

BLUEBIRD DEVELOPER MANUAL

Author: James Craig

October, 2002

6/10/2003 Bluebird Developer Manual 1

Table of Contents

1.0 Introduction... 3

1.1 The 2-D Analytic Element method ... 3
1.2 Bluebird Scope and Current Capabilities.. 4
1.3 Object-Orientation and AEM.. 6

2.0 Code Organization .. 9
2.1 Overview... 9
2.2 Container Classes.. 10
2.2.1 The Layer Class: CLayer .. 12
2.2.2 The Aquitard Class: CAquitard .. 13
2.2.3 The Aquifer Class: CAquifer .. 14
2.2.4 The Superblock Class: CSuperblock .. 14
2.3 Element Classes & Subclasses.. 15
2.3.1 The Generic Analytic Element Class: CAnalyticElem................................. 15
2.3.2 Geometric Element Subclasses ... 20

The Point Element Class: CPointElem ... 20
The Circular Element Class: CCircleElem ... 22
The Polyline/Polygon Element Class: CStringElem... 24
The Far Field Element Class: CFarField .. 27

2.3.3 Boundary Condition Element Subclasses ... 28
2.4 Property Zone Classes... 33
2.5 Miscellaneous Classes .. 33
2.6 Global Drivers... 34

3.0. Input/Output Files .. 36
Input files .. 36
Output Files... 37

4.0 Modifying/Understanding Bluebird.. 39
4.1 Adding New Element Boundary Condition Classes... 39
4.2 Adding New Geometric Classes ... 42

References:.. 45
Appendix A: Bluebird Algorithm Flow Charts .. 46

Bluebird Driver Algorithm Flow Chart (Iterative Algorithm).................................. 46
Bluebird Potential/W Request Flow Chart ... 47

Appendix B: Coding Conventions .. 47
Appendix B: Coding Conventions .. 48
Appendix C: Index of miscellaneous functions .. 49
Appendix D: Glossary of Terms ... 51

6/10/2003 Bluebird Developer Manual 2

1.0 Introduction

 Bluebird is an object-oriented library of object classes, data, and functionality for
2-Dimensional modeling of steady-state saturated groundwater flow. It was designed as a
development tool for improving the analytic element method and building complicated
models in an automated fashion. This manual describes the scope of the library, some
details about the analytic element method, and the structure of object orientation so that
multiple developers may use Bluebird for their own research and modeling needs.

1.1 The 2-D Analytic Element method

 The analytic element method is an alternative to finite element or finite difference
solution of saturated groundwater flow problems. The method is based upon the
superposition of analytic functions, called “analytic elements”, each corresponding to a
hydrogeologic feature (or portion of a feature) in the model, such as a river,
inhomogeneity in conductivity, or pumping well. The superposed solution of these
functions provides the pressure head and discharge at every point in the domain as a
smooth, continuous function that is discontinuous only at element boundaries.

 Instead of formulating the analytic solutions for groundwater flow in terms of
head as a function of position: φ(x, y), the analytic element method relies upon
superposition of functions in terms of discharge potential, Φ. In two dimensions, this
discharge potential is formulated in terms of head so that the following relationship is
always valid for irrotational flow:

y
Q

x
Q yx ∂

Φ∂
−=

∂
Φ∂

−=

Where Qx and Qy are the components of the discharge vector in the x and y directions,
and represent flux of water through a unit-thickness strip that extends vertically across
the entire thickness of the aquifer. This formulation is equally valid for both confined and
unconfined flow. In addition to formulation in terms of discharge potential, the 2-
dimensional analytic element method relies upon the Dupuit-Forcheimer assumption,
which states that there is no resistance to flow in the vertical direction (i.e. kz=∞). This
allows for development of complex-valued potential functions that represent a wide
variety of boundary condition types and geometries. Each hydrogeologic feature in the
model is associated with such a function.

 The analytic element method differs from classical analytic solutions in that each
elementary solution (element) has a number of degrees of freedom (coefficients).
Regardless of the choice of element coefficients, away from element borders the
governing equations of mass continuity and Darcy’s law are met exactly. These
coefficients are chosen in such a way that internal boundary conditions (e.g. specified
head) are met along the borders of elements, thus providing a complete solution to a well-

6/10/2003 Bluebird Developer Manual 3

posed groundwater flow problem. The user is referred to Strack[1989] or Haitjema[1995]
for a more complete description of the method.

1.2 Bluebird Scope and Current Capabilities

 The Bluebird library currently has the ability to model a wide range of 2-
Dimensional hydrogeologic features with various geometries and boundary conditions.
The numerical solutions for each of these hydrogeologic features are superimposed for a
complete description of a saturated groundwater flow field. A complete list of available
elements is shown in Figure 1.1(A)

the

im
ea
as
inp
he
ge
pe
or
(“e
wh

6/1
Figure 1.1(A): Listing of available Elements in Bluebird
Point Elements: Discharge-Specified Well
 Head-Specified Well
 Drying Extraction Well
 Point Dipole
 Point Vortex
Circular Elements: Circular Inhomogeneity in Conductivity
 Head-Specified Circular Lake
Linear Elements: Discharge-Specified Horizontal Wells
Polylinear Elements: Head Specified Rivers
 Resistance Specified Rivers
 Drains (Thin high-conductivity inhomogeneities)
 Leaky Walls (Thin low-conductivity inhomogeneities)
 Discharge Specified Rivers
 Normal Discharge Specified Boundaries
Polygonal Elements: Polygonal inhomogeneities in conductivity
 Polygonal inhomogeneities in base and/or thickness
 Multi-quadric Area Sinks
 Multi-Quadric Inhomogeneity in Aquitard Conductance
Each of these element “objects” in the Bluebird library is uniquely associated with
ir own data members and functionality.

In the analytic element method, building a model corresponds to specifying

portant hydrologic features in an aquifer and solving for their coefficients so that they
ch meet their respective boundary conditions. In Bluebird, each of these features is
sociated with an instance of its class in the Bluebird library. For example, when you
ut a river into the model (along with all of its geometric information and specified

ads), an instance of the class “CRiver” is created. The instance stores all of this
ometric information, and is additionally associated with all of the operations you may
rform upon a river: requesting information from it, modifying its properties, or
dering it to solve for it’s own coefficients. Thus, each hydrogeologic feature
lement”) is represented by a single instance of an object class in the Bluebird library,
ich can be modified, queried, or directed to perform some action.

0/2003 Bluebird Developer Manual 4

 In addition to the elements available in the Bluebird library, there is a set of
“element containers”, a set of global drivers, a collection of auxiliary functions, and a set
of complementary object classes that simplify the design and modification of AEM
models. The element containers are hydrogeologic constructs such as layers, aquifers,
and aquitards. These contain all of the hydrogeologic features in the model and act as
input and output parameters for the global drivers. The global drivers (such as Parse,
Grid, Track, and WriteOutput) are routines that read input files, grid model output, and
track particles along flow paths. The complementary object classes, such as CParticle,
CPathline, and CFlowNode, and the auxiliary functions, such as optimized polynomial
routines, aid in these actions. All of this functionality is embedded within a highly
formalized design framework.

Design Assumptions

There are certain assumptions involved with the building of the Bluebird engine,
most of which are associated with either the iterative algorithm or the assumptions
inherent in traditional 2-Dimensional analytic element modeling. Some of the primary
assumptions are discussed below:

2-Dimensional: The structure and organization of Bluebird is such that most

information (such as potential or head) is only available at some (x, y) point (stored as a
complex coordinate, z=x + iy) in some layer (L) of the model. Though locally 3-
Dimensional “elements” or zones may be built into the framework of Bluebird (as in
Haitjema [1985]), zones of 2-D and 3-D solutions may not overlap-they must be nested.
Mathematically, this is due to the inherent assumptions of the Dupuit-Forcheimer
assumption, but is functionally reinforced by the current structure of the program
procedures.

Multi-Layer: While integration of fully 3-Dimensional models is somewhat

outside the scope of the Bluebird engine, pseudo-3D models are explicitly accounted for.
These models are comprised of layers connected by leakage through aquitards. While the
multi-layer formulation is still somewhat incomplete, the structure of the library and
associated engine fully accounts for multiple 2-Dimensional layers. The details behind
this implementation are discussed later in this document.

Steady-State: Though the current implementation of Bluebird is fully steady state

(there are no transient elements), the structure of most function calls accounts for time, t.
In addition, the global solving, gridding, and tracking routines, are organized to account
for a transient model. This, at some time in the future, may allow for two potential forms
of transient models:

• Zones of transience nested within a steady state model (such that requests may be

made for velocities or heads at any point in space time (x, y, t)) or
• Models that are analytic in space/finite difference in time. This type of model

would require particle tracking and gridding to occur during the solution. An

6/10/2003 Bluebird Developer Manual 5

alternative, to store information throughout the time history of the model, is
operationally expensive, and not designed for.

Thus, while the model is currently limited to steady state considerations, later
improvements may include transience, with little additional effort. The exception to this
is the implementation of transient aquifer property values (i.e. conductivity, base,
thickness), which would require rather dramatic restructuring.

 Minimal communication between elements:
 Bluebird was designed in such a way that the implementation of a new element or
new element geometric type would require little or no modification of the rest of the
code. One of the methods of minimizing the modification effort is to reduce element
coupling. Elements have no knowledge of anything but the layer and Superblock that
own them. Likewise, the layer and superblock know nothing about the type of elements
they possess except that they have certain capabilities and features associated with all
elements.

Iterative/Explicit Model: While the formulation of the Bluebird Object model was
designed with the iterative solution algorithm in mind, an explicit solver (for use within a
single layer) has been developed. However, the explicit solver is not yet operational for
all of the element types.

 Analytic Solution only: Generally, analytic element models are built via
superposition of analytic solutions, which are infinite in domain. Future additions to the
method may include use of local finite element, finite difference, or boundary element
solutions to the governing equations, which may also be superimposed atop or nested
within the analytic solutions. The general formulation of Bluebird classes and routines in
no way impedes such an innovation.

1.3 Object-Orientation and AEM

The structure of analytic element models is inherently object-oriented.

Analytic Element Models, by their very nature, lend themselves to an object

framework based on elements as the atomic classes. Elements each have their own
geometric data (coordinates, shape), their own mathematical data (coefficients), and their
own functionality (harmonic functions associated with the element). This alone suggests
a high capacity for encapsulation of information and a high degree of connectivity
between a single element’s data. However, much of this information is similarly
structured—inhomogeneities in conductivity and cutoff walls have identical functional
form. Likewise, both a pumping well and circular lake provide similar functionality (i.e.
provide discharge potential at a point). Thus, due to a clear hierarchy of classification, it
is apparent that an inheritance-based architecture for these element objects is an intrinsic
property of the analytic element method itself.

