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1. Introduction 
 
A newly developed method, [1], for modelling 
dislocations is applied to problems involving the 
interaction of dislocations with arbitrary interfaces.  
Dislocations are modeled in a manner akin to the 
Volterra dislocation model where a dislocation is 
defined by cutting the material, displacing the two sides 
of the cut and reattaching the two surfaces.  The method 
is based on the extended finite element method (XFEM), 
[2].    Discontinuities are explicitly introduced into the 
domain through a prescribed enrichment of the standard 
finite element approximation.   
 
In contrast to the behaviour of dislocations in bulk 
materials, the behaviour of dislocations in micro and 
nano scale systems depends greatly on the interaction of 
dislocations with both domain boundaries and material 
interfaces.  Most dislocation models are base on 
Green’s functions for a dislocation in an infinite 
isotropic domain.  It is known that the use of isotropy 
versus anisotropy can introduce errors of about 20-30% 
in many applications, [3].  However, there are a limited 
number of Green’s functions for dislocations in 
anisotropic material for systems with material interfaces.  
The difficulty of applying existing dislocation models 
in applications involving material interfaces is the 
motivation for this work.   
 
Here we will limit ourselves to isotropic materials 
however the method can be easily adapted for 
anisotropic materials, simply by using an anisotropic 
elasticity tensor.  We will also only consider examples 
with edge dislocations; however, the method may 
equally be applied to other types of dislocations in 3 
dimensions. 
 
2. Model and Governing Equations 
 
We define the geometry of an edge dislocations by two 
affine functions, ( ) o i if x xα α= +  and ( ) o i ig x xβ β= + , 
such that the glide plane of the dislocations is defined 
by ( ) 0f x =  and ( ) 0g x > . 
 
In XFEM the standard finite element approximation is 
extended by what is known locally about the solution.  
In this case the discontinuity across the glide plane.  In 

what follows we consider only a single dislocation for 
simplicity. The general formulation for Dn  dislocations 
can be found in [1]. We decompose the displacement 
field approximation into a continuous part ( )C xu  and a 
discontinuous part ( )D xu , i.e. 

     ( ) ( ) ( )C Dx x x= +u u u                                     (1) 
 where ( )C xu  is the standard finite element 
approximation and  
     ( ) ( ) ( )( ) ( )D
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where IN  are the standard finite element shape 
functions, b  is Burgers vector and ( )H •  is the 
Heaviside step function 
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S  is the set of all nodes with supports cut by the glide 
plane of the dislocation.  Note that S  is a small subset 
of the total nodes in the domain so the additional 
computational cost of including the discontinuity is 
small.  The enrichment (2) introduces a tangential jump 
across the glide plane with magnitude and direction of 
Burgers vector. 
 
The discrete finite element equations are then 
determined by the substitution of (1), (2) and (3) into 
the standard weak form of the equilibrium equation.  In 
the case of linear elasticity this yields a system of 
equations of the form 
     ext D= −Ku f f                                                    (7) 
where K is the standard finite element stiffness matrix, 

extf  is the nodal forces due to the external tractions and 
Df  is the nodal forces due to the dislocation.  The 

effect of the dislocations is reduced to a nodal force 
because the Burgers vector b  is known for a given 
dislocations and material. So the discontinuous 
enrichment introduces no additional degrees of freedom.  
As a result, the model is easily incorporated into most 
existing linear FEM commercial codes because only an 
addition nodal force needs to be defined.  Note, that no 
limitations have been place on the elasticity matrix; it 
can be either isotropic or anisotropic. 
 



3. Examples 
 
3.1 Dislocation near a Bimaterial Interface 
 
To demonstrate the numerical accuracy of the method 
we consider an edge dislocation near a bimaterial 
interface between two semi-infinite domains, as shown 
in Figure 1.  
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Figure 1.  Left: edge dislocation near a bimaterial interface. 
Right: convergence of the proposed method. 
 
The bimaterial interface is located along the plane 
x=L/2 . An edge dislocation with Burgers vector 
b=0.8551 nm  and with a glide plane along the plane 
y=L/2  is considered. The core is located at x=L/2+h . 
In the subdomain x>L/2  the elastic modulus 

1E =121GPa and Poisson's ratio 1=0.34ν ; in the 
subdomain x<L/2  2 1E =0.1E   and 2 =0.3ν . 
 
Figure 1 (right) shows the convergence of the method 
for 3-node constant stress elements.  An excellent 
convergence rate is obtained.   
 
3.2 Interaction of Dislocations with an Inclusion 
 
In this example the ability of the method to model the 
interaction of many dislocations with an arbitrary 
material interface without the need to introduce 
additional assumptions is illustrated. For this purpose, 
we consider a body with an inclusion, as shown in 
Figure 2. The inclusion is centered in a domain with 
dimensions 1 m 1 mµ µ×  and has a radius of 0.1 mµ . 
The material parameters of the inclusion are 

1E =121GPa and 1=0.3ν  and of the bulk material are 

2E =10GPa and 2 =0.2ν . 
 
We consider 40 dislocations with Burgers vector 
b=0.3 nm  distributed randomly on 8 evenly 
distributed horizontal slip planes. The domain is 
discretized by 13000 linear triangular elements. We 
rigidly constrain the bottom surface of the domain and 
apply a shear displacement xu 0.01 mµ=  to the top 
surface. The resulting shear stress contours are shown 
in Figure 2.  
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Figure 2. Left: Illustration of the problem of a body with an 
inclusion. Right: Shear stress contours showing the interaction 
of 40 dislocations with an inclusion.  
 
4. Conclusions 
 
A method for modelling dislocations based on the 
extended finite element method (XFEM) has been 
applied to problems involving material interfaces.  In 
the method dislocations are modeled by prescribed 
discontinuities on internal surfaces. Here edge 
dislocations in two dimensions and isotropic materials 
were modeled; however, the method can equally be 
applied to more complicated dislocation loops in three 
dimensions and to anisotropic materials. 
  
The simulation of an edge dislocation near a bimaterial 
interface shows that the method has an excellent rate of 
convergence.  The modelling of an inclusion in a bulk 
material illustrated the application of the method to 
problems of dislocation interaction with arbitrary 
interfaces.   
 
The integration of XFEM based dislocation models into 
dislocation dynamic simulations is expected to be 
beneficial for the simulation of dislocations interaction 
with material interfaces between anisotropic materials. 
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