systems. For example, Polonsky and
Keer (1996) used DD to model plasticity due to contact in micro-scale systems; Nicola
et al. (2005) have computationally reproduced size effects in thin films; Balint et al.
(2006) have studied size effects in crystals and polycrystals; Espinosa et al. (2006) have
shown size effects in freestanding FCC films and partially calibrated them by experiments.
Usually, these computational methods are based on superposition of infinite domain ana-
lytical solutions. For micro/nano scale systems, the effects of boundaries, material inter-
faces and material anisotropy are important; however, the extension of existing methods
to these problems is difficult, since the existence of Green’s function for specific geometries
is limited, see Ghoniem and Han (2005).

Alternative methods are the phase field method (PFM) of Wang et al. (2001) and the
level set based method of Xiang et al. (2003). The PFM, like the proposed method, directly
models the displacement field but represents the discontinuities of the dislocations by reg-
ularizations. Both methods have been applied with fast Fourier transforms, though in
principle they can be applied with standard finite elements. Another method which directly
approximates the displacement field due to the dislocations is that of Lemarchand et al.
(2001), where the effect of the dislocations in the continuum is introduced through a plastic
strain.

In DD a sequence of equilibrium solutions must be obtained with evolving dislocations;
at each step the total stress of the domain is determined for a given distribution, number
and geometry of the dislocations. The geometry, number and location of the dislocations
for the next step of the simulation are determined using a phenomenological equation of
motion for each dislocation, where the Peach–Koehler force is the driving force, and a set
of rules, which govern among other things, dislocation nucleation and annihilation.

The DD codes based on superposition determine the total stress of the domain by the
sum of the analytical solutions of dislocations in an infinite domain plus an image stress
field. In three-dimensional methods, these solutions usually take the form of Green’s func-
tions. Methods based on superposition are difficult to extend to important problems such
as anisotropic materials and material interfaces. With the exception of a few geometries,
such as the recently developed Green’s functions of Ghoniem and Han (2005) and Han
and Ghoniem (2005) for parallel anisotropic materials, Green’s functions cannot readily
be obtained for anisotropic materials with arbitrary material interfaces. Therefore, meth-
ods based on Green’s functions for these applications will be difficult to develop.

We describe some studies with a method we have recently developed (Gracie et al.,
2007), that is easily able to treat anisotropic materials, interfaces and grain boundaries.
The methodology is based on the extended finite element method (Belytschko and Black,
1999; Moës et al., 1999; Belytschko et al., 2001), in which an arbitrary discontinuity is
added to a finite element solution independent of the mesh, i.e. the discontinuity does
not need to conform to the mesh in any way. This enables the method to model a dislo-
cation as described originally by Volterra (1907): an interior discontinuity that results
from cutting a solid, displacing the two opposing surfaces and then regluing the solid
along the cut. The stresses that are computed by an XFEM calculation correspond to
those that would result from this process. The work of Ventura et al. (2005) which pro-
posed a dislocation model based on a similar finite element method, the Partition of Unity
Method, was particularly influential to the current work.
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To account for finite domain boundary conditions, superposition methods require
the computation of an image field. In Fivel et al. (1996), the image stress is determined
by a method based on the Boussinesq problem, while in the method of Van der Gies-
sen and Needleman (1995) it is computed by the finite element method. In contrast, the
method presented here uses a finite element method (FEM) to compute the total stress
field.

Here we examine the suitability of the J-Integral for computing the Peach–Koehler
force. Since the method presented here does not use superposition, the self-stress of a dis-
location cannot simply be subtracted out of the total stress. So the Peach–Koehler for-
mula, (Peach and Koehler, 1950), cannot be applied. We show that the J-Integral is
effective for computing the Peach–Koehler force and discuss its relative advantages and
disadvantages.

From the examples considered here, the extension of the method to anisotropic mate-
rials and grain boundaries will become apparent. The ability of the method to easily model
problems involving interfaces is one of its principal advantages. Here, we will illustrate the
effectiveness of the method for problems involving interfaces, albeit in some rather simple
problems.

