

Other Types of Dams

Concrete

- Roller Compacted concrete
- Debris flows

Choice of Type Depends on

Availability of materials

- Trucking increases cost
- Homogeneous Earth Dam
 - Lots of low K material Till

Zoned

- Limited core material
- Rock available
- Upstream construction
 - Use mine tailings as a construction material

- 1. Strong foundation
 - Minimal differential settlement
 - No bearing capacity shear failure
 - Sand/Gravel or rock
- 2. Low hydraulic conductivity
 - Silt and/or Clay, non-fractured rock

Since 1 and 2 are often incompatible we need to do foundation treatment

Foundation Treatment

- Soil
 - Cut-offs walls
 - Sheet pile walls
 - Slurry trench
 - Impervious upstream blanket
 - Removal and replacement
 - Densification
 - Zone grouting

Rock

- Removal and replacement of upper fractured rock
- Grouting
- Impervious upstream blanket

	Cutoff type	Brief Description	Suitable Soil Type and Depths	References and Comments on Performance
	sheet piling diaphragm wall	drive plane or reta piling with wibratory hammer and water jets moderate costs	alluvium, so large boulders, to 30 m	efficiency often low unless upstream side grouted with bentonite slutry. Lane and Wohlt (1961) Middlebrooks (1942)
ndation	grout curtains	several rows of 2 to 3 m spaced holes grouted at high pressure with comment soil grouts. Hedium to high costs	fractured rock and coarse grained soils to 150 m k < 10"" m/s	fair to good efficiency reduces k by a factor 50 to 100. Also used in abutments to control leakage Wafa and Labib (1967) Marsal and Resendis (1971)
ment	concrete piles and pacels (also precast concrete walls)	excavate bentonite slurry stabilized slot between piles and insert panels with grouted joints or tremie concrete panels medium costs	veak rocks alluvium to depths of 50 m excavate with Kelly bar	good efficiency but requires special construction control and design. Galbiati (1963) Dascal (1979) Mareal and Resendig (1971)
nell)	slurry trench	dragline excavation of slurry stabilized trench. Displacement backfilled with sand, gravel, clay, benconite (well graded with 50 mm max size) low costs	alluvium or coarse grained soils to 30 m or greater	good efficiency, flexible and compressible. Possible loss of slurry if soils are coarse. Jones (1967)
	impervious blanket	impervious soil compacted over reservoir bottom and connected to internal core or extended as upstream core on dam face costs variable	very deep foundation soil of suitably low permeability and good grading characteristics	effective if abutment conditions are good downstream filter drains or relief wells may be required Casagrande (1959)
	Removal and replacement	excavate above or below water level at stable slopes dry excavation allows inspection and treatment of underlying material	soils which can be economically excavated to required depth with or without seepage control (20 m common)	good efficiency if replacement soll compacted in dry excavation fair to good efficiency if placed under water

	Treatment Method	Brief Description	Suitable Soil Type and Effective Depth	References and Comments on Performance
	Densification by blasting	blast vibrations liquefaction and settlement	loose saturated silts and sands to 20 m	70-80% relative density obtained Dupont (1958)
	Compaction piles, sand piles	hollow pile vibrations densify soil, sand piles formed on removal	saturated or dry sand to 20 m	relatively high densities obtained Wallways (1964) Janes (1973)
Foundation	vibro-probes with replacement vibro- floatation with water jets on probe	vibratory probe densifies soil by displacement and compacts selected replacement material	cohesionless soils and sandy tills or alluvium to 30 m	relatively high densit and good uniformity obtained Baumann & Bauer (1974) Basore & Boitano (1969)
Treatment	vibratory rollers (to 50 tonne)	roller mass compacts with aid of wibration	cohesionless soils to 3 m	high density obtained Moorhouse and Baker (1968)
(Mitchell)	dynamic consolidation (to 40 tonne)	repeated dropping of large mass on soil surface	cohesionless soils and insensitive cohesive soils to 15 m	relatively high densities obtained Henard and Broise (1975)
()	grouting with slurries or chemicals	injected from bore holes, with limewater (for expansive soils), chemical grouts	soils with grout- ability ratio D_{15} (soil) D_{85} (grout) > 25 D_{85} (grout) $k > 5 \times 10^{-6}$ m/s unlimited depths	significant reductions in permeshility and compressibility obtained, high cost.ASCE soil improvement report (1978)
	consolidation by preloading	enbankment preload or constructed in stages	soft compressible clays and silty clays	improves bearing capacity by consolidation over extended Lime period, time reduced by sand or wick drains Ladd et al (1976)
	displacement construction	granular or rock fill advanced to displace soil, excavation of forward aud wave	very soft clays, organic soils to 20 m blasting may be required in fibrous peats	controlled failure to avoid entrapment of soft soils. Not recommended for impoundment atructures Weber (1962)

Hydraulic Fracturing

Occurs when the porewater pressure is equal to the minimum embankment effective stress

$$\sigma_h = K\sigma_v = K\gamma H - E_h\varepsilon_h > \mu = H\gamma_w$$

where

K~0.5 for compacted materials

 E_h is the tensile modulus obtained from a triaxial extension test

 ϵ_h = horizontal strain

How wide of core do we need?

$$\sigma_{v} = \frac{Z\gamma_{core}}{1 + \frac{GZ^{2}}{D_{c}tW}}$$

where:

W is the width of core

Z is depth below crest

 γ_{core} is unit weight of core

G is the shear modulus of filter material

t is width of filter material

 D_c is confined modulus of core = $1/m_v$

Methods to Prevent Core Cracking

- Wider cores
- Greater filter width
- Greater core compaction
- Benched cores to increase vertical stress

Transverse Core Cracking

- Develops when D/S shell material distorts to resist U/S water pressures transmitted by core
- Limit to less than 1% by having

$$G < \frac{200H\gamma_w}{\cot\beta}$$

- Where G is modulus of shell material
- H is dam height
- **\square** β is down stream slope angle

ß

•	-	•	
Acton		11m	1tc
119160			113
\circ			

$δ_v/Hcotβ$	Impact
0.001	No cracking
0.002	Thin reinforced concrete may crack
0.003	Longitudinal cracking in dry cores
0.005	Transverse cracks in cores and oblique core to shell cracks
0.01	Longitudinal cracks in wet cores & jointed concrete facing
0.02	Danger of transverse cracks and piping failures