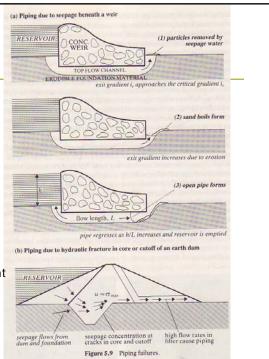
Flow in Earth Dams

Need for Flow Information


- Estimate seepage through dam
- Estimate seepage through foundation soils
- Design of cutoffs and ground treatment programs
- Porewater pressure to determine up and downstream slope stability
- Prevention of piping failures

Piping Failures

$$FS = \frac{i_c}{i_m} \ge 3$$

$$i_c = \frac{\gamma'}{\gamma_{water}}$$

i_m= mobilized hydraulic gradient Determine i_m from flow net

Anisotropic K

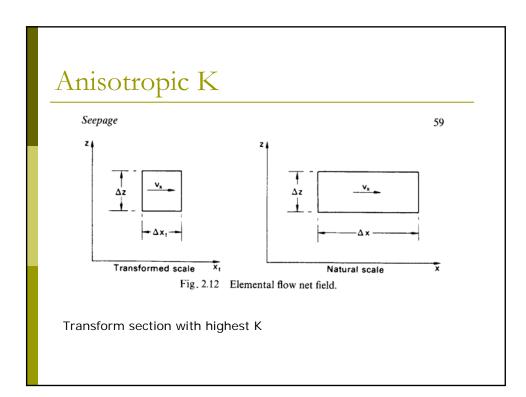
$$\frac{\partial^2 h}{\partial x^2} k_x + \frac{\partial^2 h}{\partial z^2} k_z = 0$$

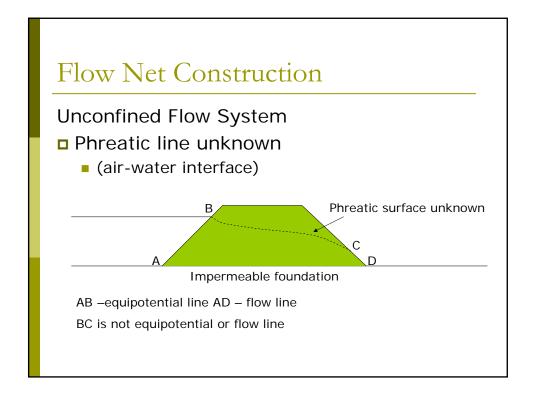
if
$$k_x = k_z$$

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial z^2} = 0$$

Anisotropic k_x>k_z

$$\frac{\partial^2 h}{\partial x^2} k_x + \frac{\partial^2 h}{\partial z^2} k_z = 0$$


$$\frac{\partial^2 h}{\left(\frac{k_z}{k_x}\right) \partial x^2} + \frac{\partial^2 h}{\partial z^2} = 0$$
if $x_t = x \sqrt{\frac{k_z}{k_x}}$


Anisotropic K

$$\frac{\partial^2 h}{\partial x_t^2} + \frac{\partial^2 h}{\partial z^2} = 0$$

$$v_x = -k' \frac{\partial h}{\partial x_t} = k \frac{\partial h}{\partial x}$$

$$k' = k_x \sqrt{\frac{k_z}{k_x}} = \sqrt{k_x k_z}$$

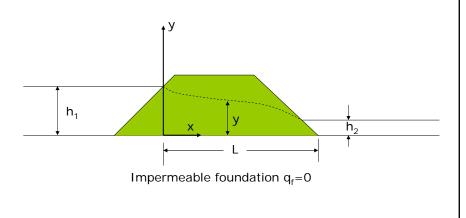
Unconfined flow

Two basic methods to determine phreatic surface:

- 1) Draw trial flow net
- See Cedergren Seepage Drainage and Flownets – posted on web.
- 2) Numerical solution based on parabola

Numerical Solution

Dupuit Solution


Modified Laplace equation

Assumes:

- a) Flow lines to be nearly horizontal
- b) Hydraulic gradient of the flow is equal to the slope of the phreatic surface

