Deep Foundation Deign Methods ## Pile Selection Guide | | | | Table L-11 | | | |----------------------------------|-------------------------|-----------------------------|---|---|---| | | | GUII | DELINES FOR DRIVEN P | LES | | | Type of
Pile | Normal
Size
Range | Typical
Pile Load,
kN | Structural
Considerations | Installation
Considerations | Notes | | (a) Timber | 180 to 250
mm tip | 180 το 450 | Must be checked in
accordance with NBC
Section 4.3 | Cannot be in-
spected. Suscep-
tible to damage
during hard
driving. Tip re-
inforcement rec-
ommended
where driven to
end bearing | Preservative
treatment nor-
mally required.
(CSA 080-1970) | | (b) Steel
sections
(H, WF) | 200 to 350
mm | 350 to
1 800 | Must be checked in accordance with NBC Sections 4.5 and 4.6 End bearing: allowable working stresses usually > 0.3 f, when driven to end bearing refusal on rock or dense strata, but | May be dam-
aged during
driving but load
capacity not
necessarily
reduced | Tip points often required for hard driving. Average thickness of flange or web, t ≥ 1 cm. Projection of flange ⇒ 14 t | | (c) Pipe
sections | 200 to 600
mm diam. | 350 to
1 800 | higher stresses possible
under specific controlled
conditions
Friction: usually working
stresses are governed by
gootechnical considera-
tions and rarely exceed
about 80 MPa
In pipe piles, concrete
strength does not normally
contribute to pile capacity
unless the pile is driven to
end bearing | Suitable for inspection after driving. Concrete quality highly dependent on placement method | Normally driven
closed-end. Tip
reinforcement
or drive shoe
required when
driven open-
end. Pipe thick-
ness > 5 mm,
but 10 mm
recommended | | (d) Precast
concrete | 200 to 300
mm | 350 to
1 000 | End bearing: capacity
must be checked in | Cannot be in-
spected. Careful | Refer to ACI
70-50. | | sections | 300 to 900
mm | 900 to
2 500 | accordance with NBC
Section 4.5. Normally
Friction: the capacity of
friction piles is normally
governed by both instal-
lation method and geo-
technical considerations:
the average compressive
stress under load rarely
exceeds 10 MPa | selection and
driving method
required to pre-
vent damage | Possible tensile
stresses in con-
crete during
'soft' driving.
High compres-
sive stresses in
concrete during
'hard' driving.
Tip reinforce-
ment usually
essential | | Column I | 2 | 3 | 4 | 5 | 6 | ## **Ultimate Pile Load Capacity** - Shaft capacity computed via: - Total stress (α) method - Effective stress (β) method - Hybrid (λ) method - Using SPT data - Using CPT data - Using PMT data #### **Shaft Resistance** - $\mathbf{f}_{s} = \alpha . \mathbf{s}_{u}$ (alpha method) - $f_s = \beta.s_v$ ' (beta method) - $f_s = \lambda . (s_{vm}' + 2 s_{um})$ (lambda method) - $f_s = a + bN$ (SPT data) - $\mathbf{f}_s = (\mathbf{q}_c/\mathbf{A})^n$ (CPT method) - $fs = fn(p_{lim})$ (PMT method) For design, an upper limit usually placed on \mathbf{f}_{s} - For z = 0 to L' $f_s = K\sigma_o\text{'}tan\delta = \beta tan\delta$ Where $\beta = K\sigma_o\text{'}$ - For z = L' to L $fs = f_{z=L}$ $$Q_s = f_s \Sigma p \Delta L$$ Where p = perimeter of pile ΔL = incremental pile length which p and fs are taken constant ## Shaft Capacity in Sand (Beta Method) $$\beta = K_s \tan \delta$$ - $K_s = \text{fn}(K_o, \text{ installation method})$ sands or $K_s = (1-\sin \phi') \tan \phi' (OCR)^{0.5}$ clays - $\delta = \text{fn}(\phi)$, interface materials) sands $\boldsymbol{\delta}$ is the shaft soil friction angle # Shaft Capacity in Sand (Beta Method) | Interface
Materials | Typical Field