In the following section, we summarize the methodology and the discrete equations of
the proposed method. In Section 3 we discuss the computation of the Peach–Koehler force
by the J-integral. In Section 4 we apply the proposed method to problems involving inter-
faces and in Section 5 we present the conclusions.
2. Methodology

We first briefly review the method for modelling dislocations. Consider the domain X
bounded by C with tractions t defined on boundary Ct, displacements �u defined on bound-
ary Cu and with internal surfaces of discontinuity a, a ¼ 1 to nD, that model the nD dislo-
cations Ca

d . We define Cd ¼
S

aC
a
d . While the method is applicable to any type of

dislocation, we restrict this paper to edge dislocations.
The geometry of dislocation a is described by an affine function of the coordinates,

f aðxÞ ¼ 0, where

f aðxÞ ¼ a0 þ ajxj ð1Þ
and repeated indices denote summations. The core is described by the intersection of the
glide plane, f aðxÞ ¼ 0, and a distance function (or level set function) gaðxÞ ¼ 0 where
gaðxÞ > 0 on the active portion of the slip plane.

Let S be the set of all nodes, Ea be the set of all elements cut by discontinuity a and
Sa be the set of enriched nodes for dislocation a; the latter is the set of all nodes of
elements in Ea. A virtual element is superimposed on the element containing the dislo-
cation core, as shown in Fig. 1, so that the corner node is coincident with the center of
the core. The core node of dislocation a is denoted by Ca and Ca 2 Sa. The displace-
ment approximation for the continuum containing nD dislocations with Burger’s vectors
ba has the form

uðx; tÞ ¼
X
I2S

NðxÞI uIðtÞ þ
XnD

a¼1

ba
X
J2Sa

eN J ðxÞWa
J ðx; tÞ ð2Þ
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Fig. 1. Illustration of the virtual element, the cross-hatched triangle, which is superimposed on the finite element
mesh. The dashed line represents the glide plane. Grey circles represent nodes in the set Sa.
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where NI and eN J are standard finite element shape functions and uI are the nodal displace-
ments. For elements cut by the discontinuities eN I ¼ NI , except in the element containing
the core where eN I are the shape functions of the superimposed element.

The function Wa
I ðx; tÞ is called the enrichment and introduces the interior discontinuities

into the displacement field. We will consider two forms of the enrichment:

1. regularized and compatible

Wa
I ðx; tÞ ¼ ðHðf aðx; tÞÞ � Hðf aðxI ; tÞÞÞHðgaðx; tÞÞ ð3Þ

2. incompatible

Wa
I ðx; tÞ ¼ ðHðf aðx; tÞÞ � Hðf aðxI ; tÞÞ þ Hðf aðxI ; tÞÞdICaÞHðgaðx; tÞÞ ð4Þ

where Hð�Þ is the Heaviside function given by

HðzÞ ¼
0; z < 0

1; z P 0
:

�
ð5Þ

and dIJ is the Kronecker delta. The first enrichment was previously proposed in Gracie
et al. (2007); the second enrichment is a new representation. As indicated by the names,
the first enrichment is a regularization of the classical Volterra dislocation field. The
shapes of the enrichment functions along the dislocation line are shown in Fig. 2; the clas-
sical dislocation model has the shape shown in Fig. 2a.

Eq. (3) employs a linear regularization of the core, Fig. 2b. The linear regularization is
mesh dependent; as the approximation is refined, the linear regularization will converge to
the classical solution, shown in Fig. 2a. As a result, the total energy of the approximation
diverges as the mesh is refined; however, the Peach–Koehler force acting on a dislocation
converges. If the total energy is not of interest, and only the movement of dislocations,
which is governed by the Peach–Koehler force, then the core behaviour shown in Figs.
2a and 2b can be used as an approximation to the actual dislocation core. When such
approximations are too limiting, more accurate core displacement models such as the
Peierls–Nabarro model (Peierls, 1940; Nabarro, 1947), can be introduced through the
Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
tions..., Int. J. Plasticity (2007), doi:10.1016/j.ijplas.2007.03.003



Fig. 2. Illustration of the tangential jump, ut, along the glide plane from (a) the infinite domain analytical
solution for an edge dislocation and the incompatible enrichment (4) and (b) the regularized and compatible
enrichment (3).
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enrichment of the displacement approximation (2). However, the Peach–Koehler force
and the energy outside a core region is almost independent of the regularization.

