
1

The Analytic Element Method

ES 661: 
Analytical Methods in Hydrogeology

James Craig

Analytic Element Method
• Alternative numerical method 

based upon the superposition of 
simple analytical solutions
– Grid-independent

• Discretizes external and internal 
system boundaries, not entire 
domain

– Models limited by amount of detail 
included, not by spatial extent

– Exact solution to governing PDE
– Approximate only in how well BCs

are satisfied

FD

AEM
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Analytic Element Method

• Based upon superposition of “element” functions
– Each element corresponds to a hydrogeologic feature 
– Each element automatically meets governing equations 

everywhere – exactly!
– Adjustable (unknown) element coefficients are calculated such 

that boundary conditions are met
• Solution quality is scale independent

– No grid/mesh, no worries
• Current major limitations:

– Heterogeneity: exact, but computationally expensive
– Transience: computationally expensive and limited
– 3D Unconfined: the phreatic surface is a tough nut to crack 
– 3D Multilayer (we’re working on it ☺)

Analytic Element Method: History

• Developed by Otto Strack (U. Minnesota), ~ 1980s
– Groundwater Mechanics, 1989

• Popularized by Henk Haitjema (Indiana U.) 
– Modeling with the Analytic Element Method, 1995, 

Academic Press
– EPA’s WhAEM

• Key developments 
– Surface water interactions (Haitjema and others)
– Multilayer/Transience (Bakker and Strack and others)
– Computational improvements (Jankovic, Barnes, Strack, 

and others)
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AEM: Premise

• For any linear PDE, we can superimpose 
multiple individual solutions to obtain one (often 
very large) solution for the problem at hand
– Laplace Equation (∇2Φ=0)
– Poisson Equation (∇2Φ=-N)
– Helmholtz Equation (∇2Φ= Φ/λ2)
– Matrix Helmholtz Equation ∇2{Φ}= [A]{Φ}
– Diffusion Equation (∇2Φ= 1/α ∂Φ/∂t)
– …

Governing Equations
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Governing Equations

• 2D Governing equation for GW Flow:

• Where
– h = Hydraulic head [L]
– N = Vertical influx (Rech. or Leakage) [L/T]
– b = Saturated Thickness [L] (h-B or just H)
– S = Storage Coeff.[-]

Qx=qxb Qy=qyb

Assumptions
• Dupuit-Forcheimer assumption 

– Required to move from 3DÆ2D
– Head may be represented by its average value in the 

vertical direction / vertical gradients in head are 
negligible (dh/dx≈0)

– Resistance to flow is negligible in the vertical direction 
(i.e., kz≈∞)

– qz calculated from mass balance in vertical, rather 
than by using Darcy’s law (Strack, 1984)

– Appropriate for systems with much greater horizontal 
than vertical extent
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Dupuit-Forcheimer

Fully 3D 
system

2D D-F 
system

Average heads in vertical direction are the same

Vertical distribution of heads is lost

Water balance is still conserved! (in fact, Qx/Qy are still exact)

Governing Equations

• By assuming 
– isotropy (k=kx=ky)

– homogeneity (k, H, and B are piecewise constant) 

• we can define a discharge potential:

Confined

Unconfined
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Discharge Potential

• The discharge potential is the 
antiderivative of the integrated discharge

• i.e., if we know Φ (and k,H,B) we can 
backcalculate h, Qx, Qy

Integrated Discharge

> >

h
xQ  = xq hQ  =x qxH

Hh=H

unconfined zoneconfined zone

z
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Simplifying things

• Using the discharge potential, we can 
rewrite our governing equation

• Focus on steady-state (for now)

Analytic Elements
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Analytic Elements
• Because our governing equation is linear, we may 

superimpose ANY particular analytical solutions to get at 
a global solution

• These particular solutions are “elements”, which 
generally correspond to hydrogeologic features
– Pumping wells
– Rivers/Lakes/Streams
– Inhomogeneities in K, B, H

• Each element satisfies the governing equation by design 
and has adjustable coefficients which can be used to 
satisfy boundary conditions along its border

• Calculating the appropriate coefficient values is where 
the numerical part comes in

Standard Analytic Elements

Well River Lake Recharge

Inhomogeneity

Elementary solutions 
superimposed to obtain complete 

description of flow system...
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Superposition Mathematics

Laplacian of a sum of potentials equals the sum of Laplacians of individual potentials

Therefore, we can write our global solution as: 

(Assuming all of the Φ(x,y) functions satisfy 
the Laplace equation)

Complex Potential
• Most of our 2D SS analytic elements are actually 

expressed in terms of a complex potential, Ω(z):

Where z=x+iy (i=√-1)