Analogy | δ/φ' | |------------------------|--------------------------|------------| | Sand/rough concrete | Cast-in-place | 1.0 | | Sand/smooth concrete | Precast | 0.8 to 1.0 | | Sand/rough steel | Corrugated | 0.7 to 0.9 | | Sand smooth steel | Coated | 0.5 to 0.7 | | Sand/timber | Pressure-treated | 0.8 to 0.9 | # Shaft Capacity in Sand (Beta Method) | Foundation type & installation method | K_s/K_o | | | |--|---|--|--| | Jetted pile Drilled shaft, cast-in-place Driven pile, small displacement Driven pile, large displacement | 0.5 - 0.67 $0.67 - 1.0$ $0.75 - 1.25$ $1 - 2$ | | | | Stas & Kulhawy, 1984) | | | | - These tests indicated the existence of a "critical depth", beyond which the shaft friction becomes constant. - Much controversy about this issue. - Results may be related to: - Dependence of φ' on stress level - Effects of over-consolidation near surface - Volume changes near pile - Residual stresses in test piles. # Shaft Capacity in Sand (Practical Design) - Use beta method. - Impose upper limit on skin & base resistances. - Example of API design: - 1 = v. loose sand - 2 = loose sand - 3 = med. Dense sand - 4 = dense sand - 5 = v. dense sand #### Shaft Resistance #### Developments in effective stress analysis - Jardine, Chow et al (1996-1998) Ks related to CPT values; allowances for open-ended piles - Yasufuku et al (1997) Ks related to depth and lateral pressures - Miller & Lutenegger (1997) Ks related to at rest and maximum stress ratios ### **End Bearing** #### In clays: $$\mathbf{f_b} = \mathbf{N_c} \cdot \mathbf{s_b}$$ $$\mathbf{N_c} \sim 6 + L/d \le 9$$ s_b = average undrained shear strength within depth of influence of base #### In sands: $$f_b = N_q$$, σ_{vb} N_q = function of ϕ ', σ_{vb} ' = vertical effective overburden stress at level of pile base. Usually impose upper limit, depending on relative density, ## End Bearing based on SPT $f_b = K. N_p \le f_{blim}$ where N_p = av. SPT in vicinity of base f_{blim} = lim. Value of base resistance | Soil Type | K (displ. Piles) | K (non-disp. piles | |-------------|------------------|--------------------| | Sand | 0.325 | 0.165 | | Sandy silt | 0.205 | 0.115 | | Clayey silt | 0.165 | 0.100 | | Clay | 0.100 | 0.080 | ## **End Bearing Layered Soils** ## **End Bearing Issues** - Limiting base capacity with depth for sands? No, but limit value in design - Layered soil profiles? Meyerhof conservative effects may be limited to 3d below tip, BUT EFFECT CAN BE IMPORTANT - Effects of Cyclic Loading?Small can ignore ## Cone Penetration Test (cpt) #### Two approaches: - Use of measured sleeve resistance for f_s (Nottingham & Schmertmann, 1995) - Use of measured cone resistance for f_s (&f_b) (Bustamante & Gianeselli, 1982) ## Shaft Resistance in Clays Fig. 25. Design values of shaft resistance for piles in clay (based on Bustamante & Gianeselli, 1982) Table 8. Classification of pile types (Bustamante & Gianeselli, 1982) | Pile
category | Type of pile | |------------------|--| | IA | Plain bored piles, mud bored piles, hollow auger
bored piles, cast screwed piles
Type I micropiles, piers, barrettes | | IB | Cased bored piles
Driven cast piles | | IIA | Driven precast piles
Prestressed tubular piles
Jacked concrete piles | | пв | Driven steel piles
Jacked steel piles | | ША | Driven grouted piles
Driven rammed piles | | ШВ | High pressure grouted piles (d > 0.25 m) Type II micropiles | Fig. 26. Design values of shaft resistance for piles sand (based on Bustamante & Gianeselli, 1982) Source of Correlation Bustamante & Gianeselli (1982) Fleming & Thorburn (1984) Verbrugge (1982) Van Impe (1986) This paper Beware of variability with different methods ## **End Bearing** - Diameter of the pile. Average cone resistance below the tip of the pile over a depth which may vary between 0.70 and 4.0 Himinum cone resistance recorded below the pile hip over the same depth of 0.70 to 4.0 Average of the envelope of minumin cone resistances recorded above the pile tip over a height which may vary between 6.0 and 80. In determining this envelope, values above the minimum value selected under B are to be discreparded Ultimate unit point resistance of the pile - The Dutch approach uses the average of two average values: - q over a distance of y.d below the tip - q_e over a distance 8d above the tip - Some other methods use a reduced average value of qc below the tip (typically 0.3 - 0.5 times the average) Figure 4.22 The use of CPT for pile-tip bearing capacity (De Ruiter & Beringen 1979). #### Piles to Rock Ultimate shaft friction & end bearing usually related to rock strength q_u (unconfined compressive strength) $$f_s = a. (q_u)^b$$ MPa $$f_b = a_1. (q_u)_{1}^b MPa$$ #### Piles to Rock | Method | а | b | |------------------------------|--------------|-------| | Rosenberg & Journeaux (1976) | 0.375 | 0.515 | | Horvath (1976) | 0.33 | 0.5 | | Horvath & Kenney