2.1. Discrete equations

The weak form of the equilibrium equation is the standard principle of virtual work:
find u 2 U, such thatZ

X=Cd

�ðvÞT : rð�ðuÞÞdX�
Z

X
g � vdX�

Z
Ct

t � vdC ¼ 0; v 2 U0 ð6Þ

where

U0 ¼ fu 2 H 1ðX=CdÞ; u ¼ 0 on Cug ð7Þ
U ¼ fu 2 H 1ðX=CdÞ; u ¼ �u on Cug ð8Þ

where r is the Cauchy stress and g is the body force per unit volume. Note that the dis-
continuities Cd are omitted from X.

A small strain, linear elastic formulation will be adopted, although the approach can
easily be extended to large strain and material nonlinearities. The strain displacement rela-
tion is

� ¼ symru ð9Þ
and the constitutive equations is

r ¼ C : � ð10Þ
We place no restriction on C; it may be for either an isotropic or an anisotropic material.

Substituting the approximation (2) into the weak form of the equilibrium Eq. (6) the
discrete equations to be solved are

Kuudþ Kubb ¼ fext ð11Þ
where d ¼ fu1; u2; . . . ; unng are the nodal displacement degrees of freedom of the nn nodes,
and bT ¼ fkb1k; kb2k; . . . ; kbndkg is a matrix of Burgers vector magnitudes. The submatri-
ces Kuu and Kub and the matrix f ext are given by

Kuu
IJ ¼

Z
X

BT
I CBJ dX ð12Þ

Kub
Ia ¼

Z
X

BT
I CDa dX ð13Þ
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fext ¼
Z

X
NTgdXþ

Z
Ct

NTtdC ð14Þ

for I ; J 2S, and

BI ¼
NI ;x 0

0 N I;y

N I;y NI ;x

264
375 ð15Þ

and

Da ¼
X
I2Sa

ðeN IW
a
I Þ;xðea

t � exÞ
ðeN IW

a
I Þ;yðea

t � eyÞ
ðeN IW

a
I Þ;yðea

t � exÞ þ ðeN IW
a
I Þ;xðea

t � eyÞ

2664
3775 ð16Þ

where ea
t is a unit vector parallel to the Burgers vector ba and a ¼ 1 to nD. Note that (12) is

the standard stiffness matrix.
In a dislocation dynamics problem, the Burgers vectors are given at every step of the

simulation and the displacement can be obtained by solving (11) which gives

d ¼ K�1
uu ðf

ext � KubbÞ ð17Þ

Note that the dislocations are represented in (17) by nodal forces, Kubb, and that the
stiffness matrix, Kuu, is independent of the geometry and number of dislocations. Fur-
thermore, the stiffness matrix will be identical for the two core models, (3) and (4),
whereas the nodal forces, Kubb, will differ. It can be seen from (17) that the discrete
equations are the standard finite element equations and that the effect of the disloca-
tions appears entirely through the external forces, i.e. the right hand side of the equa-
tions. Consequently, (a) standard finite element software can easily be adapted to use
this method and (b) if a direct solver is used in the DD problems, the stiffness need only
be triangulated once and all subsequent steps only involve the far cheaper back-
substitution.

2.2. Application of displacement boundary conditions

Boundary conditions are applied in the same manner as in a standard finite element
method, i.e. by constraining the nodal degrees of freedom. This can be seen from the
displacement approximation (2) and the enrichment functions (3) and (4). At any node
on the boundary of the domain, denoted as xK, WðxKÞ ¼ 0; therefore, by (2) the nodal
displacements at xK are uðxKÞ ¼ uK , as in the standard FEM. Specific displacements
along a boundary are imposed by constraining specific uK in the solution of (11)
and (17). For a free boundary no uK need be constrained, since homogeneous natural
boundary conditions follow directly from the weak form. For a fixed boundary which
is not intersected by a dislocation glide plane, the constraint uK ¼ 0 should be imposed.
Care should be given when glide planes intersect boundaries where displacement
boundary conditions are to be imposed. The displacement along the edge of the bound-
ary elements should be checked to ensure that the desired boundary condition is
imposed.
Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
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3. Peach–Koehler force

