Pipe Jacking/Microtunnelling

Dr. Mark Knight
Centre for Advancement of Trenchless Technologies (CATT)
University of Waterloo

New Installations

New Installations

Non-Steering Methods
- Moling/Piercing
- Pipe Ramming
- Auger Boring
- Pipe Jacking

Steering Methods
- Microtunnelling
- Horizontal Directional Drilling
Pipe Jacking

- Oldest method of trenchless technology
- Applications
 - Larger Diameter Pipe (1050 mm and up)
 - Lengths can range from 3 to over 200m

Pipe Jacking

- Person entry
 - Pipe diameters greater than 900 mm (36”)
 - Difficult to work in excavations of this size
 - Practically limited to dia. greater than or equal to 1075 mm (42”)
 - Pipe installation process occurs from entrance and exit shaft
 - Access way locations
Pipe Jacking Process

Pipe Jacking

- Material excavation completed by persons within the excavation
 - Manual or machine face excavation
- Excavation takes place in front of an articulated shield
 - Designed for worker safety
 - Maintains open bore for pipe jacking or tunnel lining construction
 - Shield guided with individually controlled hydraulic jacks
Pipe Jacking Excavation

Pipe Jacking Excavation
Pipe Jacking

Types of Tunneling
- Hand mining
- Liner Plate
- Jack Reinforced Concrete Pipe
- Jack Steel Liner
- Cap and Leg (Wood Lined Tunnel)

Pipe Jacking Process
- Simple cyclic procedure
- Utilizes thrust from hydraulic jacks to force the pipe forward
 - Pipe placed on cradle in the entry or jacking pit
 - Thrust developed from thrust blocks
 - Concrete, steel, soil excavation
Pipe Jacking Process

Unstable soil

- Face excavated simultaneously with the jacking operation
 - Minimize over excavation and the risk of face collapse
- After pipe jacked into place hydraulic rams are retracted and another pipe length is installed

Pipe Jacking Process

Stable soil

- Face excavation may precede the jacking operation
- All spoils removed through the inside of the pipe to the jacking pit
Hand Excavation

Pipe Jacking Process
Pipe Jacking Pit

- **Jacking pit size is function of:**
 - Length of pipe segments
 - Pipe diameter
 - Shield dimensions
 - Thrust wall design
 - Jack size
 - Pressure rings
 - Guide rail systems

Pipe Jacking Pit

- Pit should be shored
 - Timber, steel piling or shaft liner plate, ground freezing
- For projects requiring large thrust
 - Design of launch pit is critical
- Pit should be dry
- Floor preparation key for controlling alignment
Pipe Jacking Pit

- For a large job the placement of a concrete mud slab on the shaft floor is recommended
- For a smaller job the placement of a 300mm of crushed stone is recommended

Pipe Jacking Force

- Force on jacked pipe includes:
 - Pipe dead weight
 - Penetration resistance
 - Soil-pipe friction
- Jacking force applied by two, four or six jacks
Other Forces

- Soil dead load
- Railway or highway live loads
- Jacking force must not exceed allowable pipe compressive strength
 - Critical design location is the joints
 - Low surface area - high stress
 - Water tightness??

Pipe Jacking Force

Soil-pipe frictional force minimized by the application of lubricant to the outer pipe surface

- Can reduce jacking force by 50%
- Manual application or pumping of bentonite slurry around pipe
- Polymers
 - Advantage only small amount required
Pipe Jacking Force

To minimize pipe damage during jacking
- Packing material can be placed between the pipe joints
 - 12 to 19mm plywood
 - 12 to 25mm manila rope, jute, oakum
- Provides joint cushioning and flexibility

For long pipe installations
- Intermediate jacking stations may be used
- Set of hydraulic jacks placed between pipe segments
Intermediate Jacking Station (IJS)
Intermediate Jacking Station (IJS)

- Total drive expected to exceed capacity of main jacks
- Capacity 100 to 1600 tons
- Diameter around 36” length 56”
- IJS assembled in four segments
- IJS must match pipe dia. for proper operation