(1979) | 0.20-0.25 | 0.5 | | Meigh & Wolski (1979) | 0.22 | 0.6 | | Williams & Pells (1981) | α.β | 1.0 | | Rowe & Armitage (1987) | 0.45 | 0.5 | | Zhang & Einstein (1998) | 0.4 (smooth) | 0.5 | | | 0.8 (rough) | | ## Piles to Rock End Bearing Parameters | Method | a_{1} | b_I | |-------------------------|--------------------------------------|-------| | Teng (1962) | 5 – 8 | 1.0 | | Coates (1967) | 3 | 1.0 | | ARGEMA (1992) | $4.5 ext{ (}f_b \le 10 ext{ MPa)}$ | 1.0 | | CGS (1985) | 3Ksp.D | 1.0 | | Zhang & Einstein (1998) | 4.8 (mean) | 0.5 | | | Range 3.0 – 6.6 | | ## **Uplift Capacity** - In clays, shaft friction is similar to compression value - For enlarged base piles, take lesser of values for two possible failure mechanisms: - Shaft + net base resistance + pile weight - Gross base resistance + pile weight - Long-term capacity is often critical! ## **Uplift Capacity SAND** In sands, shaft resistance for uplift may be less than for compression, due to Poisson effect. Depends on relative pile compressibility factor x (De Nicola & Randolph, 1993) as follows: ``` Q_t/Q_c = \{1 - 0.2 \log_{10} [100 (L/d)]\} (1-8x+25x^2) ``` Q_t = uplift shaft capacity $Q_c =$ compressive shaft capacity L=pile length d= pile diameter $x = v_p \overline{\tan \delta (L/d) (G_{av}/E_p)}$ $v_p = \text{pile Poisson's ratio}$ $G_{av} = \text{average soil shear modulus along pile shaft}$ $E_p = pile Young's modulus$ $\delta =$ pile-soil interface friction angle ## Cyclic Loading - Main effect is DEGRADATION OF ULTIMATE SHAFT FRICTION - Define degradation factor as: f_s after cyclic ldg. f, for static ldg. - D_{τ} depends on: - No. of cycles - Amplitude of cyclic displacement - Soil type - Pile type Fig. 21. Effect of normalized cyclic slip displacement on D_t with different pile diametes (after Lee, 1988) ## Cyclic Stability Diagram - Can represent effect of cyclic loading on pile capacity via a CYCLIC STABILITY DIAGRAM - Plots *Mean* axial load vs *Cyclic* axial load - 3 zones: - Stable - Metastable - Unstable Figure 7.15 Main features of the cyclic stability diagram. ## **Negative Skin Friction** ## Pile Group Efficiency #### Efficiency: $\eta = Group \ Capacity \ / \ \Sigma \ Individual \ Pile \ Capacities.$ - For groups in clay, η usually < 1 - For groups driven in sand, η usually >1 - For groups (bored) in sand, $\eta \sim 0.67$ - For end bearing groups, η usually ~ 1 ## Friction Pile Groups in Clay Group capacity (P_u) is lesser of: - Sum of individual pile capacities (ΣP_1) - Capacity of "block" containing piles + soil (P_B) Empirical transition equation: $$1 / P_u^2 = 1 / (\Sigma P_1)^2 + 1 / (P_B)^2$$ ### Other Pile Group Cases #### **GROUP WITH CAP ON SURFACE** Group capacity (Pu) is lesser of: - Sum of individual pile capacities + net area of cap - Capacity of "block" containing piles & soil, + capacity of portion of cap outside block perimeter. ## GROUP ON PROFILE WITH UNDERLYING WEAK LAYER Take capacity as lesser of individual pile capacities, or capacity of block. EFFECT OF WEAKER UNDERLYING LAYERS CAN BE VERY IMPORTANT!! ## Effect of Weak Under Layer ### Pile Structural Design - Design for structural strength to resist - Axial force - Lateral shear force - Bending moment - Make allowances for corrosion/ durability - Consider possibility of buckling - Only likely to be of concern for slender piles in very soft clay with unsupported length. ## Corrosion Rates for Steel | C | orrosion | penetr | ation | μm / | ' year | |---|----------|--------|-------|------|--------| |---|----------|--------|-------|------|--------| | Conditions | Salt Water | Fresh Water | |----------------------|------------|-------------| | Water at surface | 100 | 50 | | Water in splash zone | 300 | 200 | | Below water level | 100 | 100 | | Bottom sediment | 50 | 20 | ## **Corrosion Protection Methods** - Corrosion protection paint - Polyethylene cover (steel pipes) - Zinc coating - Electro-chemical (cathodic) protection - Cement or concrete cover