The force F per unit length ds of a dislocation line (Peach and Koehler, 1950), is

F ¼ �n� ð�r � bÞds ð18Þ
where n is a unit vector along the dislocation line s, �r is the stress at ds from all sources
except the self-stress along ds and b is Burgers vector. In superposition methods, the stress
�r on dislocation a in (18) is easily determined as

�rðxaÞ ¼
XnD

k6¼a

rself
k ðxaÞ þ rimgðxaÞ ð19Þ

where rself
k is the self-stress of dislocation k, rimg is the image stress field and xa is the loca-

tion of dislocation core a. This method is not applicable here because the stress at the core
as computed by the finite element solution of (11) is not of adequate accuracy. This differ-
ence from image field methods such as that of Van der Giessen and Needleman (1995)
arises because this method computes the total stress field, which requires more resolution
near the core to achieve the same accuracy.

Therefore, we calculate the Peach–Koehler force by a contour integral as proposed by
Eshelby (1951). In this method, the Eshelby tensor (also known as the energy–momentum
tensor) is integrated over a closed contour about the dislocation core. Eshelby’s work was
extended by Batra (1987) to nonlinear hyperelastic materials, where the formulation is
given in terms of the inverse deformation gradient. For the linear case, as given by Eshelby
(1951), the Peach–Koehler force is

F l ¼ �
Z

Cc

1

2
rij�ijdkl � rikui;l

� �
nk dC ð20Þ

where with reference to Fig. 3, Cc is any closed contour about the dislocation and n is the
unit outward normal of Cc. The integral in (20) is widely known as Rice’s path-indepen-
dent J-integral (Rice, 1968).

The stress fields of the finite element models are not continuous. It has been found that
the domain form of the J-integral given by Moran and Shih (1987) is more accurate then
the contour form (20). The domain form of the J-integral is

F l ¼ �
Z

Xc

1

2
rijui;jdkl � rikui;l

� �
ql;k dXc; no sum on l ð21Þ
Fig. 3. Conventions for the calculation of the Peach–Koehler force at a point s on a dislocation loop from the
J-Integral.
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Fig. 4. Left: integration domain definition for the domain form of the J-integral taken about the core of a
dislocation. In the shaded circle of radius ri, the test function q has a value of 1; in the region outside of the circle
with radius ro, the test function q has a value of 0. Right: function q as a function of distance r from the core.
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where Xc is any domain containing the dislocation core bounded by Cc and q is a test func-
tion which is continuous with a value of 1 at the dislocation core and zero on Cc. For the
two-dimensional examples considered below, we defined Xc as a disk with an outer radius
ro, centered at the dislocation core. The function q is defined to be 1 at all nodes within a
distance ri from the core and decreases linearly to 0 at ro. The definition of Xc chosen here
follows that used by Moës et al. (1999) about crack tips and is illustrated in Fig. 4.

The domain Xc must only contain a single dislocation core. So, in order to apply the
proposed XFEM method to dislocations, it is desirable that the radius of the integral con-
tour be as small as possible. Selection of Xc is discussed in example 4.1. We have found
that in general a domain with an outer radius as small as ro ¼ 4he and an inner radius
of ri ¼ 3he gives results with an error less than 2%, where he is the average element edge
length near the dislocation core.

4. Examples

In this section, we consider four examples. The first two examples demonstrate the
numerical properties of the method, while the last two examples illustrate the applicability
of the proposed method to some problems that may become of interest as DD applications
evolve.

In the examples considered, the dislocation core is located at distances of the order of
102b from the interfaces. Because only linear elasticity is considered, the accuracy of the
method for problems at other distances from the interfaces can be inferred from the results
presented. Decreasing the distance of the dislocation from the interface by a given factor
and scaling the domain dimensions, element edge lengths and the integration domain of
the J-integral by the same factor, yields results with exactly the same relative error.