6/10/2003 Bluebird Developer Manual 6

Booch [1994], suggests that the quality of an object abstraction may be measured

by the following metrics:
• Coupling
• Cohesion
• Sufficiency
• Completeness
• Primitiveness

Coupling

Coupling is defined as the measure of strength of association between one object and
another. Weak coupling is desired, because it is easier to understand and modify code for
an object if it is only mildly interrelated with other object classes. The analytic element
method, with hydrogeologic features as its classes, allows for minimal coupling—each
element needs only knowledge of the layer within which it resides and the Superblock
which owns it. An element may be entirely ignorant of all other elements in the model (or
even know that others exist!). Likewise, a layer in the model needs to know nothing
about the specific geometry or form of its internal elements, only to have the ability to
request information from them, such as the discharge potential at a point. An object-
oriented formulation with elements as the atomic classes is weakly coupled, as desired.

Cohesion
Cohesion is a measure of the degree of connectivity among the parts of a single object (or
object class). Analytic elements are highly cohesive as an object base class, because they
all provide very similar functionality (once again, potential at a point). Because of the
very similar behavior shared by elements, the semantics of an object-oriented
implementation may embrace the behavior of an analytic element, an entire analytic
element, and nothing but an analytic element. An object-oriented formulation with an
abstraction of “Analytic Element” as the base class is highly cohesive, as desired.

Sufficiency and Completeness
Sufficiency and completeness are metrics of a specific implementation of object-oriented
design. Sufficiency requires a minimal interface for interaction between instances (i.e.
interaction between the layer and an element). Completeness implies that all aspects of an
abstraction are included in the interface. Thus, an analytic element abstract base class
without an interface for “GetDischargePotential” would be insufficient and incomplete.
The analytic element method suggests an interface format that is both sufficient and
complete, if only because certain information is required for a complete model to operate.

Primitiveness
Primitiveness is a measure of the simplicity of a class’s interface. For example, providing
a function interface that provides the discharge at three given points is not primitive,
because an external routine which calls GetDischarge(x, y) can be called three times.
Once again, primitiveness is a function of the specific design implementation. It is
important to note that the Iterative solution method is significantly more primitive than

6/10/2003 Bluebird Developer Manual 7

the explicit method, which requires non-primitive function calls to build the matrix of
equations.

6/10/2003 Bluebird Developer Manual 8

2.0 Code Organization

2.1 Overview

 Generally, the Bluebird library is composed of a (1) set of analytic element
classes (2) a set of container classes and (3) a set of global functions that operate upon
instances of these classes. While exceptions exist to this generalization, the substance of
the library lay in this basic structure. The element and container classes (the former of
which is based upon a hierarchy of inheritance) are joined by two additional sets of
complementary object classes (Property zone classes and miscellaneous classes). These
four types of classes encapsulate the entire object-based library:

• Container classes - Objects that contain elements or groups of elements,
• Element Classes - Objects which are elements themselves, inheriting from the

master class CAnalyticElem,
• Property Zone Classes - Objects that contain property information for a

geographic region
• Miscellaneous Classes - Objects that interact with elements or represent some

other type of hydrogeologic feature, such as a parcel of water or location of
surface water communication.

The architecture for the container and element classes are shown in figure 2.1a. The
element architecture is shown as a class (or inheritance) structure, whereas the container
architecture is displayed as an object-relational structure.

6/10/2003 Bluebird Developer Manual 9

CAquifer

 1

N
contains 1

 Above/Below Parent/Child contains

CAquitard

1..2 1

N 1 4 1 0..2 0..2
CLayer CSuperblock 1 1

 contains 1 1 contains
 contains contains

N
N

CAnalyticElem
1 N

N

 CPointElem
 CDischargeWell CHeadSpecifiedWell

CRiver CDrain CLeaky
 CStringElem
 CAreaSink CInhom CQnorm

 CCircleElem

CCirLake CCirInhom
CFarField

In addition to the object classes, there is a library of functions that operate outside of
the formal class structure. These include general mathematical/boolean functions (min,
max, Laurent series, Linear algebraic solvers, and string manipulation functions) and
master functions for gridding and tracking using model results or processing input and
output. An index of the general mathematical functions is available in appendix C.
However, the primary driver functions for the library consist of:

• Main() – the primary driver function for the engine. Main() calls all of the other
major functions.

• Parse()-the parse routine parses the input file (“split.dat”) and constructs the
model domain, including all of the Layers, elements, particles, and auxiliary
structures.

• Grid()-The Grid routine grids (creates a *.grd file of) the head, stream function,
leakage, Qx, and Qy in a specific layer at a specific time.

• BuildMatrix()-The BuildMatrix Routine assembles a fully explicit matrix for a set
of elements, then solves the system of equations for all of the element
coefficients.

Awareness

 The structure of the Bluebird library is such that each object has access only to the
information it needs from other objects. Figure 2.1.2 represents the “awareness” structure
of the Bluebird object library.

 CParticle

Purely virtual abstract classes

CAquitardABC COwner CLayerABC

 CAquifer

CLayer CSuperblock CAquitard
CFlowNode

CPropZone

CAnalyticElem

Denotes “aware of”
(Relationship is cumulative) Surface Water Elements

CCirLake

CStage

CRiver

Property Elements

CConductInhom

CBaseInhom

CInhom

6/10/2003 Bluebird Developer Manual 10

2.2 Container Classes

 Container Classes are those classes that contain elements (or, equally, contain
hydrogeologic features). There are natural container classes (such as aquifer) and
mathematical container classes (such as Superblocks). The container organization for the
Bluebird library is shown in fig 2.2a. Most of these containment relationships are
connected via the use of c++ pointers. For example, a layer contains multiple elements,
represented as an array of pointers to analytic elements (pElemArray[]). Each element, in
turn, has a pointer to the layer within which it resides (pLayer). This type of structure is
repeated for all of the container classes, and insures two-way flow of information
between the container and the contained. It is important to note that the element
containers do not explicitly know the type of elements contained within them.

N

1

contains

1

 contains

0..2

1..2

1

N
contains

CAquitard

N

1

contains

CAquifer

1 4

 Parent/Child

1 0..2

 Above/Below

CSuperblock 1 1CLayer

contains
1

N
N

CAnalyticElem
N

1
contains

 As depicted in fig. 2.2a, the object containers in the Bluebird library consist of:

• CAnalyticElem- The base class for all of the analytic elements is also a general
aggregate container of analytic elements. While most analytic elements have a
size of zero, the aggregate instantiation of CAnalyticElem can contain a group of
elements unlimited in size.

• CLayer- The primary container class for analytic elements, CLayer represents an
aquifer layer in which the Dupuit-Forcheimer assumption is valid.

• CAquitard- The aquitard class represents an infinitely thin leaky layer between
the aquifer layers represented by CLayer. Only vertical flow is allowed in this
layer.

• CAquifer-The Aquifer acts as a master container of layers and aquitards.
• CSuperblock- The Superblock class is a mathematical construct which groups

elements and simplifies their functional form at a distance for faster
computational time. It also speeds the access of location-based information via its
quad-tree structure.

6/10/2003 Bluebird Developer Manual 11

2.2.1 The Layer Class: CLayer

 The layer class is the primary organizational class in the Bluebird library. It stores
all of the elements within it (via an array, pElemArray[]) and has explicit knowledge
about all of its contents. It inherits from the purely virtual class CLayerABC, which
provides all of the functionality accessible from particles or elements. An element knows
nothing of its surroundings- a river is ignorant of an adjacent inhomogeneity, and does
not know if it exists in a multi layer model. It simply knows that it is within an abstract
layer (of type CLayerABC), and asks the layer for important information, such as the
discharge along its boundaries. The Layer is a “black box” to each of the elements,
providing a limited amount of information, such as conductivity or potential.

CLayer Data Structures
Static members (not unique to Layer instance)

Name Type Description Status Accesor? Manipulator?

MinLayerIterations integer minimum local solve iterations private N

MaxLayerIterations integer maximum local solve iterations private N

LayerTolerance double maximum acceptable local tolerance private N

SetSolveData()

Fresh boolean true if first iteration public N/A N/A

Solved boolean true if iteration complete public N/A N/A

Data members (unique for each layer instance)

conductivity double background conductivity private GetCond()

base_elev double background base elevation private GetBase()

Thickness double background aquifer thickness private GetThick()

Porosity double background porosity private GetPoro()

SetValues(K,B,T,n)

black_hole complex z location where log terms go to zero private BH() SetBlackHole()

pMasterBlock CSuperblock* pointer to master superblock private GetMasterBlock() SetMasterBlock()

size integer number of elements in Layer private Y

pElemArray CAnalyticElem*[] array of pointers to all elements private GetElem(i)

PFarField CFarField* pointer to far field element private N

Condsize integer number of conductivity inhomogeneities private N

Basesize integer number of base inhomogeneities private N

Porosize integer number of porosity inhomogeneities private N

pCondZoneArray CPropZone*[] array of conductivity inhomogeneity zones private N

pBaseZoneArray CPropZone*[] array of base inhomogeneity zones private N

pPoroZoneArray CPropZone*[] array of porosity inhomogeneity zones private N

AddToLayer()

Level integer vertical location within aquifer system private Y N

pLayerAbove CAquitard* pointer to leaky layer above private N SetLevelAbove()

pLayerBeneath CAquitard* pointer to leaky layer below private N SetLevelBelow()

DeltaPot double range of potential values in layer (Potmax-Potmin) private GetDeltaPot() CalculateDeltaPot()

Extents window extents of modeling domain private GetExtents() ChangeExtents(z)

6/10/2003 Bluebird Developer Manual 12

CLayer Functions
Name Input Parameters Outputs Type Actions Performed
*GetHead z(complex),t(double) head(double) double Returns locally referenced head

*GetHeadAndPotential z(complex),t(double)
omega(complex),head
(double) void Returns local head and potential

*GetDischargePotential z(complex),t(double) omega(complex) complex Returns Discharge potential, Omega
*GetW z(complex),t(double) W(cmplex) complex Returns Complex Discharge Vector
GetNetDischarge t(double) Q(double) double Returns Net Outflux of water from domain
*v z(complex),t(double) velocity(complex) complex Returns darcian velocity

IterativeSolve
t(double),PROGRES
S(output stream)

maxobjective(double),
maxchange(double) void Solves all elements in domain iteratively

WriteItself sol (output stream) void
Orders its elements to write their coefficients to a solution
file

WriteOutput void Orders its elements to write their output

Centroid
centroid of
domain(cmplex) complex Returns the centroid of the domain

*Indicates inheritance from the abstract CLayer class, CLayerABC. These are the only functions accessible
by the elements, particles, or gridding routines.

