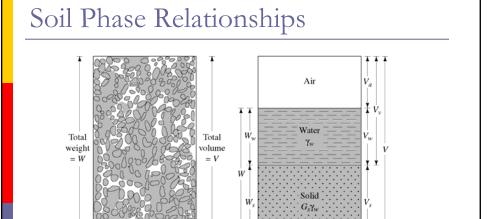
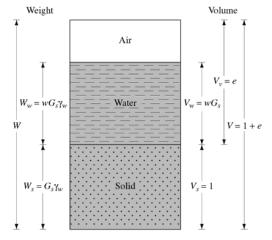
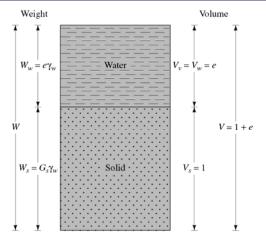
Soil Phase Relationships


Figure 3.1 (a) Soil element in natural state; (b) three phases of the soil element

Soil Phase Relationships

 $\textbf{\textit{Figure 3.2}} \ \ \text{Three separate phases of a soil element with volume of soil solids equal to 1}$

Soil Phase Relationships

Figure 3.3 Saturated soil element with volume of soil solids equal to 1

Soil Phase Relationships

Table 3.1 Various Forms of Relationships for γ , γ_d , and γ_{sat}

Moist unit weight (γ)		Dry unit weight (γ _d)		Saturated unit weight (γ_{sat})	
Given	Relationship	Given	Relationship	Given	Relationship
w, G_s, e	$\frac{(1+w)G_s\gamma_w}{1+e}$	γ, w	$\frac{\gamma}{1+w}$	G_s , e	$\frac{(G_s+e)\gamma_w}{1+e}$
S, G_s, e	$\frac{(G_s + Se)\gamma_w}{1 + e}$	G_s, e	$\frac{G_s \gamma_w}{1+e}$,,,	$[(1-n)G_s + n]\gamma_w$
w, G_s, S	$(1+w)G_s\gamma_w$	p.	$G_{\varepsilon}\gamma_{\scriptscriptstyle N}(1-n)$	G_s , $w_{\rm sat}$	$\left(\frac{1+w_{\text{sat}}}{1+w_{\text{sat}}G_s}\right)G_s\gamma_w$
w, O _s , 3	$\frac{(1+w)G_s\gamma_w}{1+\frac{wG_s}{S}}$	G_s, w, S	$\frac{G_s \gamma_w}{1 + \left(\frac{wG_s}{S}\right)}$	$e, w_{\rm sat}$	$\left(\frac{e}{w_{\rm sat}}\right)\left(\frac{1+w_{\rm sat}}{1+e}\right)\gamma_{\rm M}$
	$G_s \gamma_w (1-n)(1+w)$ $G_s \gamma_w (1-n) + nS \gamma_w$	e, w, S	$\frac{eS\gamma_w}{(1+e)w}$	$n, w_{\rm sat}$	$n\left(\frac{1+w_{\text{sat}}}{w_{\text{sat}}}\right)\gamma_w$
		$\gamma_{\rm sat}, e$	(1+e)w $\gamma_{\text{sat}} - \frac{e\gamma_w}{1+e}$	γ_d, e	$\gamma_d + \left(\frac{e}{1+e}\right)\gamma_w$
			1 . 0	γ_d, n	$\gamma_d + n\gamma_w$
		γ_{sat}, n	$\frac{\gamma_{\text{sat}} - n\gamma_w}{(\gamma_{\text{sat}} - \gamma_w)G_s}$ $\frac{(G_s - 1)}{(G_s - 1)}$	γ_d, S	$\left(1-rac{1}{G_s} ight)\!\gamma_d+\gamma_w$
		rsat, O ₃	(G_s-1)	γ_d , $w_{\rm sat}$	$\gamma_d(1 + w_{\text{sat}})$

Typical Properties

Table 3.2 Void Ratio, Moisture Content, and Dry Unit Weight for Some Typical Soils in a Natural State

Type of soil	Void ratio, <i>e</i>	Natural moisture content in a sat- urated state (%)	Dry unit weight, γ _d (kN/m³)
Loose uniform sand	0.8	30	14.5
Dense uniform sand	0.45	16	18
Loose angular-grained silty sand Dense angular-grained	0.65	25	16
silty sand	0.4	15	19
Stiff clay	0.6	21	17
Soft clay	0.9 - 1.4	30-50	11.5-14.5
Loess	0.9	25	13.5
Soft organic clay	2.5 - 3.2	90-120	6 - 8
Glacial till	0.3	10	21