4.1. Dislocation near a free-surface

To examine the accuracy of this method, we consider an edge dislocation in a semi-infi-
nite domain near a free-surface, as shown in Fig. 5. As discussed by Eshelby (1951), a dis-
location near a free-surface can be viewed as a special case of the bimaterial problem
where one of the materials has zero stiffness. The free-surface is located at x ¼ 0 and
the domain is defined by 0 < x < 2L;�L < y < L. The dislocation is located at a distance
Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
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of L ¼ 500 nm from the free-surface and the glide plane is perpendicular to the free-sur-
face, along y ¼ 0. The elastic constants are E ¼ 1214:1 GPa and m ¼ 0:34 and Burgers vec-
tor is b ¼ 0:21550 nm. The analytical solution to this problem as given by Head (1953)
(after a small typographical correction) is

rx¼D �yf3ðx�LÞ2þy2g
ððx�LÞ2þy2Þ2

þyf3ðxþLÞ2þy2g
ððxþLÞ2þy2Þ2

þ4Lxy
f3ðxþLÞ2�y2g
ððxþLÞ2þy2Þ3

( )

ry¼D
yfðx�LÞ2�y2g
ððx�LÞ2þy2Þ2

�yfðxþLÞ2�y2g
ððxþLÞ2þy2Þ2

þ4Ly
fð2L�xÞðxþLÞ2þð3xþ3LÞy2g

ððxþLÞ2þy2Þ3

( )

rxy¼D
ðx�LÞfðx�LÞ2�y2g
ððx�LÞ2þy2Þ2

�ðxþLÞfðxþLÞ2�y2g
ððxþLÞ2þy2Þ2

þ2L
ðL�xÞðxþLÞ3þ6xðxþLÞy3�y4

ððxþLÞ2þy2Þ3

( )
ð22Þ

where D ¼ Eb=4pð1� m2Þ. We solve the problem on a subdomain ABCD, as in Fig. 5.
Traction boundary conditions corresponding to the analytical solution (22) are applied
on the boundaries. A structured mesh of three-node triangles as shown in Fig. 5 is used.
In Gracie et al. (2007) we solved this problem and showed that the proposed method
approximates the stress fields well and that the strain energy outside of a fixed area around
the core converges to the exact solution at the optimal rate of h2

e for linear finite elements,
where he is the element size.

Here, we study the accuracy of the Peach–Koehler force calculated by the domain form
of the J-integral, (21). In this study we fix the domain of integration, Xc. We have used a
ring shaped domain about the dislocation core, as described above, with ri=L ¼ 0:1 and
ro=L ¼ 0:2. Fig. 6 shows the convergence of the relative error in the Peach–Koehler force
in the glide direction with decreasing element size for both enrichments. In both instances
the relative error converges at a rate of about 2.0 with respect to element size. As can be
seen from Fig. 6, the new incompatible enrichment yields more accurate Peach–Koehler
Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
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forces. However, the values of the Peach–Koehler force are generally comparable, except
for certain mesh sizes. Some of these differences are due to the change in accuracy that
depends on the relative location of the core in the element. It should be noted that the
domain over which the J-integral was computed was larger than would be practical in
DD. Such a large domain was used only so that coarse meshes could be included in the
convergence study.

We also considered domain integrals of different domain sizes, for a mesh with 60 ele-
ments along each boundary, which gives an element size of he ¼ 1

30
L. The Peach–Koehler

force scaled by L is dependent only on material properties, i.e. F PK � L ¼ b2l=ð4pðm� 1ÞÞ.
For the material properties considered here F PK � L ’ 3:555.

For the incompatible enrichment the Peach–Koehler force and the relative error are
given in Table 1 in terms of the integration domain size. The first and second rows of Table
1 show that using very small ri gives very poor results. Comparison of the third to fifth
rows shows that when ri is relatively small, increasing ri can improve the accuracy of
Table 1
Peach–Koehler force by the domain form of the J-integral for various integration domains for a mesh of 60� 60
elements; he � 1

31
L is the element size

ri ro F PK � L Relative error in FPK

1he 3he �1.995 0.44
1.5he 3he �4.307 0.21
1.5he 6he �3.784 6.4 � 10�2

2he 6he �3.459 2.7 � 10�2

3he 6he �3.522 9.1 � 10�3

3he 10he �3.499 1.6 � 10�2

6he 10he �3.482 2.0 � 10�2

6he 12he �3.481 2.1 � 10�2

Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
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the J-integral. In both cases this is a reflection of the fact that the stress field at the core is
less accurate than that away from the core. The last three rows show that for very large
domains, increasing ri decreases the accuracy slightly. Therefore, the inner radius of the
integration domain should be chosen sufficiently far from the core, but still in the vicinity
of the core.