Use of CLayer
 An instance of CLayer represents a purely 2-Dimensional infinite domain in
which the Dupuit-Forcheimer assumption is valid everywhere. For a single layer model,
all of the elements will reside within the single instance of the layer. Requests from the
global drivers (such as Grid) for potential, flow, or net discharge are generally made
through a pointer to a layer (i.e. the gridding routine asks the layer for potential and head
at a set of points in order to create a .grd file of heads and stream function). Additionally,
every element has a pointer to the layer in which it resides. Each element uses the layer as
a “black box” to obtain information about the element’s surroundings (i.e. Ω, W,
conductivity, base elevation, or thickness).

2.2.2 The Aquitard Class: CAquitard

 The aquitard, or leaky layer, class represents a resistant layer between aquifer
layers. Whereas the Dupuit-Forcheimer assumption controls flow in the layers, in an
aquitard, only vertical flux of water is permitted.

Use of CAquitard

 The aquitard class is used only for multi-layer models. It has a set of elements
associated with it (different formulations of area, line, and point sinks) that represent flux
from one aquifer layer to another based upon the vertical flux relationship:

lowerupperb
k φφγ −=

6/10/2003 Bluebird Developer Manual 13

Where k is the conductivity of the aquitard, b is the thickness of the aquitard, and c is the
conductance (c=k/b). This flux would be positive for one layer (an area sink) and
negative for the other (area source). The aquitard class currently has only one type of
element: inhomogeneities in conductance (conductivity and/or thickness), which has
knowledge of the abstract CAquitardABC in which it resides. The default conductance of
an aquitard (and the conductance at infinity) is zero, allowing no flux of water.

2.2.3 The Aquifer Class: CAquifer

 The aquifer class represents the master container: it contains all of the layers and
leaky layers, which in turn contain all of the analytic elements. Calls to solve the domain
are directed to the single instance of CAquifer. This instance sifts through all of its layers
then all of its leaky layers, instructing them to solve themselves. Aside from acting as a
master container of layers and aquitards, the Aquifer has very little functionality or data.
It is envisioned that at some point, multiple adjacent aquifers may be “tiled” together,
each with different vertical layering of its levels.

2.2.4 The Superblock Class: CSuperblock

 Superblocks are a method of mathematical representation whereby groups of
analytic elements may be represented at a distance by a single Laurent series and a
singularity (well). The Bluebird library’s implementation of nested superblocks takes
advantage of this representation for faster numerical calculation. There is a set of nested
superblocks in each layer that “own” a set of elements within their respective “domains”.
Inside this domain (a simple circular radius), the
explicit element functions are used to represent
potential. Outside this domain, a Laurent series is used
to represent the grouping of element functions. Aside
from the layer, Superblocks are the only construct that
an analytic element has explicit knowledge of. Every
time an element solves for its own coefficients, it
informs it’s superblock owner, so that it may update its
Laurent coefficients and its parent blocks coefficients,
and so on. A figure of the geometric structure of nested
superblocks is in figure 2.2.4a.

6/10/2003 Bluebird Developer Manual 14

2.3 Element Classes & Subclasses

 The element classes are the primary object class in the Bluebird library, each
instance representing a hydrogeologic feature such as a river, inhomogeneity, or zone of
recharge.

2.3.1 The Generic Analytic Element Class: CAnalyticElem

 The analytic element class is the master class for all analytic elements, regardless
of geometry or specific boundary condition type. All elements are an instance of the
CAnalyticElem class, and gain additional functionality via their subclasses, which are
based upon geometry and boundary condition type.

The Inheritance Structure
 The concept of inheritance in object-oriented design allows for sharing of data
and functionality from one class to another without loss of functionality. It may be
viewed as an “is-an” relationship: a river is an element, and therefore the CRiver class
inherits from the CAnalyticElem class. In the Bluebird library, there is a four-tier
hierarchy of inheritance. This inheritance structure is shown via example in fig 2.3.1a and
shown abstractly in fig 2.3.1b

CAnalyticElem

CRiver CDrain

CQnorm CInhom CAreaSink

CLeaky

CCirInhom CCirLake

CDischargeWell CHeadSpecifiedWell
CPointElem

CStringElem

CCircleElem

CFarField

Fig 2.3.1a- the inheritance structure for the CAnalyticElem class and its subclasses

Semi-virtual classes

The Geometry type subclasses (i.e. CStringElem, CPointElem) contain the

general potential function for all elements of that geometric type. They also contain

6/10/2003 Bluebird Developer Manual 15

generalized information such as the coefficient structure and the geometric data. With the
exception of CFarField, an instance of a Geometric Type Element still lacks essential

information to solve for its own coefficients. The
Boundary condition subclasses contain the
specific BC data (such as conductivity or
elevation of the element) that allow an element to
be operational. It is at this (the BC) level of
abstraction that an element can solve for its own
coefficients.

Virtual Status

CAnalyticElem is what is called a
“virtual” class, because an instance of
CAnalyticElem has no real power or functionality
without inheriting this power from additional
child classes. For example, a river segment, which
inherits from the classes CAnalyticElem,
CStringElem, and CRiver, has associated

geometry (from CStringElem) and associated boundary conditions (from CRiver). The
additional functionality inherited from these subclasses allows it to have coefficients and
a mathematical form, which allows it to provide potential or flux at a point. An instance
of CAnalyticElem alone has none of this functionality, and its GetDischargePotential() or
GetW() routine will always return 0.0+i0.0.

Fig 2.3.1a- the abstract inheritance
structure for the CAnalyticElem class
and its subclasses

Specialized Type

Boundary Condition Type

Geometry Type

General Element

Element Awareness
 Each element has no explicit knowledge about its surroundings. This allows for
object-oriented code development where minimal modification of code is necessary to
build new elements, containers, or functionality (see chapter 4 for details on
modification). The knowledge of each element is limited to the layer in which it resides
and the superblock(s) which “own” it. This “awareness” is represented via the pointers
pLayer (a pointer to the abstract layer of class CLayerABC) and pBlock (a pointer to the
block of abstract class COwner). In addition, each element has knowledge of its element
ID within the superblock (allowing the superblock to update its coefficients correctly
every time the element is solved for).

Data Members
 Because CAnalyticElem is a predominantly virtual class, it has very few (and
very general) data members. The data is listed below:

Data members (unique for each element instance)
elemID integer identification num of element private GetID
type elemType enumerated type of element private GetType
name string name of element private GetName

Constructor

size integer number of elements in container (if an aggregate) private GetSize
pElemArray CAnalyticElem*[] array of pointers to subelements (if an aggregate) private GetAllElems

AddToContainer

pLayer CLayer* Pointer to layer in which the element resides private N Constructor

6/10/2003 Bluebird Developer Manual 16

pBlock CSuperblock* pointer to superblock which "owns' the element private N
myBlockID integer element's superblock ID number private N

SetBlockOwner

Member Functions
 There are certain features and behaviors that all Analytic Elements share. The
virtual functionality of the CAnalyticElem class allows this functionality to be accessed
without explicit knowledge of the type of element (i.e. well or river). The following is a
list of the functionality available from all elements:

Name Input Parameters Outputs Type Actions Performed

GetDischargePotential z(complex),t(double) omega(complex) complex Returns Discharge potential, Omega

GetW z(complex),t(double) W(cmplex) complex Returns Complex Discharge Vector

GetNetDischarge t(double) Q(double) double Returns Net Outflux of water from domain

SolveItself t(double) maxobjective(double), maxchange(double) void
Solves for coefficients of element(or subelements of an
aggregate)

WriteItself sol (output stream) void Write its coefficients to a solution file

ReadItself sol (input stream), solfiletype success(boolean) bool Reads its coeffifients from a solution file

WriteOutput void Writes its output to predefined files

UpdateBlock void Tells owning superblock to update it's coefficients

Centroid centroid of element(cmplex) complex Returns the centroid of the domain

IsInside z(complex) boolean boolean returns true if a point is inside the element

IsInSquare zc(complex),width(double) boolean boolean returns true if the element is inside the given square

IsInCircle zc(complex), radius(double) boolean boolean returns true if the element is inside the given circle

SharesNode znode(complex) boolean boolean returns trure if the element has a node at the given point

Modeling/Behavioral Functionality___

• GetDischargePotential (complex z, double t)
• GetW(complex z, double t)
• GetNetDischarge(double t)
• SolveItself(double &change, double &objective, double t).

The Discharge Potential (Ωe(x,y,t)):

All elements have a mathematical function which represents an element’s
contribution to the discharge potential Ω=Φ+iΨ [L3/T] at a point within its layer. While
the form of this function is dependent upon the specific geometry and behavior of the
hydrogeologic feature, ALL elements have the ability to return the value of Ω at a point
in time and space. Therefore, CAnalyticElem provides the virtual functionality for this
function: GetDischargePotential (complex z, double t). The input parameter z is the
complex 2-D location (within the layer) and the parameter t is time. The functional form
of this routine is built within the geometry subclass (i.e. all circles or all point elements
share the same form of GetDischargePotential function). The specific functional form for
each geometry type is given in the discussion of Geometric element subclasses (sect.
2.3.2)

6/10/2003 Bluebird Developer Manual 17

The Complex Discharge (We(x,y,t)):
Like discharge potential, all elements have the ability to provide the derivative of

the discharge potential, the complex discharge, W=Qx + iQy [L2/T]. Similarly, the
functional form is provided by the geometry of the element, but the function is available
regardless of geometry. Therefore, all instances of CAnalyticElem can respond to the
function GetW(complex z, double t). The input parameter z is the complex 2-D location
(within the layer) and the parameter t is time. The functional form of this routine is built
within the geometry subclass (i.e. all circles or all point elements share the same GetW
function)

Net Discharge (Qe(t)):

Though not all elements add or remove water from the domain, it is important to
be able to access this information without explicit knowledge of an element’s form.
Therefore the virtual function GetNetDischarge(double t) returns the volumetric flux of
water [L3/T] removed from the layer by the element at time t. The functional form of this
routine is built within the geometry subclass (i.e. all circles or all point elements share the
same GetNetDischarge function)

Solve Itself:

One of the primary assumptions in the iterative method for solution of analytic
element models is that an element may solve for its own coefficients with limited
information along its borders. The iterative solution process consists of looping through
the list of elements and having each element solve for its own coefficients based upon the
most recent global solution. Therefore, every instance of CAnalyticElem has the
functionality SolveItself(double &change, double &objective, double t). For any time t,
the function solves for its coefficients and returns the values change and objective, which
are the degree of coefficient change and the element’s ability to meet its boundary
conditions, respectively. The functional form of this routine is built within the boundary
condition subclass (i.e. all circular lakes have the same SolveItself function, which is
different from the circular inhomogeneity SolveItself function)

Input/Output Functionality__

• void WriteItself(ofstream &solfile)
• void ReadItself(ifstream &solfile, solfiletype ty)
• void WriteOutput(double t)

Write Itself:

Each element has the capacity to write it’s coefficient information to a solution
file (to be stored for future use). The function call used is WriteItself(ofstream &solfile).
The input parameter, solfile, is an output stream that points to the solution file.

