Deep Foundation

Deep Foundation Applications

1. Soils with:
 - High compression
 - Low shear strength
 - Swelling/shrinkage
2. Resist lateral loads
3. Surface erosion
4. Resist tension (anchors)
Typical Applications

Marine and harbour works

Typical Applications

Roads & bridges
Typical Applications

Buildings

Storage Tanks

Typical Applications

Retaining Wall, Sydney

Retaining Wall, Hong Kong
Industry Outlook

Types of Piles

Classification by Material
- Steel
- Concrete
- Timber

Effect of Installation
- Displacement
- Low displacement
- Non-displacement

Method of Installation
- Driven, Driven & Cast in place
- Bored (drilled)
- Composite
- Screwed
Impact of Installation

Bored

Driven in Clay

Driven in Sand

Displacement Piles

Installed by driving or jacking

- TIMBER
 - Marine & temporary structures, domestic buildings
 - Durability concerns
- STEEL TUBES
 - Readily extended
 - Corrosion concerns
 - Usually more expensive
- PRECAST CONCRETE
 - Common lengths 12-15 m
 - Cost & appearance advantages
 - Not suited to hand driving
 - Not easily spliced
- PROPRIETARY TYPES
 - Many use temporary steel casing
 - Casing withdrawn as concrete placed
 - Limitations on length
Steel Piles:
(a) splicing of H-pile welding; (b) splicing of pipe pile-welding; (c) splicing of H-pile rivets & bolts (d) flat driving point of pipe pile; (e) conical driving point of pipe pile

Precast piles with ordinary reinforcement
Typical Prestressed Concrete Pile

Figure 11.5 Splicing of timber piles: (a) use of pipe sleeves (b) use of metal
Installation of Displacement Piles

- Usually installed via pile driving hammer.
- Hammer types:
 - Drop hammer (typically 1-5 t mass)
 - Steam hammer
 - Single acting
 - Double acting
 - Diesel hammer – less used in recent years
 - Hydraulic hammer – ram raised by fluid
 - Vibratory hammer – sheet piles, piles in sand.

Pile-driving equipment:
(a) drop hammer; (b) single-acting air or steam
Pile-driving equipment:
(c) double-acting and differential air or steam hammer
(d) diesel hammer
(e) vibratory pile driver

Pile Handling
Driven Piles

Pile Driving

Diesel Hammer

Hydraulic hammer
Hydraulic Hammer

vibratory pile driver

(courtesy of Michael W. O’Neill, University of Houston)
A pile-driving operation in the field
(courtesy of E. C. Shin, University of Incheon, Korea)

Head Assembly

- **Helmet**: Placed over top of pile to help prevent shattering of pile head.
- **Driving Cap**: Protects head of steel piles. Fitted with recess for dolly.
- **Dolly**: Placed on recess in top of helmet. Timber or plastic.
- **Packing**: Placed between helmet & pile top to cushion blows. Hessian, timber sheets, etc.
Pile Jacking

- Pile pushed into ground at a constant rate
- Machine weight 600tons

Pile Jacking

(Pile Jacking operation illustration)

(Pile Jacking machine in operation)
Concerns with Displacement Piles

- Vibrations during installations
 - Pre site surveys
- Generation of excess porewater pressure
- Soil movements (vertical & lateral)
- Access for driving rigs
- Headroom in confined spaces
Problems From Vertical Soil Displacement

- Uplift causing squeezing necking or cracking
- Uplift resulting in shaft lifting off base
- Uplift resulting in loss of stiffness & bearing capacity
- Ground heave separating pile segments inducing tensile forces in joints, possible cracking of adjacent piles

Problems from Lateral Soil Displacements

- Squeezing of piles
- Inclusion of soil forced into pile
- Shearing of piles or bends in joints
- Collapse of casing prior to concreting
- Movement & damage to adjacent structures
Small Displacement Piles

H-Sections & Rolled Steel Sections
- Useful for punching through hard layers
- BUT, problems with bending about weak axis

Steel Tube Piles
- Lees resistance to water & waves
- Plugs can be removed
- Can fill with concrete
- Better lateral resistance

Pre-Drilled Piles
- Usually pre-bored over part depth, then driven
- Useful if have hard layers near surface

Common H-Pile Sections
Displacement Piles Time Effect

- Dissipation of excess pore pressures developed during driving
- Usually leads to increased load capacity with time – “SET - UP”
- Theoretical solutions and field data shown
- Can also have set-up effects for driven piles in sand, especially carbonate sands
- May be due to chemical processes at pile-soil interface

Non-Displacement Piles

- **INSTALLATION METHODS**
 - Dry
 - Slurry
 - Casing

- **ADVANTAGES**
 - Absence of ground heave
 - No excessive noise or vibration
 - Can install with limited headroom
 - Length & diameter can be easily varied
 - Base can be enlarged
 - Can inspect prior to concreting
 - Can obtain very high capacity

- **PROBLEMS**
 - Loosening of sandy soils
 - Softening of clays
 - Possible waisting or necking of shaft
 - Water inflow can damage shaft
 - Belled bases difficult, especially in sandy soils
 - Need to place concrete as soon as possible after drilling!
Cast-in-place concrete piles

Types of drilled shaft (a) straight shaft; (b) and (c) belled shaft; (d) straight-shaft socketed into rock
Dry method of construction (a) initiating drilling; (b) starting concrete pour; (c) placing rebar cage; (d) completed shaft

Slurry method of construction
a) drilling to full depth with slurry; b) placing rebar cage; c) placing concrete; d) completed shaft

(after O’Neill and Reese, 1999)
Casing method of construction
a) initiating drilling
b) drilling with slurry;
c) introducing casing; d) casing is sealed & slurry removed from interior of casing

e) drilling below casing;
f) under reaming;
g) removing casing;
h) completed shaft

(after O’Neill & Reese, 1999)
Bored Piles

Drilling down to required depth through a temporary casing.