Intermediate Pipe Jacking

Three step pipe jacking process:
1. Intermediate jacks are used to jack the forward sections of pipe
 - Thrust is provide by the pipe section behind the intermediate jacks
2. Intermediate jacks are retracted
3. Back section of pipe is jacked using the launching pit cradle
Jacking Pipe

- Reinforced concrete (RCP)
- Polymer concrete
- Fibreglass (Hobas)
- Vitrified clay (VCP)
- Steel
- Ductile Iron
- Composites
Annual Microtunneling Footage Installed by Product Type

Reference: “No Dig Engineering”, Alan Atia, Trenchless Technology Center, Louisiana Tech University

PIPE JOINTS
Pipe Joints

- Must withstand high jacking forces
- Create water tight seals
- Flush joints to decrease jacking forces

PJ Applications

- Sewers, and drainage construction
- Gas and watermains
- Oil pipelines
- Industrial pipelines
- Telecommunication
- Pedestrian subways (access tunnels)
PJ Advantages

- Quick set-up
- When grade is critical
- Versatile in various ground conditions
- Cost efficient for large diameter pipe
- Small surface settlements
 - Settlement controlled by face excavation

PJ Limitations

- Access to the face of the tunnel is needed at all times
- Speed of the mining operation is reliant on:
 - Speed of labour (workers)
 - Soil Matrix
 - Rock
 - Soft Soil
 - Water Table
- Dewatering of tunnel path is usually required
New Installation

Steering Methods

- Microtunnelling
- Horizontal directional drilling (HDD)

Non-Steering Methods
- Moling
- Pipe Ramming
- Auger Boring
- Pipe Jacking

Steering Methods
- Microtunnelling
- Horizontal Directional Drilling
Microtunnelling

- Remotely controlled and guided pipe jacking technique that provides support to the excavation face and does not require personnel entry into the tunnel
- Laser guided micro TBM used for soil excavation
- Drive from access way to access way (manhole locations)
- Mainly used for gravity sewers but can be used for large water mains

Microtunnelling

- Non-person entry
- Machine excavated (mini TBM)
- Remote controlled
- Similar to pipe jacking
- Pipe OD less than 1.0m
Tunnel Boring (TBM)

World largest tunneling machine
(14.2 m in diameter)

Chunnel

Microtunnelling
Microtunnelling

- Accuracy typically better than ± 25 mm per drive
- Laser controlled
- Variety of machines for different soil conditions
- Main applications: deep systems
Microtunnelling

- Accurate monitoring and adjusting of the alignment and grade as work proceeds
 - Pipe can be installed on precise line and grade
 - Generally used for pipe diameters less than 900mm (36 inches)
 - Can be used for larger diameters

Launching and Exit Pits

- Use same design procedure as for pipe jacking
- Length of tunneling machine can control launch and exit pit size
Entrance and Exit Pit Shields

- Neopreme sheet stock held in steel ring

Entrance and Exit Pit Shields

- Prevents slurry and ground water from entering into shafts
Jacking System

History

- Originated in Japan and Germany in 1970’s
- Development government sponsored
 - Need for pipe construction method with minimum surface disruption in over congested areas
 - Komatsu introduced first Microtunnelling machine in 1975 - IRONMOLE
 - ISEKI inc introduced there machine in 1976
 - Ability to counter balance earth pressure mechanically and hydraulically
History

First Microtunnelling project in North America
- Fort Lauderdale Florida in 1984
 - 615 feet of 72 inch pipe under I-95
- Second project
 - Bridgeport CT in 1986
 - 3610 feet of 72 inch pipe

As of October 1996
- Total MT North America footage 547,100 feet
- Total number of projects = 254
MT Classification Methods

- Based on mode of operation
 - Slurry method
 - Auger method

Slurry Method

- Tunnel face is supported mechanically or by a pressurized slurry
- Spoils (cuttings) removed hydraulically in the form of a slurry
- Conveying fluid is used to counteract hydrostatic forces caused by ground water pressure and soil removal
Slurry Method