Read Itself:

In addition to writing its solution, an element must be able to read its solution
from an input solution file. The function call is ReadItself(ifstream &solfile, solfiletype
ty). The first parameter is an input stream pointing to the input solution file. The second

6/10/2003 Bluebird Developer Manual 18

parameter is the type of input solution file (so that elements can read their input from a
different program’s (i.e. SPLITs) solution file).

Write Output:

Different elements may provide different output. Rivers can provide extraction
along their length, most elements can provide information about the errors along their
boundaries. All of these output features are placed in the subroutine WriteOutput(double
t).

General Geometric Functionality___

• Centroid()
• IsInside(complex z)
• IsInSquare(complex zcen, double width)
• IsInCircle(complex zcen, double radius)
• PartInCircle(complex zcen, double radius)
• SharesNode(complex znode)

Centroid:
 The routine Centroid() returns the center point of the element

Is Inside:

The routine IsInside(complex z) returns true if the point z is in the element, false
otherwise.

Is In Square:

The routine IsInSquare(complex zcen, double width) returns true if the element
is completely within the square defined by zcen (the center of the square) and width (the
length of a side of the square). The square is oriented with the Cartesian coordinate
system.

Is In Circle:

The routine IsInCircle(complex zcen, double radius) returns true if the element is
completely within the circle defined by zcen (the center of the circle) and radius (the
radius of the circle).

Part In Circle:

The routine PartInCircle(complex zcen, double radius) returns true if the
element is partially within the circle defined by zcen (the center of the circle) and radius
(the radius of the circle).

Shares Node:

The routine SharesNode(complex znode) returns true if the element has a node
(i.e. corner point or singularity) at the point znode, false otherwise. Rarely used.

6/10/2003 Bluebird Developer Manual 19

2.3.2 Geometric Element Subclasses

The Geometry type subclasses (CStringElem, CPointElem, CFarField, and

CCircleElem) contain the general potential function for all elements of that geometric
type. They also contain generalized information such as the coefficient structure and the
geometric data. With the exception of the SolveItself, GetMatrixBuildInfo, and
WriteOutput routines, all of the virtual CAnalyticElem functions are given a body at this
level of inheritance. This insures minimal overhead in function calls and minimal reuse of
code1. All of the virtual geometric queries from CAnalyticElem are the same for elements
of the same geometries.

The Point Element Class: CPointElem
 The CPointElem class currently includes

• head-specified wells,
• discharge- specified wells,
• discharge- specified wells which will not over pump (drying wells),
• point dipoles, and
• point vortices.

The general class contains a set of private data members, which generalize to all
point elements, and provides content to the virtual geometric and modeling functions
from CAnalyticElem, with the exception of SolveItself and GetMatrixBuildInfo. These
functions have content only at the boundary-condition level of inheritance.

CPointElem Data Members

Data members (unique for each CPointElem instance)
Name Type Description Status Accessor? Manipulator?
zp complex the complex location, zp Private GetZ()

Ptype complex enumerated point type (well,
vortex, or dipole) Private N

Q integer single degree of freedom, the
strength coefficient Q Private GetNetDischarge()

angle integer orientation, q, in terms of
radians from the positive x-axis Private getOrientation()

Constructor

angle (orientation)
Q (strength)
Ptype (type)

zp (location)

1 Since the form of the Ωand W functions are so similar for elements of similar geometry, it makes sense to
encapsulate these functions at the level of geometric differences, rather than repeat this code in a similar
form for each string element or point element.

6/10/2003 Bluebird Developer Manual 20

CPointElem Member Functions

Get Potential, Get W, and Get Net Discharge
The general expression for the complex potential and complex discharge from a point
element is given as:

−
−

−

−
=Ω

p

i

pbh

p
e zz

e
zz

zzQz
θ

δδ
π 21 ln

2
)(

−
−

−
−= 221)(

1
2

)(
p

i

p
e zz

e
zz

QzW
θ

δδ
π

()QQe 1δℜ=

where
)(

)(
1
0

)(
)(

)(

0

1

11 dipole
vortexorwell

and
dipole
vortex
well

i

=

−= δδ

6/10/2003 Bluebird Developer Manual 21

The Circular Element Class: CCircleElem

The CCircleElem class currently includes head-specified lakes and circular
inhomogeneities in conductivity. The general class contains a set of private data
members, which generalize to all circular elements, and provides content to the virtual
geometric and modeling functions from CAnalyticElem, with the exception of SolveItself
and GetMatrixBuildInfo. These functions have content only at the boundary-condition
level of inheritance.

CCircleElem Data Members

Data members (unique for each CircularElem instance)

Name Type Description Status Accessor? Manipulator?

OutCoeff[] complex An array of complex Laurent Series coefficients
which represent potential outside the circle private N

InCoeff[] complex An array of complex Taylor Series coefficients
which represent potential inside the circle private N

SetCoeff()

zcen integer The complex center of the circular element. private GetZcen
R integer The radius of the circular element private GetRadius()

Constructor

Q integer The discharge from the center of the circle. private GetNetDischarge Constructor
(Sometimes)

zctrl[] complex An array of the control points along the circular
element’s boundary private N

ncircontrol complex The number of control points along the boundary private N

order double The order of both the inner and outer power series
(i.e. the number of OutCoeff and/or InCoeff) private GetDegreesOfFreedom()

fold integer The over specification fold for the element
(ncircontrol/order) private N

Constructor

CCircleElem Geometric Abstraction

 zctrl[m] (control points-global)

R (radius)

Zcen (center-global)

CCircleElem Member Functions

Get Potential, Get W, and Get Net Discharge

6/10/2003 Bluebird Developer Manual 22

The general expression for the complex potential and complex discharge from a general
circular element is given as:

−

−
+−+=Ω ∑∑

=

−

= cbh

c
N

n

n
n

N

n

n
ne zz

zzQZbZaz ln
2

)1()(
00 π

δδδ

c

N

n

n
n

N

n

n
ne zz

QZnbZnazW
−

+−−+= ∑∑
=

−−

=

− 1
2

)1()(
1

1

1

1

π
δδδ

QQe =

where
1
1

0
1

≤
>

=
−

=
Z
Z

and
R

zz
Z c δ

here an=OutCoeff[n] and bn=InCoeff[n]. The values of these coefficients are dependent
upon the specific boundary conditions of the element.

SolveItself
 The functional form for circular elements allow for the coefficients (even in a
high-order implementation) to be solved for individually. Thus, no additional generic
function is required (as with string elements) to aid in the SolveItself routine.

6/10/2003 Bluebird Developer Manual 23

The Polyline/Polygon Element Class: CStringElem

The CStringElem class currently includes a large group of elements:
• Head-Specified Rivers
• Extraction-Specified Rivers
• Inhomogeneities in Conductivity
• Inhomogeneities in Base
• Thin Inhomogeneities (Drains)
• Thin Inhomogeneities (Leaky Walls)
• Normal-Discharge Specified Elements
• Resistance Specified Rivers
• Area-Sinks
• Horizontal wells

The general class contains a set of private data members, which generalize to all polyline
or polygon elements, and provides content to the virtual geometric and modeling
functions from CAnalyticElem, with the exception of SolveItself and GetMatrixBuildInfo.
These functions have content only at the boundary-condition level of inheritance.

CStringElem Data Members

Static members (not unique to String instance)
Name Type Description Status Accessor? Manipulator?

c[4][] double
generic boundary condition coefficients (if non-
constant within element) private N

c1,c2,c3,c4 double
generic boundary condition coefficients (if constant
within element) private N

ConstrntOn[3] boolean true if constraints on private N
ConstrntVal[3] double values of constraints private N

SetConstraints()

CD double true if iteration complete private N
f[][] double g matrix (for chebyshev polynomials) private N
g[][] double f matrix (for chebyshev polynomials) private N

Prepare()

rhs[] double right hand side terms for line element solve private N SolveItself()
sol[] double solution vector from solution matrix private N
A[][] double solution matrix coefficients private N
b[] double rhs of explicit solution matrix (in GenSolve) private N

GenSolve()

unit[][] double matrix of unit influences at control points private N BuildUnitMatrix()
myBlockIDs integer segment block ID numbers private N

6/10/2003 Bluebird Developer Manual 24

Data members (unique for each string instance)
JumpCoeff[][] double 2D array of jump function chebyshev coeff private N SetSegCoeff()

FarFldCoeff[][] double 2D array of far-field Laurent Series coeff private N N

FForder[] integer order of Far Field Laurent Series private N

order integer dynamic order of chebyshev jump polynomial private GetDegreesOfFreedom()
Constructor

eval_order[] integer order of chebyshev jump polynomial private N N

ze[] complex array of polyline endpoints private GetZ(I), GetZArray()

zctrl[][] complex 2D array of control points (one 1D array per line) private GetSegUnitInfluences()

X[] double array of control points in local coordinate system private N

Nlines integer number of line segments in polyline private GetNumSegs()

nlinecontrol integer number of control points per line in polyline private N

fold double overspecification fold of element private N

Constructor

disabled[] boolean if segment i is disabled, disabled[i] is true private IsDisabled(i) SetAsDisabled(i)

ltype linetype dipole, doublet, or linesink private N

closed boolean true if polygon private N
Constructor

pBlocks[] CSuperblock *
array of pointers to superblock owners (1 per
segment) private N SetBlockOwner()

CStringElem Non-Inherited Member Functions

Name Input Parameters Outputs Type Actions Performed

Private Member Functions

SetConstraints
I(int),tmp1…tmp4
(double),Ctype(constrainttype) void Sets constraint parameters

SetConstraints I(int),tmp1…tmp4,val1,val2(double) void Sets constraint parameters

SetConstraints
I(int),tmp1…tmp4,val
(double),Ctype(constrainttype) void Sets constraint parameters

