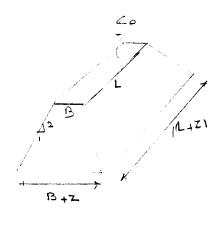
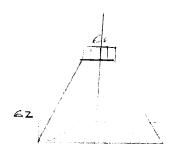

CivE 353- Solution to Assignment 7

Question 1

Point A.

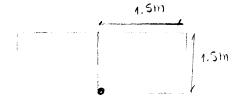
Paint B


$$r^{2} = (1.5)^{2} + (1.5)^{2} = 4.5$$

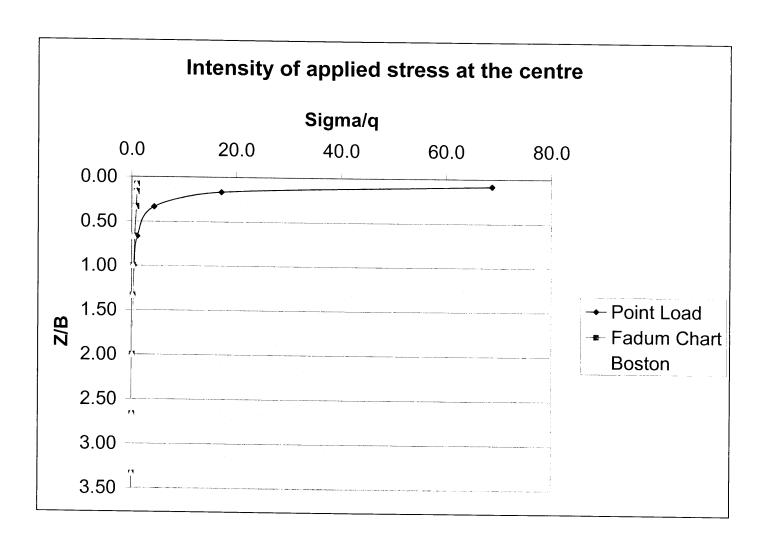

$$\Delta 62: \frac{3P}{2\Pi} = \frac{Z^3}{(4.5 + Z^2)^{5/2}}$$

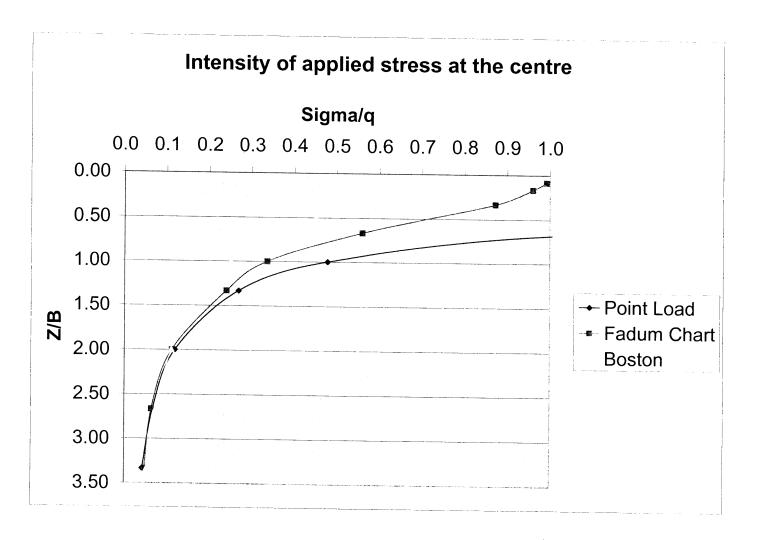
$$= \frac{3 \times 2700}{2 \times \Pi} \frac{Z^3}{(4.5 + Z^2)^{5/2}}$$

