Design Criteria

- Prevent shear failure
 - STAGE CONSTRUCTION
- Account for settlement in design
- Ability to construct within required time frame
- Cost effective design
STABILITY
DURING CONSTRUCTION

METHOD OF ANALYSIS:

• SLICES (BISHOP, MORGENSTERN PRICE)
• TOTAL STRESS ANALYSIS IN CLAYS (SHANSEP)
• UNDRAINED SHEAR STRENGTH: $Su = f(p')$
• $Su/p' = f($LIQUIDITY INDEX$) = 0.1$ TO 0.3
• NOTE: $p' = \sigma'_{0v}$ FOR N/C CLAYS

![Diagram of stability during construction](image)

How High can you Build?
Embankment Shear Failure

Shear Equation

\[q_{\text{ultimate}} = CN_c + \gamma D_f N_q + 0.5BN_\gamma \]

For \(\phi = 0 \) \(N_c = 5.14, N_q=1, N_\gamma =0 \) \(c=\text{Cu} \)
For embankment sitting on ground surface \(D_f = 0 \)

\[q_{\text{ultimate}} = 5Cu = N_c Cu \]
Typical Soft soil Stress-Strain Response

![Diagram of stress-strain response](image)

- $q_{allowable}$
- q_{ult}
- $\varepsilon_v = \text{vertical strain}$

$q_{allowable} = \frac{q_{ultimate}}{F}$

Total Stress Design Analysis

$$F = \frac{N_c Cu}{\gamma_e H_e}$$

where:
- $F = \text{factor of safety typically 1.2}$
- $Cu = \text{undrained strength of soil}$
- $\gamma_e = \text{embankment unit weight}$
- $H_e = \text{height of embankment}$
Cu Design Considerations

- Cu is the average undrained strength to a depth approximately equal to the height of the embankment.
- Soil will fail at the weakest point...
 - Use average Cu values in the soft zone.
- Cu are corrected values..see Mitchell notes.

Nc Design Considerations

\[N_c = 5 + 4\left(\frac{d_1}{d_2} - 0.4\right) \]

Varies from 5 to 8.
Embankment with Berms

- Addition of Berm can be used to increase height of embankment

![Figure 1.17 Effects of Berms and Slope Angle](image)

Embankment with Berms

- Use of berms can reduce lateral spread
- More material efficient than flattening the slope angle

\[F = \frac{N_c Cu}{\gamma_e (H_e - d)} \]

Dmax must satisfy

\[F = \frac{N_c Cu}{\gamma_e d} \]
Other Embankment Design Options

- Use of light weight fill or geo-foam
- Stage construction
 - Allow for consolidation and increase in Cu

Note:
To increase Cu σ'_v must be greater than the soil preconsolidation pressure

Stage Construction Process

1. Construct embankment to H_1
2. Allow 90% of the excess pwp to dissipate
 - Estimate using consolidation theory
 - Monitor peizometer installed in the soft zone
3. Determine increase in Cu due to increase in vertical effective stress
4. Determine the magnitude of settlement
5. Increase height to H_2
6. Repeat steps 2 to 5 to get to design height
Normally Consolidated Clay

Skempton 1957

\[\frac{C_u}{\sigma'_v} = 0.11 + 0.37 \frac{PI(\%)}{100} \]

Embankment Height at any time

\[H = \frac{N_c}{F} \left(\frac{C_u}{\sigma'_v} \right) \left(\frac{\sigma'_0}{\gamma} + UH_1 \right) \]

Where:

U is the average degree of consolidation over the potential failure zone
Degree of Consolidation

STABILITY
DURING CONSTRUCTION

PROBLEM ASSOCIATED WITH FAST CONSTRUCTION: FAST PORE PRESSURE GENERATION AND SLOW DISSIPATION IN FINE SOILS

BEFORE CONSTRUCTION: HYDROSTATIC PORE PRESSURES

DURING CONSTRUCTION: HYDROSTATIC PLUS EXCESS PORE PRESSURES
Time Rate of Consolidation

\[t = \frac{T_v H^2}{C_v} \]

Figure 1.21 (a) Derivation of Eq. (1.60); (b) nature of variation of \(\Delta u \) with time
Figure 1.22 Drainage condition for consolidation: (a) two-way drainage; (b) one-way drainage; (c) plot of $\Delta u / \Delta u_0$ with T_v and H / H_c

Figure 1.23 Range of C_p
(after U.S. Dept. of Navy)
Figure 1.24 Plot of time factor against average degree of consolidation (Δu_0 = constant)

Stress Under Embankment
Osterberg Chart

Corner of triangular Load

Fig. 8.23 Influence values for vertical stress under a very long embankment; length = ∞ (from U.S. Navy, 1971, after Osterberg, 1957).

Fig. 8.24 Influence values for vertical stress under the corners of a triangular load of limited length (after U.S. Navy, 1971).
Figure 1.25 One-dimensional consolidation due to single ramp loading
Figure 1.26 Olson’s ramp-loading solution: plot of U vs. T_v (Eqs. 1.69 and 1.70)