SetFarFieldCoeff i(int) void
Sets Far Field coefficients for segment i based
upon jump coeff

BuildUnitMatrix
I(int), Ltype(linetype), multi_val_c,
firsttwo(boolean) void Builds unit matrix, unit[][]

GenSolve

JumpCoeff [],relax(double),I(int),
Ltype (linetype), multi_val_c,
firsttwo (boolean) objective, change(double) void Solves system of least squares equations

Clenshaw n(int), x, coeff[](double) value of clenshaw polynomial at pt x void calculates clenshaw polynomial

cClenshaw n(int), z, coeff[](double) value of clenshaw polynomial at pt z void calculates clenshaw polynomial

cClenshaw2 n(int), z, coeff[](complex) value of clenshaw polynomial at pt z complex calculates clenshaw polynomial

Interpolate size(int),v1,v2(double) Array[](double) void
interpolates values based upon fourier
frequencies of a line

Interpolate size(int),v1,v2(complex) Array[](complex) void
interpolates values based upon fourier
frequencies of a line

GetOmJump I(int),X,t(double) Jump in complex potential (complex) complex Calculates Jump in complex potential

GetWJump I(int),X,t(double) Jump in complex discharge (complex) complex Calculates Jump in Complex Discharge

GetHeadJump I(int),X,t(double) Jump in head (real) double Calculates Jump in head

GetHeadGradJump I(int),X,t(double) Jump in head gradient (real) double Calculates Jump in head gradient

GetCumExtract I(int),X,t(double) Cumulative extraction along linesink double
Calculates Cumulative Extraction along
linesink

CleanStreamFunct z(complex),t(double) increase in stream function double
forces branch cuts along polyline, instead of
having branch cuts for every segment

Public Member Functions (not inherited)

Prepare() void Prepares CD, f, and G matrices

Destroy() void Destroys CD, f, and G matrices

6/10/2003 Bluebird Developer Manual 25

CStringElem Inherited Member Functions

Get Potential, Get W, and Get Net Discharge
The general expression for the complex potential and complex discharge from a general
polyline element (with complex jump coefficients, an) is given as:

∑ ∑∑∑∑
= ====

+

−+−

−

=Ω

NL

i
n

N

n
nin

N

n
ni

n

j
ini

N

n
nie ZTaZTaZTZjnfa

i
z

1 0
,

0
,

00
,)1ln()1()1ln()1(

2
)(),,(

2
1)(

π
δ

π

∑ ∑∑∑∑
= ====

−

−−

−

+

−

−
=

NL

i
n

N

n
nin

N

n
ni

n

j
ini

N

n
nie Z

Ta
Z

TaZTZjnga
izz

zW
1 0

,
0

,
00

,12 1
1)1(

1
1)1(

2
)(),,(

2
12)(

π
δ

π

()∑ ∑
= =

−−=

NL

i
nn

N

n
nie TTazQ

1 0
,)1()1()(δ

where
)(

)(
21

2
1

21

2
1

ii

ii
i

zz

zzz

−

+−
=Z

where δ=1 for a linesink, 0 otherwise. The definitions of these terms are fully explained
in Janković [1997].

The jump coefficients here are purely real for linesinks and dipoles, purely
imaginary for doublets. For storage simplification, only the non-zero part is stored in a
array of type double. Note that outside of a circle around the element, a Laurent series
must be used. This is to avoid numerical inaccuracies in the calculation of the complex
Chebyshev polynomial Tn(Z), where Z is large.

The exception to this formulation is the area sink, which has an additional term for the
potential on its interior. The Area sink, therefore, has its own interpretation of the
GetDischargePotential(), GetW(), and GetNetDischarge() functions.

6/10/2003 Bluebird Developer Manual 26

The Far Field Element Class: CFarField

 The Far Field element, which is a combination of the Global constant, C, and
uniform flow, is given its own geometric subclass because of its unique infinite
geometry- both uniform flow and the global constant are effective at every point in the
domain. Therefore, it has its own interpretation of the geometric function calls and
unique functions for discharge potential, Ω, and complex discharge, W. While the
uniform flow rate is given, the contstant may be determined in one of two ways- either
based upon specifying the head at a complex point, zref, or by specifying total net
extraction from the domain.

CFarField Data Members

Data members (unique for each FarFieldElem instance)
Name Type Description Status Accessor? Manipulator?
Qo complex The uniform flow rate [L2/T] Qo=Qx+iQy private getUnifFlow()
Alpha double The angle of uniform flow (in radians

from the positive x-axis) private N

RefPoint boolean True if reference point condition, false if
net extraction condition private IsRefPoint()

Constructor

zref complex Location of the reference point private GetZref() SetZref()
RefHead double Specified head at the reference point private N
NetExt double Specified Net Extraction private N

Constructor

Constant double The Global constant, C private N SetCoeff()

CFarField Member Functions

Get Potential, Get W, and Get Net Discharge
The general expression for the complex potential, complex discharge and net flux

from a general Far Field element is given as:

CzzQ bhOe +−−=Ω)(

Oe QW =
0=eQ

Solve Itself
 Since the Far Field element is a non-virtual element, it has full functionality,
including the ability to solve for its own degrees of freedom, which is the global constant.
The boundary condition for the farField is one of two conditions:

specifiedrefz Φ=Φ)(or

0
1

=∑
=

N

e
eQ

Due to numerical difficulties with the second (net-extraction) condition (met essentially
via a root-finding algorithm), relaxation is used.

6/10/2003 Bluebird Developer Manual 27

2.3.3 Boundary Condition Element Subclasses

 All of the Boundary condition (BC) subclasses inherit from some geometric
subclass (CPointElem, CCircleElem, or CStringElem). With most of the functionality
encapsulated at the level of geometry, the BC subclasses need only a few element-
specific functions, which are virtual at higher levels:

• Constructor
• SolveItself
• GetMatrixBuildInfo
• Parse
• WriteOutput

These 5 member functions (along with some manipulators and accessors) are generally
the only functions which are specific to the boundary condition subtype. Most other
functionality is purely geometry dependent.

As an example of a boundary condition-based subclass, the CInhom (polygonal
inhomogeneity in hydraulic conductivity) will be used.

Constructor:

The constructor builds an instance of the particular type. As an example, the
constructor call for CInhom is:

CInhom::CInhom (char *Name,
 const CLayer *pLay,
 const cmplex *points,
 const double cond,
 const int ord,
 const double OS,
 const int NumOfLines)

This input is all that is needed to completely define a polygonal inhomogeneity element:

• The name (*Name) and layer pointer (pLay) are general to all analytic elements.
• The array of vertices (points[]), order (ord), number of line segments

(NumOfLines), and over specification ratio (OS) are all member data of a
polyline element, and completely describe the geometry of the element.

• The only additional data required is the conductivity (cond), which is the single
data member unique to an inhomogeneity in conductivity.

Upon calling this constructor, the CAnalyticElem and CStringElem Constructors are also
called. The constructor (and parent constructors) builds a complete instance of CInhom,
which may be added to a layer and later used in calculation.

6/10/2003 Bluebird Developer Manual 28

SolveItself:
 The SolveItself(double &change, double &objective, double t) routine is the meat
behind the Bluebird iterative solver. Based upon the most recent complex discharge
potential (Ω) and complex discharge (W) along the elements borders, an element may
solve for its own coefficients by meeting its associated boundary conditions. This is done
by first obtaining current information about the state of the system along its borders. The
discharge potential and/or complex discharge are obtained by asking the layer for
information:

 O=pLayer->GetDischargePotential(z,t);

 W=pLayer->GetW(z,t);

In addition to obtaining the values for Ω and W, the element may need information
regarding the local specified conductivity, thickness, or base along its borders. These
function calls are also made via the pLayer pointer (remember, all of an element’s outside
information is from the layer):

 K=pLayer->GetCond(z);

B=pLayer->GetBase(z);

T=pLayer->GetThick(z);

This is the only information required for most traditional analytic elements to solve for
their coefficients. In the case of a polygonal inhomogeneity, only the conductivity, K, and
Potential, Φ, along its sides, is required. This is because the boundary condition for a
polygonal inhomogeneity is:

jinhjinh kk
kk

,, 2 ≠−+

−+

Φ

+
−

=∆Φ

This insures continuity of head along the element’s boundary. This boundary condition is
purely a function of the interior conductivity, k+ (the CInhom data member, kin), the
exterior conductivity, k-, (from the function call pLayer->GetCond(z)), and the
potential from everything but the element segment j (from the function call pLayer-
>GetDischargePotential(z,t)). Therefore, with only the black box pLayer to
guide the element, it can solve for its own coefficients, which are stored in the member
data JumpCoeff[][] (a complete discussion of the mathematics is in Janković [1997]).

The mathematical routine for SolveItself() is different for each element geometry and
boundary condition type2. However, the procedure is essentially the same for all
elements:

2 CInhom solves for its coefficients using the CStringElem module GenSolve, for the least-squares solution
of a line element with a Chebyshev polynomial. Oftentimes, the coefficient solution method is similar
enough for the same element geometry to encapsulate some general solve functions at the geometry level.

6/10/2003 Bluebird Developer Manual 29

• Get information along the element borders (at control points) from the layer

• Using this information, solve for the element coefficients.

• If Superblocks are on, inform the parent superblock that there are new coefficients

Though the mathematics or the boundary conditions may be complex, this routine
explains exactly how all element SolveItself routines work. The exception to this recipe is
for “given” elements, which solve themselves only on the first iteration (and then, only to
update their superblock coefficients). “Given” elements have behavior which completely
independent of the local potential and discharge (i.e. leakage-specified area sinks,
discharge-specified extraction wells).