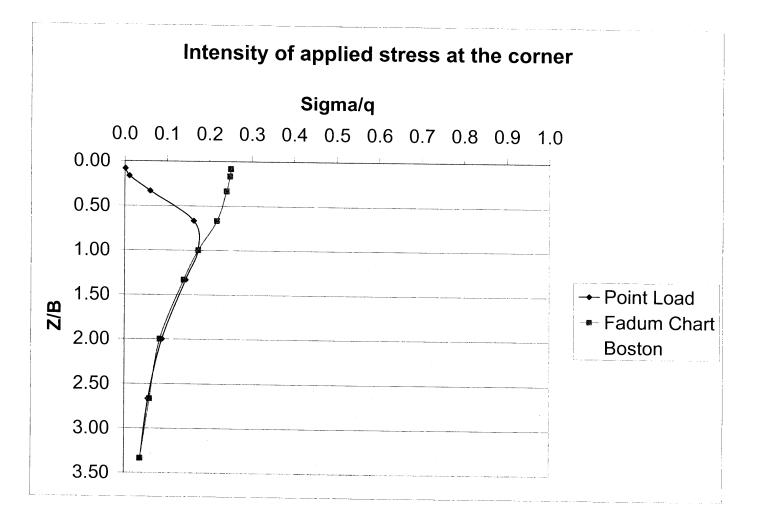
bi Using Fadum chart

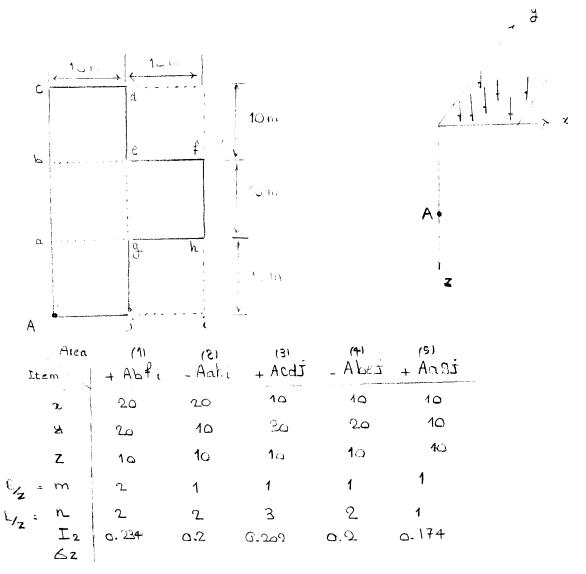

In this example

In this question,


P= B24 = 2700 Len




 $62 = \frac{300 \times 3 \times 3}{(3+2)(3+2)}$


		Point Load		Fadum chart								Boston Approximation	
		Center	Corner	Corner				Center				Corner	Center
Z(m)	Z/B	sigma(KN/m^2)		m	n	12	sigma	m	n	12	sigma	sigma	sigma
0.25	0.08	20626.48	0.45	12.00	12.00	0.250	75.00	6.00	6.00	0.248	297.60	255.62	255.62
0.50	0.17	5156.62	3.28	6.00	6.00	0.248	74.40	3.00	3.00	0.240	288.00	220.41	220.41
1.00	0.33	1289.16	18.17	3.00	3.00	0.240	72.00	1.50	1.50	0.218	261.60	168.75	168.75
2.00	0.67	322.29	48.96	1.50	1.50	0.218	65.40	0.75	0.75	0.140	168.00	108.00	108.00
3.00	1.00	143.24	51.98	1.00	1.00	0.174	52.20	0.50	0.50	0.084	100.80	75.00	75.00
4.00	1.33	80.57	43.36	0.75	0.75	0.140	42.00	0.38	0.38	0.060	72.00	55.10	55.10
6.00	2.00	35.81	26.68	0.50	0.50	0.084	25.20	0.25	0.25	0.028	33.60	33.33	33.33
8.00	2.67	20.14	17.00	0.38	0.38	0.060	18.00	0.19	0.19	0.016	19.20	22.31	22.31
10.00	3.33	12.89	11.55	0.30	0.30	0.038	11.40	0.15	0.15	0.012	14.40	15.98	15.98

.

+ for loaded areas

- for unlanded areas

+ Abfi - Aahi + Acdi - Abei + Aasi - result in the loaded foundtion

AG = 9 [I2111 - L2121 + I2131 - I2141 + I2151]

= 270 La. 234 - 0/2 +0.202 -0/2 \$1.7+]

= 2\$0 × 0.21 = 56.7 kpa 52.5 scale 2.2 cu ___ 10 m

Δ6: 43 x0.005 x 270 = 69.4

= SB.OS Lepal

= 600 kPa (0.123 = 2 + 0.084=2) = 248.4 LPa DOZ = q (Izm - Izm) - q (Izm) = 1200 KPa (0.123, x2) - 600 KPa (0.083 x2) = 195.6 EPa Because we have N/c clay we need to use the following: egn: Sp = Cc. H log (00 + Doi) SPA = 0.38. (20 m) 109 (163.8. EPa) A+ A: = 1.402 m A+ B: SP6 = 0.35 (20m) 10g (163.8 + 195.6) = 1.194 m 50 the differential Settlement = SPA - SPB = 0.208 m.