4.2. Dislocation near a bimaterial interface

Next we consider an edge dislocation near a bimaterial interface between two semi-infi-
nite domains, as shown in Fig. 7. Bimaterial problems are a particular target of this
method since they are difficult to treat by superposition methods.

The bimaterial interface is located along the plane x ¼ L=2. An edge dislocation with
Burgers vector b ¼ 0:2551 nm and with a glide plane along the plane y ¼ L=2 is consid-
ered. The core is located at x ¼ L=2þ h. In the subdomain x > L=2 the elastic modulus
E1 ¼ 121:41 GPa and Poisson’s ratio m1 ¼ 0:34; in the subdomain x < L=2, E2 ¼ 0:1E1

and m2 ¼ 0:3.
The solution to this problem was given by Head (1953), and later used to study the

Peach–Koehler force on a dislocation near a bimetallic interface by Dundurs and Send-
eckyj (1965). Further clarification of the solution was provided by Lubarda (1997) in
the context of dislocation arrays near bimaterial interfaces. The ratio of shear moduli is
given by H ¼ l2=l1 and for plane strain ji ¼ 3� 4mi. The glide force acting on a disloca-
tion at a distance h from a bimaterial interface as given by Dundurs and Sendeckyj (1965)
is

F g ¼
�ðBþAÞl1b2

2pðj1 þ 1Þh ð23Þ

where A and B are given by

A ¼ 1�H
1þHj1

; B ¼ j2 �Hj1

j2 þH
ð24Þ
0 500 1000

0

1
x 10

h/b

F
g /(

b2 *μ
1)

XFEM
Exact

Fig. 7. (a) Nomenclature for an edge dislocation near a bimaterial interface between two semi-infinite domains.
(b) comparison of the glide component of the Peach–Koehler force obtained by the proposed method with the
exact result.

Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
tions..., Int. J. Plasticity (2007), doi:10.1016/j.ijplas.2007.03.003



12 T. Belytschko, R. Gracie / International Journal of Plasticity xxx (2007) xxx–xxx

ARTICLE IN PRESS
We consider a square L� L domain ABCD, L ¼ 1 lm, as shown in Fig. 7. Along the edges
of the domain, traction boundary conditions corresponding to the exact solution are ap-
plied; the expressions for the stress fields are given in Lubarda (1997). We discretize the
domain with an unstructured mesh of 13,320 three-node triangular elements giving an
average element edge length of about 15b.

In Fig. 7b, the glide component of the Peach–Koehler force obtained by the proposed
method is compared to that from (23) for various distances, h, from the material interface.
As can be seen, the glide force for the incompatible enrichment calculated with the domain
form of the J-integral with ri ¼ 3he and ro ¼ 5he compares well with the exact result. As
the dislocation approaches the interface, the accuracy decreases somewhat as a result of
insufficient mesh resolution. When the number of elements separating the dislocation core
from the interface was less than 5, we used ro ¼ h and ri ¼ h=2 for the domain integral,
yielding less accurate results. Mesh refinement near the interface can be used to increase
the accuracy of the glide force calculation. Such refinement is easily accomplished since
the element edges do not have to conform to the glide plane.

The convergence of the glide component of the Peach–Koehler force for both the com-
patible and incompatible enrichments is shown in Fig. 8, for h=L ¼ 0:2. In this example,
the incompatible enrichment is again more accurate than the compatible and regularized
enrichment for fine meshes. For both enrichments the relative error decreases non-mono-
tonically with element size at a rate slightly greater than 1. The non-monotonic nature of
the convergence curve is most likely a result of the fact that the size of the superimposed
element depends on not only the underlying mesh size but also the location of the dislo-
cation core in the underlying element.