GetMatrixBuildInfo:

 The GetMatrixBuildInfo() routine is used for the globally or locally explicit
solver. While the routine has (at this point) only been developed for the river and far field
elements, its application with other elements is straightforward. The general formulation
for the explicit system of equations is as follows:

TOTAL

M

m

m

ss

mN

j

M

m

m

ssj

mM

m

m

ssk

mDOF

k
k

DOF

n

M

m

m

s

m

nn DOFsuuuauua
sg ssss s

...1
11 1111 1

=+=− ∑∑∑∑∑∑ ∑
== ==== =

≠

ααα

where an are the element coefficients,
m

nu is the unit influence of a single coefficient at control point m, and

sk

m
α is the RHS term, which includes additional terms for the boundary

condition associated with the element coefficient as.
DOFs is the number of degrees of freedom associated with the element that owns

coefficient s
DOF≠s is the number of degrees of freedom associated with all elements which do

not own element s
DOFT is the total number of degrees of freedom
Ng is the number of given elements, and
Ms is the number of control points associated with the element that owns

coefficient s

The general boundary condition unit influence of coefficient k upon coefficient s

may be written out as:

kQy

m

sQykQx

m

sQxk

m

s

m

sk uuu ,,,,,, βββα ++= ΦΦ

6/10/2003 Bluebird Developer Manual 30

The GetMatrixBuildInfo() routine provides the information required from a single
element to build the matrix by sending the following structure to the MatrixBuild()
routine.

struct MatrixInfo{
 int nctrl;

 cmplex zctrl [maxcontrolpts];
 double elemrhs[maxcontrolpts];

 double unit [maxDOF][maxcontrolpts];
 double phiCoeff;
 double QxCoeff;
 double QyCoeff;
};

Where nctrl is the number of element control points,

zctrl is the locations of these points,

elemrhs is the contribution of the element to the RHS, ,
m
α

unit is a 2D array of unit influences, , and
m

nu
phiCoeff (βΦ)
QxCoeff (βQx)
QyCoeff (βQy)

represent the required information from other elements at the
boundary (e.g. for an inhomogeneity, βΦ=2*(k+-K-)/(k++k-), βQx=0,
and βQy=0).

Parse:
 The parsing routine, Parse(), accepts an input stream, line number (the line of the
input file the stream is currently pointing to, the name of the element (which has already
been parsed) and a pointer to the current layer being parsed (the layer in which the
element resides). The routine builds the element based upon the parsed information and
returns a pointer to the element. If an error occurs, the routine returns a NULL pointer or
exits the program gracefully. For an inhomogeneity, the input file command is (as in
Janković, [2000]):

 “Inhomogeneity” [Inhom name] 1
 [conductivity] 2
 [x1] [y1] 3
 [x2] [y2] 4
 …
 [xn] [yn] n+2
 & [precision] {optional} n+3

The parse routine starts at the second line (the first line is parsed in the global parsing
driver) and builds the element until the “&” line is found. At that point, the element
constructor is called and the pointer returned. An important routine used in all of the
parse functions is the routine:

6/10/2003 Bluebird Developer Manual 31

bool TokenizeLine (ifstream &BBD, char **out, int &numwords)

which reads the line in the input file (BBD) and returns an array of words
(*out[])(character strings), as well as the number of words in the line. The function
returns true if the end of the file has been reached.

WriteOutput:

 The final boundary condition-level routine is the WriteOutput() routine, which
writes the output associated with the element to one or more output files. Most elements
write to the file “errors.txt”, which contains the absolute and relative errors along the
elements borders (at control points) in the form [X Y rel_err abs_err]. Additional output
files may be developed at any point, such as the extraction file associated with surface
water features (“extract.txt”). See chapter 3 for a discussion of some existing output files.

Listing of Boundary Condition-level element classes

 A list of the currently implemented BC-level subclasses are shown in table 2.3.3a

Boundary Condition Sub-Classes

Class Name
Parent
Class Represents Generic BC met Special member data

CDischargeWell CPointElem Discharge-specified well Q=Qspec --

CHeadSpecifiedWell CPointElem Head-specified well φ=φspec head,radius

CDryWell CPointElem Drying extraction well Q=Qspec if φ>0 radius

CPtDipole CPointElem Point Dipole σ=σspec --

CVortex CPointElem Point vortex σ=σspec --

CCirInhom CCircleElem Circular inhomogeneity in hydraulic conductivity φ+=φ− k

CCirLake CCircleElem Head-specified circular lake φ=φspec head

CRiver CStringElem Head specified river boundary φ=φspec head at vertices

CStage CStringElem Resistance specified rivers/streams γ(=φabove−φbelow)/c* elevation,thickness,width,kb,c*

CDrain CStringElem Drains (thin high-conductivity inhomogeneities) Qt= -k/kdbd∆Ψ kd, thickness

CLeaky CStringElem Leaky walls (thin low-conductivity inhomogeneities) Qn= -kw/kbw∆Φ kw,thickness

CQSpec CStringElem Discharge specified rivers/surface features γ=γspec specified extraction at vertices

CQnorm CStringElem Normal discharge specified boundaries Qn=Qn spec normal discharge at vertices

CHorWell CStringElem Discharge-specified horizontal wells Q=Q spec,φ=const Q

CInhom CStringElem Polygonal inhomogeneities in conductivity φ+=φ− k

CBaseInhom CStringElem Polygonal inhomogeneities in base and/or thickness φ+=φ− or Qn=0 Base,thickness

CAreaSink CStringElem Multi-quadric area sinks/sources ∇2Φ=γspec leakage/recharge at points (&others)

CConductInhom CAreaSink Multi-quadric inhomogeneity in aquitard conductance γ=c(φabove−φbelow) conductance, pAquitard

6/10/2003 Bluebird Developer Manual 32

2.4 Property Zone Classes

 The property zone classes are abstractions of zones (with different geometry)
within which a property value has been assigned. The property zone classes are used to
represent zones of different:

• Hydraulic conductivity
• Layer Base
• Layer Thickness
• Porosity

If an element is associated with a different property (i.e. an inhomogeneity in
conductivity is associated with a zone of different conductivity), it creates an instance of
a property zone upon construction. These property zones are geometry independent to the
end user (i.e. the Layer doesn’t know if it has circular or polygonal property zones, only
that it has an array of zones).

Each property zone has only two data members: its type (e.g. layer_thickness or
hydraulic_conductivity) and its value (real-valued). The geometry subclasses,
CCirPropZone and CPolyPropZone provide additional functionality associated with
geometry (the most important being the GetValue(z) routine, which returns the zone’s
value if the point z is inside, and the global constant no_value otherwise).

The static function NestedSift provides additional important functionality:

double NestedSift(cmplex &z, CPropZone **pZones, int nzones,
double back_val)

 This function returns the value (i.e. conductivity) at a point z, given an array of
property zones (arbitrary geometry) and a background value. The routine sifts through all
of the property zones and identifies whether the point resides in any of them. If it does,
then the value associated with the zone of smallest area (thus accounting for nesting of
property zones) is returned. If the routine does not find a zone that contains the point, the
background value is returned. This function is often used by container elements to
identify point values of an aquifer attribute. The GetValue() and NestedSift() routines are
greatly optimized for speed, since this routine is called so often.

2.5 Miscellaneous Classes

 The primary miscellaneous classes used by the engine are CParticle, CPathline,
CFlowNode, and CRectGrid

 CParticle

6/10/2003 Bluebird Developer Manual 33

 CPathline
 CFlowNode

CRectGrid

2.6 Global Drivers

 The global routines operate outside of the formal object-oriented class structure,
and work upon the framework described by the Bluebird library. The primary routines
are:

• Parse
• Grid
• Track

Parse:
The global driver Parse takes an input file and builds the entire domain of

elements and particles, assembles information on solution methods and options, identifies
the user requests of the engine, and performs limited error checking on input accuracy.
The input file format, which is identical to that of Split (Janković, [2000]), is read and
processed to build the entire domain.

Calling syntax:

bool Parse(char *filename,
CAquifer *&aq,
CPathline **particles,
int &numpart,

 EngineCommands &eng)

Here, filename is the name of the file, aq is a pointer to the address of an empty

aquifer, particles is an empty array of pointers to particles, and numpart is the number of
particles. The structure eng contains (mostly boolean) information about which actions
the primary driver, main(), must carry out. The EngineCommands structure is as follows:

struct EngineCommands{
 bool solve; //true if solving is on
 bool explicitsolve; //true if explicit solve is on
 bool grid; //true if gridding is on
 bool track; //true if tracking is on
 bool writesol; //true if solution should be written
 bool writeout; //true if output should be written
 bool warm; //true if solve is false
 bool transport; //true if transport is on
 bool transient; //true if transience is on
 bool debug; //true if debug mode on
 int tag; //additional debug info
 window GridWindow; //gridding window
 int GridResolution; //resolution of gridding window
 double outtimes[max_times];//Transient output times

6/10/2003 Bluebird Developer Manual 34

 int nTimes; //Number of transience output times
 double timestep; //timestep of transient calculations
 bool socket; //true if a socket connection should be built
};

Grid:

The Grid() routine grids a set of functions (head, stream function, and leakage) at
a set of points and prints them out to Golden Software Surfer™ ASCII *.grd file. These
grid files may be used to then visualize contour plots. The format for these files may be
found in the Surfer™ help file.

Calling syntax:

void Grid(int layer, const window W, int precision, const CLayer
*pLay, double t,bool debug, ofstream &PROGRESS);

Track:
 The global driver Track, which is actually a static member function of CPathline,
CPathline::TrackAllPathlines() takes an array of pathlines, a tracking duration, and
tracks these pathlines through the flow domain.

 Calling Syntax:

Void TrackAllPathlines(CPathline **Particles,

 const int numpart,
 const double timeperiod,

 ofstream &PROGRESS);

 Where Particles is the array of pathlines, numpart is the array size, timeperiod is
the tracking duration, and PROGRESS is an output file stream for the output of tracking
progress.

6/10/2003 Bluebird Developer Manual 35

3.0. Input/Output Files

 There are multiple input and output files which are not independent of the object-
oriented library (though some output files are created outside of the formal OO
architecture).

Input files
__

Split.dat
The input file structure is identical to Split (Janković [2000]) and the user is referred to
that format for all input with the exception of the following commands:

Dry Well
string "DryWell", string name
double x double y double Qpump double r
&

Base / Thickness Inhomogeneity
string "BaseInhom", string name
double base double thickness
{double x double y}x(numlines+1)
&[int precision]

Inhomogeneity in Conductance
string "ConductInhom", string name
double conductance
{double x double y}x(numlines+1)
&[int precision]

Box of conductivity inhomogeneity cells (random k)
string "BoxOfInhomCells", double xmin, double xmax, double ymin double ymax int nx
double mincond double maxcond

Vortex
string "Vortex" , string name
double x double y double strength
&

Point Dipole
string "Dipole" , string name
double x double y double strength double orientation
&

6/10/2003 Bluebird Developer Manual 36

Circular Lake
string "CirLake", string name
double x double y double elev double radius
& [int precision]
Next Layer
string “NextLayer”
-used to create a new layer. All elements created after this command are assigned to this
new layer.

Aquitard
string Aquitard

-used to create an aquitard beneath the current layer (as dictated by the most recent
command “NextLayer”. Required before adding conductance inhomogeneities of any
type.

Other commands are also available, and will be added to this document as they are
determined to be fully stable.

Stop
If the “stop” file (no extension) is created in the working directory, the engine stops what
it is doing, writes the solution file and turns off.

