Settlement Analysis

EMBANKMENT SETTLEMENT IMMEDIATE ("ELASTIC") PRIMARY CONSOLIDATION (ASSOCIATED WITH DISSIPATION OF EXCESS PORE PRESSURES)

SECONDARY CONSOLIDATION (ASSOCIATED WITH REARRANGEMENT OF PARTICLES)

CREEP (ASSOCIATED WITH SHEAR STRESS-STRAIN)

IT IS IMPORTANT TO RECOGNIZE THE IMPACT OF DIFFERENT TYPES OF SETTLEMENTS ON THE PROJECT:

SETTLEMENTS THAT OCCUR DURING CONSTRUCTION (PRIOR TO DRIVING PILES AT THE BRIDGE ABUTMENTS AND PRIOR TO CONSTRUCTION OF THE BRIDGE)

POST CONSTRUCTION SETTLEMENTS (HAVE SERIOUS COST IMPLICATIONS: BRIDGE AND PAVEMENT PERFORMANCE)

EMBANKMENT SETTLEMENT

WE **USUALLY** DESIGN THE EMBANKMENT SO THAT:

IMMEDIATE SETTLEMENTS AND SETTLEMENTS DUE TO PRIMARY CONSOLIDATION OCCUR DURING CONSTRUCTION

AND SETTLEMENTS DUE TO SECONDARY CONSOLIDATION AND CREEP OCCUR AFTER THE END OF CONSTRUCTION

EMBANKMENT SETTLEMENT

IMMEDIATE SETTLEMENTS

USUALLY NOT A KEY ISSUE:

USE CLOSED FORM SOLUTIONS BASED ON THE THEORY OF ELASTICITY WITH CONSERVATIVE UNDRAINED SOILS PROPERTIES

ALTERNATIVELY, CARRY OUT NUMERICAL SIMULATION USING TOTAL STRESS ANALYSIS WITH UNDRAINED SOIL PROPERTIES

EMBANKMENT SETTLEMENT

PRIMARY CONSOLIDATION

TERZAGHI'S 1D THEORY OF CONSOLIDATION

KEY ASSUMPTIONS:

•CONSTANT VERTICAL TOTAL STRESS AND ELASTIC PROPERTIES DURING CONSOLIDATION

•VERTICAL DRAINAGE ONLY

•NO LATERAL STRAINING OF THE SOIL (OEDOMETER TESTING)

Consolidation Settlement Calculations

 $\varepsilon_v = \Delta H/H_0 = s/H_0 = \Delta e/1 + e_0$

$$s = \varepsilon_v H_0 = (\Delta e/1 + e_0) H_0$$

Note: Want settlement @ U=100%

100% dissipation of excess porewater pressure

Settlement Equation in Terms of m_v $S = \varepsilon_v H_o$ $m_v = \frac{\Delta \varepsilon_v}{\Delta \sigma'}$ (1/kPa = m²/kN) $S = \int_0^H m_v \Delta \sigma' dz$ *if* m_v and $\Delta \sigma'$ are assumed constant with depth then $S = m_v \Delta \sigma' H$

Settlement Equation in Terms of a_v $S = \varepsilon_v H_o = \frac{\Delta e}{1 + e_o} H$ $a_v = \frac{\Delta e}{\Delta \sigma'} \quad (1/k Pa = m^2/k N)$ $S = \int_0^H \frac{a_v}{1 + e_o} \Delta \sigma' dz$ if a_v and $\Delta \sigma'$ are assumed constant with depth then $S = \frac{a_v}{1 + e_o} \Delta \sigma' H = m_v \Delta \sigma' H$ therefore $m_v = \frac{a_v}{1 + e_o}$ Settlement Equation in Terms of c_c $S = \varepsilon_v H_o = \frac{\Delta e}{1 + e_o} H$ $c_c = \frac{\Delta e}{\log \frac{\sigma_2}{\sigma_1'}} \quad \text{Note: } c_c = 0.009 \text{(LL-10)}$ $S = \frac{c_c}{1 + e_o} H \log \frac{\sigma_2'}{\sigma_1'} = \frac{c_c}{1 + e_o} H \log \left(\frac{\sigma_1' + \Delta \sigma}{\sigma_1'}\right)$

Settlement due to
$$\Delta \sigma$$

$$S_{total} = S_r + S_c$$

$$S_r = S_{rebound} = \frac{C_r}{1+e_0} H_0 \log(\frac{\sigma'_2}{\sigma'_1}) = \frac{C_r}{1+e_0} H_0 \log(\frac{\sigma'_c}{\sigma'_1})$$
note : for this case $\sigma'_1 = 0$

$$S_c = \frac{C_c}{1+e_0} H_0 \log(\frac{\sigma'_2}{\sigma'_1}) = \frac{C_c}{1+e_0} H_0 \log(\frac{\sigma'_c + \Delta \sigma}{\sigma'_c})$$

Over Consolidation Ratio (OCR)

$$OCR = \frac{\sigma'_c}{\sigma'}$$

where:

OCR = Over Consolidation Ratio

 σ'_{c} = preconsolidation pressure of a specimen

 σ' = present (field) effective overburben pressure