• This is because ANY infinitely differentiable (a.k.a. 
analytic) complex function instantly has real and 
imaginary parts that both satisfy the Laplace equation, 
by definition- if we start with any analytic function, we are 
halfway to our goal
– These simple functions are our “building blocks”
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Stream Function, Ψ
• Imaginary part of complex potential, Ω
• Defined only if N=0 (no recharge, no leakage)
• Constant along streamlines
• Difference in Ψ between streamlines equals 

flow between streamlines

Complex Discharge, W

• Just an expression for the discharge in 
terms of complex functions
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Simplest Elements

• The Global Constant,  C
• Uniform Flow
• Wells
• Linesinks
• Line doublets

The global constant, Φ0=C
• The “baseline” of our model

– If there are no forcing functions in our model (i.e., 
wells, rivers, etc.), it is the potential everywhere in the 
domain.

• It is usually calculated by specifying the head at 
a distant point (the “reference point”)

• Mathematical necessity- essentially specifies the 
boundary condition at infinity (AEM works with 
an infinite model domain)

h=hspec
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Global constant, Φ0

Model area
φ0

No effect in a well bounded model (i.e., modeled domain is not infinite):

Head-specified model boundaries (e.g., rivers) extract more to compensate

φ0

φ0

Uniform Flow

• Used to represent influence of distant 
features not included in model

h=hspec
QoÆ

UnconfinedConfined

h=hspecQoÆ

z=zref

Qo

α

Qx Qy
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Point Sink

• The steady-state influence of extraction at a 
point

• a.k.a. the Thiem solution for a well

• The basis for many of our standard elements –
the function ln(|z|)/2π is actually the Green’s 
function for the Laplace equation

Complex Potential Due to a Well

Qw =Extraction Rate [L3/T]
z  =x+iy =Location where Ω is evaluated
zw=xw+iyw =Location of well
r  =|z-zw| =√[(x-xw)2+(y-yw)2]
θ =arg(z-zw) =arctan(y-yw/x-xw)

r

θθ = π

θ = −π

plan view



14

Potential Due to a Well

Element: River

head distributions along the 
river specified (using digital 
elevation maps)

Dirichlet (specified head) condition:

Simulated using “Linesinks”: 

distributed extraction along river 
represented as a function of 
distance along the river

Extraction calculated so specified 
head is obtained
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- - - - - -

without line sink

with line sink

Linesink

Well Strength

Distance along the river

Specified head distribution

• Well strength is represented 
using continuous functions with 
unknown coefficients 

• Coefficients are computed from  
specified head distribution

• Integrated distribution of well 
strength gives baseflow to the 
river

Linesink

• N evenly spaced wells of pumping rate Qn
may be superimposed to get:

• Taking the limit as NÆ∞,

z1(X=0)

z2(X=1)

L

This integral can be evaluated 
analytically if the distributed pumping 
rate, µ(X), is a polynomial

zw(X=0.7)
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Linesink: Uniform Strength

• If µ(X)=σ (constant), then we get a basic 
linesink:

• σ can be calculated to meet a specified head at 
one point along the line (collocation) or 
calculated to meet a specified in the best 
manner possible at many points (least squares)

Where

z1

z2

X=-1 X=1

Y

Linesink: Arbitrary Strength
• If µ(X) is an arbitrary function (usually a polynomial), 

then we get a high-order linesink:

• Here, q(Z) is used to ensure that the influence of the 
linesink dies off as 1/r in the distance (for numerical 
stability)- it is directly calculated from µ(X)

• We can calculate the coefficients of µ(X) to best meet 
our desired boundary condition
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Rivers: Head specified

φ0φspec1 φspec2

Qext

Extracts enough water along boundary to 
meet head specified conditions

Example: Head-specified element
Without well or river

With well; no river

Desired head along river

River adds/removes enough 
water along its border to meet 
specified head boundary 
conditions
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Boundary Condition: Change in 
Conductivity

high conductivity zone

low conductivity zone

Head and flow (normal 
component of discharge 
vector) continuous across 
interface

Analytic Element: Line Doublet

high conductivity zone

low conductivity zone

same on both sidesjumps across interface

- - - - - - - - - - - - - - - - - - - -

point doublet Two linesinks with 
opposite extraction 
rates

-Net extraction=0

High K

Low K ∆Φ
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Analytic Element: Line Doublet

- - - - - - - - - - - - - - - - - - - -
• Doublet strength is represented 
using continuous functions with 
unknown coefficients 

• Coefficients are computed by 
enforcing head continuity 

• Total amount of water added to 
(or extracted from) the aquifer is 
always zero

Strength, ∆Φ

Distance along the segment

Inhomogeneities: Higher K zone

Changing K creates discontinuity in head 
(Φ from other elements is continuous by definition)

φ0
K- K+

K+

With element to 
compensate for jump in head

φ0
K- K+

K+

Without element to 
compensate for jump in head

+  -
- + 

Notice slight curvature- higher gradient on 
boundary, lower gradient inside
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Inhomogeneities: Lower K zone