Output Files
__
Errors.txt
 An x, y, z file of errors along element borders. In the format

 X Y rel_error abs_error
 x1 y1 er1 ea1
 x2 y2 er2 ea2
 . . .

Extract.txt

An x, y, z file of extraction/cumulative extraction and hydraulic connection along
river/lake borders. In the format:

 X Y extraction cum_extraction connect
 x1 y1 ex1 cex1 y/n
 x2 y2 ex2 cex2 y/n
 . . .

Basemap.bna
 An Atlas boundary file of element geometries. See the Surfer™ help file for
format.

6/10/2003 Bluebird Developer Manual 37

Superblock.bna
An Atlas boundary file of superblock geometries. Only the superblocks with
elements contained are shown. See the Surfer™ help file for format.

Solution.bbs
 The solution file, which stores the solved coefficients of all elements associated
with the input file “split.dat”. Format changes dependent upon element type & geometr,
but the general format is:

 Element name
 * c1 c2 c3 c4 c5…cN

where c1-cN are the coefficients of the element.

Code.out, Progress.out, Debug.out
Same as in Split (Janković, [2000]). See manual for details.

6/10/2003 Bluebird Developer Manual 38

4.0 Modifying/Understanding Bluebird

4.1 Adding New Element Boundary Condition Classes

 The procedure for adding new element boundary condition classes is relatively
simple. Just follow the steps below. As an example, we will add the useless (though
realistic) QTangential class, where the tangential flux is specified along a polylinear
boundary.

1) Create new header and source files.

The first step to creating a new element is creating a header (*.h) file and source
(*.cpp) file for the element. For the new CQTang class, we will create the new files
“QTangential.h” and “QTangential.cpp” in the workspace directory. Then, in Microsoft
Visual C++, we will add these to the project workspace by using the “Add files to folder”
options in the “FileView” window. Initially these headers will be completely empty.

2) Give the header a body
The next step to developing a new element is to create a header file for the CQTang class.
The best way to do this is to use a similar class header as a template. The header for our
new class will look something like this:

//QTangential.h

#define QTANG_H
#include "String.h"
#include "BBinclude.h"
/***
 * Class CQTang
 * Analytic Tangential Discharge Specified dipole Element Data Abstraction
 * parents: CAnalyticElem, CStringElem
 ***/

class CQSpec : public CStringElem {
 private:
 double *Qt; //array of tangential discharge at endpoints
 double **Qtctrl; //array of tangential discharges at all control points

 public:
 //Constructor
 CQTang(char *Name,

 const CLayer *pLay,
 const cmplex *points,
 const double *discharge,
 const int NumOfLines);

 ~CQSpec();

 static CQSpec *Parse(ifstream &input, int &l,CLayer *pLay, char * Name);

 //Member Functions (Inherited from CAnalyticElem via CStringElem):
 void SolveItself(double &change, double &objective,const double t);
 void WriteOutput() const;
};

6/10/2003 Bluebird Developer Manual 39

This header reflects the “bare bones” body of a BC-derived subclass. There is no
geometric data here, and no extra accessories. The only data members are the arrays pQt
and Qtctrl, which are required in order to define the boundary conditions of the element.
Notice the inclusion of “String.h” and “bbinclude.h”. They are required for the class to
compile and operate correctly.

3) Fill out the member functions

The next step is actually writing the code. For an element whose geometric class already
exists, you will only have to write the following functions in the file “QTangential.cpp”:

• Constructor
• Destructor
• Parse
• SolveItself
• GetMatrixBuildInfo (optional)
• WriteOutput

Remember to include the line

#include "QTangential.h"

At the top of the source code file (QTangential.cpp). Once again, using a similar
element’s source code as a template is useful. Make sure that any dynamic arrays you
create are destroyed either in the destructor (if they are data members of the class) or in
the local routine in which they are created.

4) Clean up

To insure that the element may be accessed by the global drivers and read from the input
file you must perform the following two tasks:

a) Add the header to the global driver include file, “Bluebird.h”

For our example, this means placing the line

#include "QTangential.h"

 at the top of the file “Bluebird.h”

b) Add the parse routine and parse code to the Parser in “Parse.cpp”

For our example, we first choose an unused element code (code=25) for
the parse command “Qtang” (assuming this is the first word in the parsing
command. We then include this line in the giant if statement at the start of
the Parse Routine:

6/10/2003 Bluebird Developer Manual 40

case(25
 {//Tan
 //str
 //{do
 //&
 thisn
 for(i
 thi
 thi
 }
 cast=
 if (c
 if
 if
 A
 e
 }
 bre
 }
}

else

else

else

c

P

6/10/200
. . .

if ((!strcmp(s[0],"DryWell")) ||
 (!strcmp(s[0],"drywell"))) {code=22; }

if ((!strcmp(s[0],"Qtang")) ||
 (!strcmp(s[0],"Qtangential"))) {code=25; }

if ((!strcmp(s[0],"ConductInhom")) ||
 (!strcmp(s[0],"conductinhom”))) {code=70; }

...
Now the parser will at least recognize the first line in a parsing command.
To make the parser actually parse the command, we must call the
CQTang::Parse() command in the giant switch statement in the file
“Parse.cpp”. Place the following lines at the proper location (i.e. in
numerical order of the code value (25)) in this file.

): //--
gential Discharge Specified Element
ing "Qtang", string name
uble x double y double Qt}x(numlines+1)

ame=strcpy(thisname,blank);
=1; i<Len; i++){
sname=strcat(thisname,s[i]);
sname=strcat(thisname,space);

CQTang::Parse(BBD,l,layer[curlevel],thisname);
ast!=NULL){
(eng.warm){eng.warm=cast->ReadItself(SOLUTION,soltype);}
(!elemdisabled){
llElems[curlevel][elemsparsed[curlevel]]=cast;
lemsparsed[curlevel]++;

ak;

) Additional revisions to global code
If a property zone is associated with the element or other functions must
be called, then additional commands may have to be added in the parse
routine. Some of these are covered in the following examples. If more
difficult elements are to be added, please contact the author at
jrcraig2@acsu.buffalo.edu.

roblem 1: Property zones are associated with the element.

If the element coincides with a variation of conductivity, base, or
thickness, the following lines must be added at the arrow in the preceding
code statement:

3 Bluebird Developer Manual 41

mailto:jrcraig2@acsu.buffalo.edu

 PropZones [curlevel][numpzones [curlevel]]=tmp->GetZone();
 numpzones [curlevel]++;

Where GetZone() is a member function of the new class that returns the
associated property zone. This function must be added as a public member
of the CQTang class (CInhom is a good example of the code behind this).

Problem 2: Static class functions must be called before the element may work

Sometimes general matrices or static member data must be initialized
before the element may actually operate. These functions should be placed
at the bottom of the Parse routine in the “Create and Build System”
section. For example, the function call

 CInhom::SiftThroughInhoms();

Is called after all of the aquifer has been built. This routine sifts through
all of the polygonal inhomogeneity elements looking for repeated sides,
which it then disables.

If your code is in working shape, you should be able to insert an element into the input
file and watch it solve itself. The best way in which to test new elements is to insure the
parsing code works first, then work out the bugs in the SolveItself () and
GetMatrixBuildInfo () code. Notice that, in order to add an element, only two existing
files must be revised- the global driver for parsing input files and it’s include file,
Bluebird.h.

4.2 Adding New Geometric Classes

 Adding new geometric classes, while a little more programming intensive than
adding an element, actually requires fewer revisions to the global code (because the class
is still virtual—an instance of the geometry class is useless). Though the abstractions are
likely to be a bit more challenging (since the element must generalize to any boundary
condition), the procedure for inserting the code into the Bluebird library is quite simple.
For this example, we will use the geometry of an ellipse as the basis for a new geometry
subclass.

1) Create new header and source files.
The first step to creating a new geometric element class is creating a header (*.h) file and
source (*.cpp) file for the element. For the new CEllipseElem class, we will create the
new files “EllipseElem.h” and “EllipseElem.cpp” in the workspace directory. Then, in
Microsoft Visual C++, we will add these to the project workspace by using the “Add files
to folder” options in the “FileView” window. Initially these headers will be completely
empty.

6/10/2003 Bluebird Developer Manual 42

2) Give the header a body
The next step to developing a new element geometry is to create a header file for the
CEllipseElem class. Since geometric classes are so different, using another as a template
may not be helpful. However, there are a few things which belong in all geometric
classes:

• Information which fully describes the geometry (in global coordinates)
• Information which partially describes the geometry (in local coordinates)
• Coefficient information
• A “type flag” which indicates what type of functional structure (e.g.

dipole/linesink/doublet for string elements, well/vortex/dipole for point elements)

This will most likely comprise the complete set of data members for the element. The
private functions likely depend upon the implementation. For an ellipse, like a circular
element, we may see no private functions, only public functions inherited from
CAnalyticElem and simple accessor functions, like GetFoci(). It is important to insert the
following commands at the top of the header file:

#include "BBinclude.h"
#include "AnalyticElem.h"
#include "Layer.h"

3) Fill out the member functions

The next step is actually writing the code. This is much more difficult for a new element
geometry, but it is likely that you’ve already done all of the math and coded it up
elsewhere if you are about to implement it in the library. The following functions need to
be filled:

• Constructor/Destructors
o Constructor (blank)
o Constructor (for inheriting classes)
o Destructor

• Common but optional functions
o SetPrecision (necessary for higher order elements)
o Accessor Functions (e.g. GetFoci, GetRadii for an ellipse class)

• Element Functionality
o GetDischargePotential
o GetW
o GetLeakage
o GetNetDischarge

• Input/Output Functionaity
o WriteItself
o ReadItself
o WriteGeometry

• Geometric Functionality
o Centroid
o IsInside
o IsInSquare

6/10/2003 Bluebird Developer Manual 43

o IsInCircle
o PartInCircle
o GetArea
o SharesNode

• Purely virtual (empty) functions
o WriteOutput
o SolveItself
o GetMatrixBuildInfo

It is likely that most of the Geometric functionality may be found online in highly
optimized c++. However, the other functions will require serious mathematical
manipulation, and may require additional static matrices and functions. Once again,
remember to include the line

#include "CEllipseElem.h"

At the top of the source code file (CEllipseElem.cpp). Make sure that any dynamic arrays
you create are destroyed either in the destructor (if they are data members of the class) or
in the local routine in which they are created.