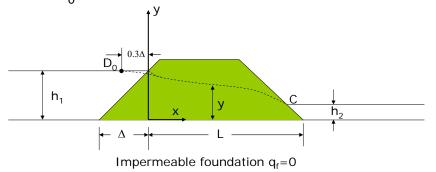
$$i = \frac{\partial y}{\partial x}$$

Dupuit Solution

Dupuit Solution

■ Top phreatic surface defined by

$$y = \sqrt{h_1^2 - (h_1^2 - h_2^2) \frac{x}{L}}$$

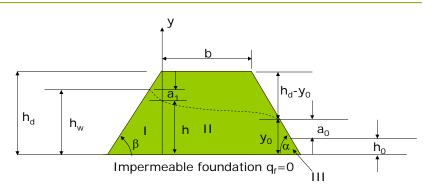

$$q = -k \left(\frac{h_1^2 - h_2^2}{2L} \right)$$

Dupuit Solution

- □ Does not take into account:
 - Slope geometry
 - Entrance or exit conditions (seepage surface is missing)

Casagrande Entrance Condition

 \blacksquare Move parabola by 0.3Δ and draw parabola from D_0 to C


Exit Condition

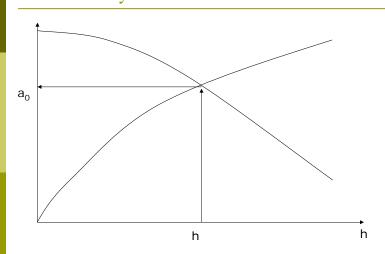
Different Methods Available:

Graphical solutions:

- 1. Schaffemak and Van Iterson
- 2. Casagrande
- 3. Pavovsky's solution

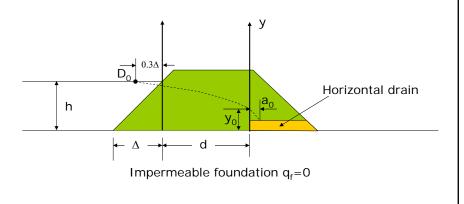
Pavovsky's Solution

$$q_I = q_{II} = q_{III}$$


Pavovsky's Solution

$$\frac{a_0}{m_1} = \left(\frac{h_w - h}{m}\right) \ln \frac{h_d}{h_d - h}$$

where $m_1 = cotan\alpha$, $m = cotan\beta$


$$a_0 = \frac{b}{m_1} + h_d - \sqrt{\left(\frac{b}{m_1} + h_d^2 - h^2\right)}$$

Pavovsky's Solution

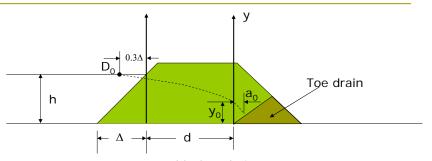
Dam with Horizontal Drain

Dupuit Solution

Dam with Horizontal Drain

$$y_0 = \sqrt{d^2 + h^2} - d$$

$$a_0 = \frac{y_0}{2}$$

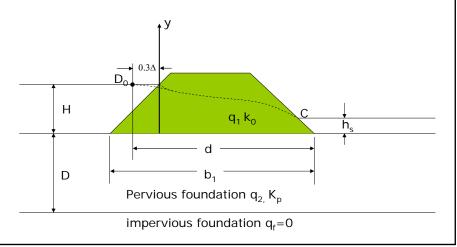

$$q = ky_0 = k\sqrt{d^2 + h^2} - d$$

Horizontal Drains

Good Practice Rule

Length of horizontal drain from the down stream slope should be at least H/3 where H is the height of the dam

Dams with Triangular Toe Drain


Impermeable foundation $q_f=0$

Assume y_0 and a_0 . Error on safe side so that design phreatic surface will be higher than expected...this will increase porewater pressure and lower factor of safety.

Casagrande proposed corrections for toe drains – this can be ignored

Dams on Pervious Foundation

See Canal and River Levees by Pavol Peters Elsevier publishing 1982

Dams on Pervious Foundation

$$q = q_{1} + q_{2}$$

$$q = \frac{k_{0}(H^{2} - h_{s}^{2})}{2d} + k_{p} \frac{HD}{b_{1}n}$$

B ₁ /D	20	5	4	3	2	1
n	1.15	1.18	1.23	1.30	1.44	1.87

Dams on Pervious Foundation

Analysis assumes

$$k = k_0 = k_p$$

K in dam ~k in foundation