φ0
K- K+

K+

With element to 
compensate for jump in head

φ0
K- K+

K+

Without element to 
compensate for jump in head

+  -
- + 

Notice slight curvature- lower gradient on 
boundary, higher inside

Law of Refraction

K+

K-

α-

α+

streamline
Normal component of flux 
continuous across change 
in conductivity

Tangential component 
changes

Change in ratio Qn/Qt (and 
thus streamline angle) 
proportional to change in K

−

−

+

+

=
KK

αα tantan
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Example: Inhomogeneity
Highly conductive

Impermeable

Kin/Kout=10

Kin/Kout=2

Kin=Kout

Kin/Kout=0.5

Kin/Kout=0.1

Uniform Flow

Inhomogeneity bends 
streamlines along its border in 
order to meet law of refraction

This is the same as trying to 
meet a jump in potential to 
preserve continuity of head

Area Sinks

• Satisfies Poisson equation inside (i.e., 
N≠0) polygon or circle, and Laplace 
Equation outside
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Circular Area Sink

• Simplest Case – radial symmetry

• Basic solution:
inside outside

3 unknowns, 2 eqns :
continuity of potential/head at r=R

Conservation of Net flux (2πA=-NπR2)

+D +D

D is “folded into” global constant

R

Circular Area Sink in Uniform Flow

Branch cut 
(from log 
term) Stream 

function 
undefined
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AEM: Solution Method
• All of the AEM elements have adjustable 

coefficients
• For each coefficient we can write an equation to

– Meet a boundary condition at a point or
– Meet a boundary condition in the best manner at a set 

of points (least-squares)
• This results in a fully-populated system of 

equations
– Potential at any point is determined by the sum of all 

potential functions
– Each equation includes all unknown coefficients

AEM Software

• Freeware
– Visual Bluebird (soon to be Visual AEM)

• http://www.groundwater.buffalo.edu/software/

– WhAEM (US EPA)
– TimML (UGA)

• $
– MLAEM/SLAEM (Otto Strack)
– GFlow
– TwoDAN
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Advanced AEM:
Hot Research Topics

AEM for Resistance Elements

H

h

k

kb

h*
tb

c=kb/tb
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AEM for 3D flow
• The Laplace equation is still valid in 3D, except in terms 

of a specific discharge potential (a.k.a. velocity potential) 

• Φ=khÆ

• A major problem is that our system is not infinite in 3 
dimensions
– Phreatic surface
– Confining layer

AEM for 3D Flow

• We have point sinks, line sinks, and 
ellipsoidal “doublets” (inhomogeneities), 
but we don’t have the solution for an 
arbitrary panel (i.e., a 3D triangular 
doublet/sink)

• Limits the applicability to unconfined 
systems
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AEM for 3D Flow

• Phreatic surface generated using “image” sinks

AEM for 3D Flow
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AEM for Multilayer Aquifers

• Most work done by Mark Bakker at UGA
• Based upon theories proposed by Hemker 

(1984)
• Bakker & Strack (Journal of Hydrology 2003)

AEM for Multilayer Aquifers

• Governing Matrix Differential equation 
(Helmholtz) – D-F Assumption in each layer

A is tridiagonal
matrix which 
handles the 
“communication”
between layers
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AEM for Multilayer Aquifers

• Solved using eigenmethods, general 
solution given as:

• Where tau is the transmissivity vector

• And νm are the eigenvectors of A
T is the comprehensive transmissivity

AEM for Multilayer Aquifers
• Solution for Well (Bakker, 2001)

• Most solutions expressed in terms of Bessel and 
Mathieu functions 

• Available from TimML webpage

Where Amare obtained from the 
following system of equations

Standard 2D SS solution Redistributes head 
between layers



29

AEM for 3D Multilayer Aquifers

• A different approach: 
Series solution methods 
on finite domains

From Read and Volker, WRR 1996

From Wörman et al., GRL 2006

From Craig, AGU 2006

AEM for 3D Multilayer aquifers
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AEM for Transient Systems
• Introduced  by Furman and Neuman (2004)
• Governing Equation

• Where

• This can be solved in Laplace Transformed domain as 
the Helmholtz eqn. and numerically inverted

Æ

AEM for Transient Aquifer Systems

• The LT-AEM currently has a small (but 
growing) library of elements
– Wells
– Circular and Elliptical elements
– Linesinks (from degenerate ellipses)

• Kuhlman, 2006 (personal comm.)

• Limited to confined conditions
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AEM for Smoothly Heterogeneous 
Aquifers? 

• ln k represented by radial basis functions
• If              , where                 :

• Or (via Bers-Vekua theory):

' lnY κ= 2k kκ= ⋅