4) Clean up

To insure that the element may be accessed by the global drivers, used by element
subclasses you must only include the line:

#include "CEllipseElem.h"

at the top of the file “Bluebird.h”. You may additionally need to create some global
constants, such as maximum number of control points for an ellipse, or the maximum
order of an elliptical element. These may be placed in “bbinclude.h”

6/10/2003 Bluebird Developer Manual 44

References:

Booch, G., Object-oriented analysis and design with applications, 2nd ed, Benjamin/Cummings Publishing
Co., Redwood City, CA, 1994

Haitjema, H.M., Analytic Element Modeling of Groundwater Flow, Academic Press, San Diego, 394pp.,
1995

Haitjema H.M. Modeling 3-dimensional flow in confined aquifers by superposition of both two-dimensional
and 3-dimensional analytic functions, Water Resources Research 21 (10): 1557-1566 1985

Janković, I. High Order Analytic Elements in Modeling Groundwater Flow, PhD Diss, Univ. of
Minnesota, 1997

Janković, I. SPLIT: Win32 computer program for analytic-based modeling of single layer groundwater
flow in heterogeneous aquifers with particle tracking, capture-zone delineation, and parameter estimation,
unpublished, http://www.groundwater.buffalo.edu/software/, 2000

Strack, O.D.L., Groundwater Mechanics, Prentice-Hall, New York, 1989

6/10/2003 Bluebird Developer Manual 45

http://www.groundwater.buffalo.edu/software/

Appendix A: Bluebird Algorithm Flow Charts

Bluebird Driver Algorithm Flow Chart (Iterative Algorithm)

W

6

Begin
Change Values, Settings Parse/Create Elements

Parse Input File

Create/Fill Domain, Layers

solve=true
T

F

Solve Element j

j< # elems
T

F

j=j+1

done=false
T

F

j=0

Solve Layer i

Solve Leaky Layer i

i< # layers
T

F

i=i+1

i=i+1

F

T
done=false

Solve Aquifer Get potential, head,
and/or W along
element border

Solve for new
coefficients based
on BCs

Compute change,
Objective function

Update Superblock

F Calculate Potential, Head at Grid of Points

track=true
T

F Track All Particles

i=0

Track Particle i

i < # parts
T

F

i=I+1

Create Grid file for each layer

rite Output Files

Get W from Layer at 4
points (Runge-Kutta)

Move Particle

T
Done=false

F

T
grid=true

End

/10/2003 Bluebird Developer Manual 46

Bluebird Potential/W Request Flow Chart

Ω=0.0

i=0

Superblocks
On

T

F

Layer Requests Potential
from master superblock
at (z, t)

i=0

z is inside
block

T

F

Element, Element container, Function, or user requests
discharge potential from layer at point (z, t)

 Layer Requests Potential

from element i at (z, t)

Ω =Ω + Ωelement i

i=i+1

F

T i< size

Ω =Ω+Ωelement i

i=i+1

T

Fi<size

k=0

Recursive Call

Block is leaf

F

T

z is inside
child block k

T

Layer Requests Potential
from Far Field Element

Re

Ω =Ω+Superblock k Laurent Series

F

Ω =Ω+Ωfarfield
6/10/2003 Bluebird Deve

turn value of Ω or W
Block Requests Potential
from element i at (z, t)
loper Manual

k=k+1

F

T k<4
Ω =Ω+ Master block Laurent Series
47

Appendix B: Coding Conventions

 In order to develop an understandable and continuous code, certain naming
conventions have been maintained throughout the entire library.

Rule #1 – All Classes begin with a captial C (i.e. CAnalyticElem, CRiver, CFlowNode)

Rule #2 – Similar counting operations use the same counter variable. The variables are
tabulated below:

counter Reserved for:

i
Segments within a string
Elements within an aggregate or container
Columns of a matrix

j Rows of a matrix
Terms in a far field expansion

k Inner loops (i.e. matrix multiplies)
Children of a superblock

l Lines of an input file

L Layers within an aquifer

m Control points along a boundary

n,n1,n2 Terms of a polynomial (i.e. Laurent series, jump function)

s Inner loops through terms of a polynomial

Rule #3- All pointers or arrays of pointers to objects begin with the letter p. For example,
each element has a pointer to the layer it is in, pLayer, and the superblock it is in, pBlock.
Likewise, both layers and superblocks have an array of pointers to elements,
pElemArray. This convention does not apply to dynamic arrays of numbers or other
variables, even though they are represented by pointers in c++.

Rule #4-All variables which represent locations in the global coordinate system start with
the lowercase letter z (i.e. z, zctrl, zcen, zp). Local coordinates start with a capital Z (i.e.
Z, ZBH).

Rule #5- All memory is designed to be dynamic, with the exception of some temporary
arrays in the global and element Parsing routines. The sizes of these temporary arrays are
not hard coded, but are constants found in the file bbinclude.h

Rule #6- All input and output streams are written in all capital letters (e.g. ERRORS)

6/10/2003 Bluebird Developer Manual 48

Appendix C: Index of miscellaneous functions

All of these functions are declared in bbinclude.h, and thus accessible by all elements
and all other routines. The element bodies are located in three files: bbinclude.h,
CommonFunctions.cpp, and MatrxSolvers.cpp

Simple mathematical functions
max the maximum of two numbers (implemented for doubles &

integers)
min the minimum of two doubles (implemented for doubles & integers)
oppsign true if the two numbers input to the function are of opposite sign
ipow integer to a power
iabs absolute value of an integer
random(high, low) returns a random number between two endpoints
root solves the quadratic equation for real roots

Zm1oZp1(cmplex Z) an optimized version of the commonly used expression:

1
1

−
+

=
Z
ZX

Outside calculates a complex Laurent series with complex coefficients
OutsideRe calculates a complex Laurent series with real coefficients
OutsideW calculates the derivative of a complex Laurent series with complex

coefficients with respect to z
OutsideWRe calculates the derivative of a complex Laurent series with real

coefficients with respect to z
Inside calculates a complex power series with complex coefficients
InsideW calculates the derivative of a complex power series with complex

coefficients with respect to z

Simple String manipulation functions
s_to_i converts a character string to an integer
s_to_d converts a character string to an double precision floating point

number
s_to_c converts two character strings to a double precision complex

number
Countwords counts the number of words in a space delimited character string
TokenizeLine breaks a space-delimited character string obtained from an input

file up into an array of words. Returns the array and number of
words

Geometric Functions

Insquare returns true if a given point is within a square oriented with the
global coordinate system

6/10/2003 Bluebird Developer Manual 49

Girinskii Potential
IsConfined Returns true if the layer is confined at a point with provided

potential, thickness, and conductivity
ConvertToHead Converts potential to head
ConvertToPotential Converts head to potential
GetTransmissivity Calculates transmissivity

Global Important functions
GlobalDelete Deletes all global dynamic arrays (the important ones).
ExitGracefully Exits with a statement printed to the screen and the file code.out.

Calls Global Delete. Should be put at tests in the code that
otherwise might cause a run-time error.

SetPrecision essentially a hash table routine- enter the precision level and the
type of element and get out the order and over specification fold

Matrix Manipulation Functions/Solvers

MatMult Multiplies a Matrix (or its transpose) times a vector
Gauss Solves the problem Ax=b using gauss elimination
PCG Solves the problem Ax=b using a specified type of descent

algorithm (i.e. conjugate gradient method)
ThomasAlgorithm Solves the problem Ax=b (where A is tridiagonal matrix) using the

thomas algorithm

6/10/2003 Bluebird Developer Manual 50

6/10/2003 Bluebird Developer Manual 51

Appendix D: Glossary of Terms

	Bluebird Developer Manual
	
	
	
	
	
	Author: James Craig

	Table of Contents
	1.0 Introduction
	1.1 The 2-D Analytic Element method
	1.2 Bluebird Scope and Current Capabilities
	Design Assumptions

	1.3 Object-Orientation and AEM
	Coupling
	Cohesion
	Sufficiency and Completeness
	Primitiveness

	2.0 Code Organization
	2.1 Overview
	Awareness

	2.2Container Classes
	2.2.1The Layer Class: CLayer
	CLayer Data Structures
	CLayer Functions
	Use of CLayer

	2.2.2The Aquitard Class: CAquitard
	Use of CAquitard

	2.2.3The Aquifer Class: CAquifer
	2.2.4The Superblock Class: CSuperblock
	2.3 Element Classes & Subclasses
	2.3.1The Generic Analytic Element Class: CAnalyticElem
	
	
	The Inheritance Structure
	Virtual Status
	Element Awareness
	Data Members
	Member Functions

	Modeling/Behavioral Functionality___
	Input/Output Functionality__
	General Geometric Functionality___

	2.3.2Geometric Element Subclasses
	The Point Element Class: CPointElem
	
	CPointElem Data Members
	CPointElem Member Functions
	Get Potential, Get W, and Get Net Discharge

	The Circular Element Class: CCircleElem
	
	CCircleElem Data Members
	CCircleElem Geometric Abstraction
	CCircleElem Member Functions
	Get Potential, Get W, and Get Net Discharge
	SolveItself

	The Polyline/Polygon Element Class: CStringElem
	
	CStringElem Data Members
	CStringElem Non-Inherited Member Functions
	CStringElem Inherited Member Functions
	Get Potential, Get W, and Get Net Discharge

	The Far Field Element Class: CFarField
	
	CFarField Data Members
	CFarField Member Functions
	Get Potential, Get W, and Get Net Discharge
	Solve Itself

	2.3.3Boundary Condition Element Subclasses
	
	
	Listing of Boundary Condition-level element classes
	
	
	Boundary Condition Sub-Classes

	2.4Property Zone Classes
	2.5 Miscellaneous Classes
	2.6Global Drivers

	3.0. Input/Output Files
	
	Input files
	
	Split.dat
	Dry Well
	Base / Thickness Inhomogeneity
	Inhomogeneity in Conductance
	Vortex
	Point Dipole
	Circular Lake
	Next Layer
	Aquitard
	Stop

	Output Files
	
	Errors.txt
	Basemap.bna
	Superblock.bna
	Solution.bbs
	Code.out, Progress.out, Debug.out

	4.0 Modifying/Understanding Bluebird
	4.1 Adding New Element Boundary Condition Classes
	4.2 Adding New Geometric Classes

	(References:
	Appendix A: Bluebird Algorithm Flow Charts
	
	Bluebird Driver Algorithm Flow Chart (Iterative Algorithm)
	Bluebird Potential/W Request Flow Chart

	Appendix B: Coding Conventions
	Appendix C: Index of miscellaneous functions
	
	Simple mathematical functions
	Simple String manipulation functions
	Geometric Functions
	Girinskii Potential
	Global Important functions
	Matrix Manipulation Functions/Solvers

	Appendix D: Glossary of Terms