Contour plots of the shear stress, rxy, and for the normal stress, ryy, for the regularized
and compatible enrichment are shown in Figs. 9 and 10, respectively, with the correspond-
ing contours for the exact solution for h=L ¼ 0:2. The stress contours show good agree-
ment with the exact solution fields. We see that ryy is discontinuous across the material
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Fig. 8. Convergence of the glide force on an edge dislocation near a bimaterial interface.
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Fig. 9. Comparison of the shear stress, rxy, contours from the proposed method (right) with those of the exact
solution (left) for an edge dislocation near a bimaterial interface.
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interface, but that rxy is continuous, as expected. Furthermore, mesh refinement near the
dislocation core would improve the accuracy of the stresses in the vicinity of the core.

4.3. Slip-plane misorientation

We consider an edge dislocation in a square W � W , W ¼ 1 lm, bimaterial plate, as
shown in Fig. 11; the body is supported only sufficiently to preclude rigid body motion,
so the edges are otherwise free. The body is divided along the plane x ¼ W =2. In the
domain x > W =2 the elastic constants are E1 ¼ 121:41 GPa and m1 ¼ 0:34, while in the
domain x < W =2, E2 ¼ 0:1E1 and m2 ¼ 0:3. An edge dislocation is located in the domain
x > W =2 at a distance of h from the point ðW =2;W =2Þ and oriented at an angle of h from
the x-axis. The slip plane of the dislocation extends from the dislocation core to the point
ðW =2;W =2Þ, where the glide plane crosses the material interface. Due to slip-plane misori-
entation, the slip plane continues in the domain x < W =2 along the plane y ¼ W =2. The
magnitude of the Burgers vector, b ¼ 0:8551 nm, is assumed to be the same along both
the horizontal and inclined portions of the glide plane. Different Burger’s vector magni-
tudes could have been adopted for each material.

This problem is solved using an unstructured mesh of 13,320 three node triangular ele-
ments with an average element edge length of about 15b. For h=W ¼ 0:25 and h ¼ p=6 the
shear stress contours are shown in Fig. 12. From these contours we can see that the pro-
posed method predicts a residual dislocation at the material interface. The residual dislo-
cation results from the incompatibility of the displacements where the slip plane intersects
the material interface.

The glide and climb forces acting on an edge dislocation with h=W ¼ 0:1 for various
values of h between � p

6
and p

6
are shown in Fig. 13. The climb force is antisymmetric with

respect to h, while the glide force is symmetric, as expected. Because an unstructured mesh
was used and because the method exhibits some mesh dependence, small perturbations
from perfect symmetry and antisymmetry are observed. The maximum glide force occurs
when h ¼ 0; however, glide forces of similar magnitude act to move the dislocation
towards the material interface when h ¼ � p

6
.
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Fig. 10. Comparison of the y-direction stress, ryy, contours from the proposed method (right) with those of the
exact solution (left) for an edge dislocation near a bimaterial interface.

Fig. 11. Edge dislocation in a simply supported bimaterial body with slip plane misorientation across the material
interface. Dashed line represents the material interface; dotted line represents the slip plane.
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4.4. Finite body with multiple material interfaces

To illustrate the capability of the method to deal with more complicated geometries, we
consider a multimaterial body with four different materials and five material interfaces, as
shown in Fig. 14. The domain dimensions are h� L where h ¼ 1000 nm ¼ 1169:5b and
L ¼ 2h. The elastic properties in each section of the body are E1 ¼ 1000 GPa, m1 ¼ 0:34,
E2 ¼ 0:1E1, m2 ¼ 0:30, E3 ¼ 2 � E1, m3 ¼ 0:2, and E4 ¼ 0:005E1, m14 ¼ 0:25. The bottom
edge of the body is rigidly constrained while the top edge is prescribed a displacement cor-
responding to 2% shear strain. Ten slip planes parallel to the x-axis are evenly distributed
throughout the system. Along each slip plane n dislocations are randomly distributed.
Each dislocation is assumed to have the same Burgers vector b ¼ 0:8551 nm directed in
the x-direction. This problem would be challenging for superposition methods since the
Please cite this article in press as: Belytschko, T., Gracie, R., On XFEM applications to disloca-
tions..., Int. J. Plasticity (2007), doi:10.1016/j.ijplas.2007.03.003