Pouring concrete using a tremie pipe.

Pouring cap and installing barrely.
Bored Piles

Bored Piles Time Effect

- Reduction is suction after drilling
- Consequent softening & possible caving of hole
- Solutions for pore pressures vs time shown
- Typically, for a bored pile 0.8 m diameter, with soil $c_v = 10^{-5}$ m/s, $T=0.1$ corresponds to less than $\frac{1}{2}$ hour!
Bored Pile Precautions

- Pile should be supported by casing through soft or loose soils to prevent collapse
- Casing provided to seal off water-bearing layers
- Strict control of density of drilling fluid, if used
- Compare soil & rock cuttings from pile & descriptions form site investigation
- Shear strength tests from bottom of selected piles to check against design assumptions
- Plumb deep holes immediately after concreting; compare plumbed depth with that at end of drilling
- Proper measures for base cleaning – video or visual inspection where possible
- Safety procedures followed strictly
- **Time interval between end of boring & concreting kept as short as possible, no longer than 6 hours.**

Continuous Flight Augers

- Flight auger has hollow stem
- Borehole walls supported by soil rising within flights
- Concrete (fluid grout) injected down hollow stem
- Reinforcing cage installed after auger removed
- Strict construction control ESSENTIAL, especially if require end bearing
- Checks via recording of volume of concrete and torque on drill stem
- Size Limits: Diameter 1.5m; Length 35m
Franki Pile

1. Contracting the "plug" into the tube.
2. Bottom driving the tube to the required depth.
3. Forming the enlarged base.
4. Reinforcing cage, concrete laid and tube excavated.
5. Completed pile.

Atlas Pile

1. The compression auger head is screwed and pushed into the ground until the bearing layer is detected.
2. The reinforcing cage is inserted through the tube. It may also be installed into the concrete column after withdrawal of the auger.
3. The tube and喇叭 are filled with plastic concrete.
4. The suction is uncoupled and the tube withdrawn.
Atlas Pile

Omega Pile
Pile Design Requirements

- **Ultimate limit state**
 - Adequate capacity (geotechnical & structural) to resist ultimate load combinations

- **Serviceability limit state**
 - Deflections and differential at normal “working” loads are within tolerable limits

- **Durability**
 - Piles must remain durable during design life, or else be designed for acceptable deterioration

Pile Design Considerations

- Selection of pile type and installation method
- Size & number of piles for adequate factor of safety
- Settlement & differential settlement checks
- Effects of lateral loading
- Effect of ground movements (if any)
- Evaluation of pile performance – load testing
Section of Pile Type

Depends on:
- Location & type of structure
- Ground conditions
- Access for piling equipment
- Durability requirements
- Effects of installation on adjacent piles, structures, people
- Relative costs

Site Investigation

- Is as important for pile foundations as for shallow foundations.
- Need to extend exploration to depth of influence of pile or pile group.
- Need to prove rock or founding material – usually drill min. 3m into rock.
- Beware of compressible layers below the pile tips.

Tomlinson’s suggestion for depth of investigation
How Much SI?

Design Approaches

OVERALL SAFETY FACTOR

\[P_w = P_u / FS \]

PARTIAL SAFETY FACTORS (European)

- Factor up loads and use factored-down soil parameters to compute design resistance

LOAD & RESISTANCE FACTORED DESIGN (LRFD)

- Resistance computed using factored down ultimate shaft & base capacities = \(R_d \)
- Load factored up by load factors = \(S_d \)
- \(R_d > S_d \)

PROBABILISTIC APPROACH

- \(P(\text{failure}) < \text{Allowable value} \) (e.g. \(10^{-4} \))
Analysis & Design Methods

- **Category 1**
 - Empirical

- **Category 2**
 - Soundly-based, simplified theory and/or charts

- **Category 3**
 - 3A - Site-specific theory - simple soil
 - 3B - Site-specific - simple nonlinear soil
 - 3C - Site-specific - proper soil model

<table>
<thead>
<tr>
<th>Category</th>
<th>Subdivision</th>
<th>Characteristics</th>
<th>Method of parameter determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Empirical—not based on soil mechanics principles</td>
<td>Simple in situ or laboratory tests, with corrections</td>
</tr>
<tr>
<td>2</td>
<td>2A</td>
<td>Based on simplified theory or charts—some soil mechanics principles are applicable to basic calculations. Theory is linear static (deformations or rigid plastic stability)</td>
<td>Basic information in situ or laboratory tests, with some corrections</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>As for 2A, but theory is nonlinear (deformations or elastic-plastic stability)</td>
<td>Cardi laboratory and/or in situ tests which allow the appropriate stress states</td>
</tr>
<tr>
<td>3</td>
<td>3A</td>
<td>Based on theory using site-specific analysis, some soil mechanics principles. Theory is linear elastic (deformations or rigid plastic stability)</td>
<td>Cardi laboratory and/or in situ tests which allow the appropriate stress states</td>
</tr>
<tr>
<td></td>
<td>3B</td>
<td>As for 3A, but nonlinearity is allowed for in a relatively simple manner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>As for 3A, but nonlinearity is allowed for in a more complex manner; constitutive models of soil behavior</td>
<td></td>
</tr>
</tbody>
</table>
How Good Are Predictions?

Predictions

Observed pile performance

Predictions of pile performance

Shaft capacity Base capacity

Pile capacity: kN

0 1000 2000 3000 4000 5000 6000