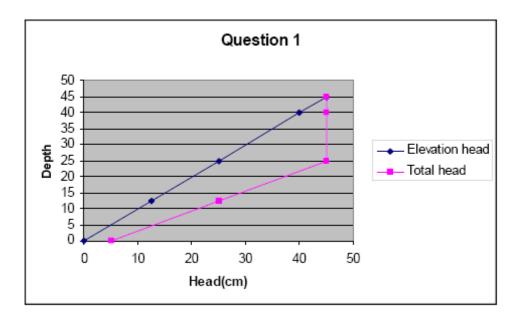
CIVE 353 - Geotechnical Engineering I Solution-ASSIGNMENT 4

Question 2

Maximum dry density of 1.768 $Mg/m^3 = 1768 Kg/m^3 = 1768 *9.8 KN/m^3 = 17.35 KN/m^3$

(1) For Dry unit weight = 15.73 kN/m^3


Percent Compaction =
$$\frac{15.73 \text{ kN/m3}}{17.35 \text{kN/m3}} *100 = 90.6\%$$

(3) For Dry unit weight = 16.97 kN/m^3

Percent Compaction =
$$\frac{16.97 \text{ kN/m3}}{17.35 \text{kN/m3}} *100 = 97.8\%$$

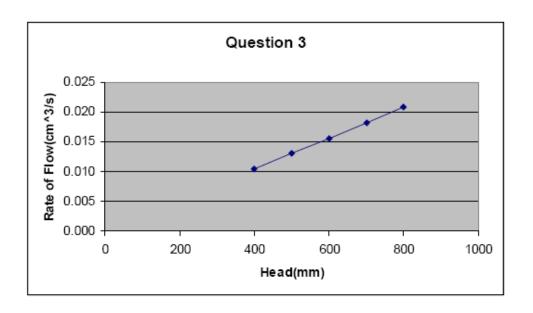
Question 4:

	Elevation	Pressure		Head
Point	Head	Head	Total Head	Lost
Α	45	0	45	0
В	40	5	45	0
С	25	20	45	0
D	12.5	12.5	25	20
E	0	5	5	40

Question 5:

In falling head permeability:

$$k = 2.303 * \frac{aL}{At} * Log \frac{h1}{h2}$$


Replacing the value into the formula,

$$k = 2.303 * \frac{7.5^2 * 225}{225^2 * 5.5} * Log \frac{2.5}{0.85}$$
 \longrightarrow $k = 1.36 * 10^{-6} \frac{cm}{\text{sec}}$

Question 6:

In constant head permeability: $q = \frac{Ahk}{L}$

Head(mm)	q(cm^3/sec)	
800	0.021	
700	0.018	
600	0.016	
500	0.013	
400	0.010	