LOVAT MTS 1000
Slurry Method

- Soil cut mechanically
 - Cutting head designs depend on soil or rock type
- Cuttings removed by hydraulic action
- Cuttings enter bore head through inlet openings and placed in suspension in the slurry chamber - water and bentonite
Lubrication System

Typical system components:
- Variable speed discharge pump
- Charge pump
- Intermediate pumps
- Flow meter
- Flow controller
- Pit by pass to permit diversion of flows
- Piping, flexible hoses and cabling

Slurry Separation

Typical separation plant components:
- Vibrating screens
- Cyclones for small particle separation
- Clay ball separator
- Settlement tank
Slurry System

- Depth of ground water up to 30m can be managed
- Due to efficiency of shield small pipes can be used
- Full measurement and control of slurry flows

Auger Method

- Soil cutting at the face by a bore head and soil removal by means of a continuous flight of augers
- Augers run in a separate guiding pipe
- Better suited for cohesive soils
Auger Method

LOVAT MTS 1000

Auger Method
Auger Method (Drill)

Phase I
- a steerable pilot tube is jacked into the ground displacing the soil.

Steerable pilot tube
Phase I

Guidance System
Phase I

Auger Method (Drill)

Phase II
- install a temporary steel casing

Phase 2: Driving of a line of steel casings preceded by a reamer head using a microtunnelling/jacking method.
Standard Reaming Heads

Phase II

Full Face Cut with Ground Water Seal
Standard Reaming Heads

Phase II

RVS 80
Reaming Head with Ground Water Seal

- Tight pitched first auger
- Bentonite (option)
- Compressed air (option)
- Retractable plastic cone
Full face with Ground water control

Phase II – Casing with Augers
Phase II - Casing Installation

Auger Method (Drill)

Phase III
- the product pipe is installed
Auger Method (Drill)

Phase III
- the product pipe is installed

Phase III

Phase 3: Pushing the product pipes into the previously jacked steel casings.
Auger Method (Drill)

- Steered pilot tube
- Combined Phase II & III (<150mm OD)
- Phase III (150 to 225mm)
- Shafts 2m dia
- Drive lengths 60m plus

MT Equipment Selection

- Variety of machine types
- Choice depends on ground condition
 - Type of soil/rock
 - Sand, gravel, clay, boulders, etc
 - Ground water table
- Project success depends on have a proper soil investigation
MT Equipment

MT Advantages

- Grade and alignment accuracy (± 25 mm)
- Works well in a wide variety of soil conditions
 - Some problems with boulders
- Works well below groundwater table
 - No expensive dewatering systems required
 - Up to approx 30m below GWT
- Increasing line depths does not significantly increase cost
MT Advantages

- Worker safety
- No ground surface settlement

MT Disadvantages

- High equipment capital cost
- Lateral connections?
- Difficulty with boulders
- Changing ground conditions
- Wood and debris
Microtunnelling Pipe

- Same as for pipe jacking

Other Recommendations

- Ensure sufficient room adjacent to the launch pit for:
 - Pipe and machine storage
 - Drill fluid mixing and recycling
 - Spoil/cutting removal
Safety Precautions

- Safe pit design
- Overhead clearance for equipment
 - Lower pipe and machine into the access launch pits
 - Retrieve machine from exit pits
- Underground utility clearance

MT Risks

- Pipe diameter
 - Risk decreases as diameter increases
- Length
 - Risks increases as length increases
Cost

- 36” (900 mm) = $650 to 850/ft
- 48” (1200 mm) = $800 to 1200/ft
- Shafts
 - 50 to 100k
 - Depends on groundwater, depth & soil conditions
- Need over 1million dollar project to start to look at Microtunnelling

Microtunnelling in KL
Microtunnelling in KL

- Approx. 70km 1800mm OD sewer
- LOVAT MTS (Toronto Canada)
- 3 to 4 pipe sections 2950mm long per day
- Drive length 64 sections (~190m long)
- ~RM90,000,000 Project
Microtunnelling in KL

- MT machine currently stuck under the river
- Will sink rescue shaft to recover