Question 4	Estimate the magnitude of the ground surface settlement:
	* Settlement will occur as a result of consolidation of
	the clay layer
	* If the length + width of the fill are large (ic: extensive) the Doz is constant with depth
	ο δοζ = δ _{fill} . H _{fill}
	8. garabag = 1330 g/cm3 x 9.81 m/s2
	= 17.95 KN/m3
	00 DOZ = 17.95 EU/m3 30m
	= 538.6 KPa
	σ' = 2 γi. Hi - u
	= 19.6 rw/m3.5m + 22.2 tw/m3.5m + 1m.19.3 kw/m3 - 6m 9.81 xw/m3
	= 169.44 t?a
	°0 Doz' + ob' = 70804 Fra
	OCR = 0' &0 0' = 2.1. (169.44 kg)
	OCR = 0.' & 0.' = 2.1. (169.44 kg) 0' = 355.82 kg
	00 00' > 00' and 00' + 00' > 00'
	Lp use egn 7.17
	$Sp = \frac{Cr. H}{1+e_0} \log \frac{\sigma_c'}{\sigma_o'} + \frac{c_c \cdot H}{1+e_0} \log \left(\frac{\sigma_o' + \Delta \sigma_z'}{\sigma_c'} \right)$

uestion 5	How long will settlement take:
	consider the midpoint of the upper clay layer mint A
	Consider the midpoint of the upper clay layer point A and the midpoint of the lower clay layer point B.
	OoA = 19.6 KN/m3.5m + 1m(22.2 KN/m3) + 1m(193) -2m(9.81)
	= 119.88 KPa
	Oog = 119.88 kPa + Im(19.3 kN/m3) + Zm(22) + 3m(18.8) - 6m(9.81)
	= 180.72 KPa
	$BO_A' = 2m(9.81 \text{ kei}/\text{m}^3)$ = 19.62 k.Pa
	$DOE = 5m(9.81 \text{ kw/m}^3)$ = 49.05 kPa
At layer	A: e= w (25 - N/C clay
	= 0.5 · 2.65
	$= 1.325$ $0.0 \text{ Sp} = C_{\text{c.}} \text{ H} \log \left(\frac{\sigma_0' + \Delta \sigma_0'}{\sigma_0'} \right)$ $1 + e_0 \log \left(\frac{\sigma_0' + \Delta \sigma_0'}{\sigma_0'} \right)$
	$\int_{0}^{\infty} $
	1 + 1.325 0 //9.88 /
	= 0.0\8 m
4+ layer	3: $e_6 = \omega G_5$ $OCR = 1.3 = \sigma_2$ = 0.56×2.68 , σ_6
	$= 0.56 \times 2.68$, 0.56×2.68 , $0.$
	= 234,94 k &
	00' + 00g' = 229.77
	00 00 4 00 4 00 + DO 6 4 00 C
	001000 - 02

$$m_{0} = \frac{1}{1 + e_{0}} \cdot \left(\frac{e_{0} - e_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

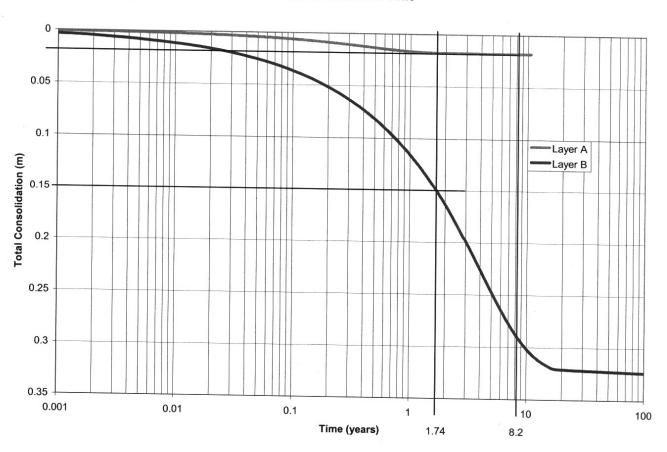
$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$


$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac{1}{1 + e_{0}} \cdot \left(\frac{H_{0} - H_{1}}{57 - 5^{\circ}}\right)$$

$$= \frac$$

Consolidation Vs Time