X/h

Y
/h

0 1 2 3 4
0

1

2

3

4

Sxy/mu1

5E-05
4E-05
3E-05
2E-05
1E-05
0

-1E-05
-2E-05
-3E-05
-4E-05
-5E-05

X/h

Y
/h

0 1 2 3 4

1

2

3

4

Sxx/mu1

5E-05
4E-05
3E-05
2E-05
1E-05
0

-1E-05
-2E-05
-3E-05
-4E-05
-5E-05

Fig. 12. Contours of: (a) the shear stress rxy and (b) the x-direction stress rxx for an edge dislocation in a
bimaterial plate with slip plane misorientation across the material interface. h is the distance of the core of the
dislocation in the bulk from that at the material interface.
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body has several materials, finite dimensions, and the material interfaces are not parallel.
The relative reduction in the force required to produce a 2% shear strain is shown in
Fig. 15. The required force decreases linearly with an increase in the number of disloca-
tions because the number of slip planes containing dislocations was fixed. If the number
of these slip planes was varied, the required force would not decrease linearly with an
increase in the number of dislocations. A more realistic analysis of the above system would
require a full DD simulation, likely in 3D. However, the potential of this method to solve
problems involving the interaction of dislocations with material interfaces has been
demonstrated.
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Fig. 14. Nomenclature for the problem of a body with multiple materials.
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Fig. 15. Percent reduction in applied force required to produce a 2% shear strain in the multimaterial problem.
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5. Conclusions

An extended finite element method (XFEM) for modelling dislocations in systems with
multiple arbitrary material interfaces was presented. The method uses a standard finite ele-
ment method (FEM) to determine the total stress field subject to prescribed internal dis-
continuities, i.e. the dislocation slip.

Since the method presented here uses a FEM to determine the total stress field, the mesh
must be sufficiently refined to capture the high gradients of the stress field near the core. So
more resolution is needed than in the method of Van der Giessen and Needleman (1995)
where only the image stress field is determined by the FEM. The method has two advan-
tages over superposition and image field methods. (a) The method scales linearly with the
number of dislocations for a given mesh since the Peach–Koehler force can be determined
from local quantities and its computational complexity does not depend on the number of
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dislocations in the domain. (b) The method is applicable to problems of multiple arbitrary
material interfaces and is easily extended to anisotropic materials.

At this time it is not clear if the proposed method offers an advantage over superposi-
tion based models for DD in a single isotropic material. However, the goal of the work
here is not to replace superposition models in their current applications, but to present
a method capable of treating new applications involving material interfaces, which are dif-
ficult for existing methods.

We have examined the suitability and accuracy of contour integral methods to calculate
the Peach–Koehler force. We have shown that accuracies of about 98% can be obtained
even with contours of moderate dimensions (between 3 and 5 times the element size in
the calculations reported). This would be disadvantageous for dislocation dynamics sim-
ulations, since the dislocations are often in close proximity in such simulations. However,
the contour integral method for the Peach–Koehler force can be advantageous since it
requires only local quantities and so does not directly depend on the number of disloca-
tions in the domain.

Compatible and incompatible enrichments have been considered. The incompatible
enrichment yields more accurate results; however, the accuracy of the two enrichments
is of the same order, which suggests that for the cases considered here the details of the
core representation do not significantly affect the results.

To demonstrate the accuracy and convergence of the method for problems with inter-
faces, we have reported calculations for a single edge dislocation adjacent to an interface
and for an edge dislocation interacting with a bimaterial interface. In both problems, com-
parison to analytical results were made. For the discretizations considered, relative errors
of 2% were obtained for element sizes of 0:1–0:075 times the separation distance of the dis-
location from the interface. The linear elements we have programmed so far have a limited
ability to approximate the high strain gradients in the vicinity of the dislocation core. The
use of higher-order elements is expected to greatly improve the accuracy of the method.

It is unclear at this time exactly what the niche for this method will be. None of the
available methods have the versatility of the proposed method in terms of geometry, mate-
rial properties and nonlinearities. The method requires more resolution than methods
based on Green’s functions and image fields, but the required resolution is comparable
to the Phase Field Method which has solved very large problems, see Wang et al.
(2001). Furthermore, its compatibility with standard FEM software should prove
attractive.
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