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Analytic Element Method

+ Alternative numerical method
based upon the superposition of
simple analytical solutions i : D

— Grid-independent
» Discretizes external and internal
system boundaries, not entire
domain
— Models limited by amount of detail
included, not by spatial extent
— Exact solution to governing PDE AEM

— Approximate only in how well BCs
are satisfied




Analytic Element Method

» Based upon superposition of “element” functions
— Each element corresponds to a hydrogeologic feature
— Each element automatically meets governing equations
everywhere — exactly!
— Adjustable (unknown) element coefficients are calculated such
that boundary conditions are met
» Solution quality is scale independent
— No grid/mesh, no worries
» Current major limitations:
— Heterogeneity: exact, but computationally expensive
— Transience: computationally expensive and limited
— 3D Unconfined: the phreatic surface is a tough nut to crack
— 3D Multilayer (we’re working on it ©)

Analytic Element Method: History

» Developed by Otto Strack (U. Minnesota), ~ 1980s
— Groundwater Mechanics, 1989
» Popularized by Henk Haitjiema (Indiana U.)

— Modeling with the Analytic Element Method, 1995,
Academic Press

— EPA’s WhAEM
+ Key developments
— Surface water interactions (Haitjema and others)
— Multilayer/Transience (Bakker and Strack and others)

— Computational improvements (Jankovic, Barnes, Strack,
and others)




AEM: Premise

* For any linear PDE, we can superimpose
multiple individual solutions to obtain one (often
very large) solution for the problem at hand

— Laplace Equation (V2®=0)

— Poisson Equation (V2®=-N)

— Helmholtz Equation (V2d= ®/A?)

— Matrix Helmholtz Equation V{®}= [A}{®}
— Diffusion Equation (V2®= 1/a 0D/ot)

Governing Equations




Governing Equations

» 2D Governing equation for GW Flow:
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* Where

— h = Hydraulic head [L]

— N = Vertical influx (Rech. or Leakage) [L/T]
— b = Saturated Thickness [L] (h-B or just H)
— S = Storage Coeff.[-]
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Assumptions

* Dupuit-Forcheimer assumption
— Required to move from 3D->2D

— Head may be represented by its average value in the
vertical direction / vertical gradients in head are

negligible (dh/dx~0)

— Resistance to flow is negligible in the vertical direction

(i.e., k)

— q, calculated from mass balance in vertical, rather
than by using Darcy’s law (Strack, 1984)

— Appropriate for systems with much greater horizontal

than vertical extent




Dupuit-Forcheimer
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Average heads in vertical direction are the same
Vertical distribution of heads is lost

Water balance is still conserved! (in fact, Q,/Q, are still exact)

Governing Equations

« By assuming

— isotropy (k=k,=k,)

— homogeneity (k, H, and B are piecewise constant)
« we can define a discharge potential:

®=kHh—3kH* (b> H) Confined
i) :%k‘hz (b < H) Unconfined




Discharge Potential

* The discharge potential is the
antiderivative of the integrated discharge

Ob O
O a7 Qy = _d_y

* i.e., if we know @ (and k,H,B) we can
backcalculate h, Qx, Qy

Integrated Discharge
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Simplifying things

» Using the discharge potential, we can
rewrite our governing equation

D*P

A2
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+ (‘ 5 = Vz(I) = —N +
dy- ¢

* Focus on steady-state (for now)

Analytic Elements




Analytic Elements

« Because our governing equation is linear, we may
superimpose ANY particular analytical solutions to get at
a global solution

» These particular solutions are “elements”, which
generally correspond to hydrogeologic features
— Pumping wells
— Rivers/Lakes/Streams
— Inhomogeneities in K, B, H

« Each element satisfies the governing equation by design
and has adjustable coefficients which can be used to
satisfy boundary conditions along its border

+ Calculating the appropriate coefficient values is where
the numerical part comes in

Standard Analytic Elements
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Lake Recharge

River

Elementary solutions
superimposed to obtain complete
description of flow system...

Inhomogeneity




Superposition Mathematics

Dy + D) | Dy +Dy)
ox2 dy? -

02d, N 0%, N 02D, N 02d,
ox2 oy? dx2 oyl

Laplacian of a sum of potentials equals the sum of Laplacians of individual potentials

Therefore, we can write our global solution as:

(I)(-T-- y) = (I)weh’(l’- 'y) + Priver (T y) + Prake + ...+ C

(Assuming all of the @(x,y) functions satisfy
the Laplace equation)

Complex Potential

* Most of our 2D SS analytic elements are actually
expressed in terms of a complex potential, Q(z):

Q(z)=D(2)+i¥Y(z)
Where z=x+iy (i=V-1)

» This is because ANY infinitely differentiable (a.k.a.
analytic) complex function instantly has real and
imaginary parts that both satisfy the Laplace equation,
by definition- if we start with any analytic function, we are
halfway to our goal

— These simple functions are our “building blocks”

N N N
a aln(z) Z a,z" z a,z”" z ae” .-
n=0 n=0

n=0




Stream Function, ¥

Imaginary part of complex potential, Q
Defined only if N=0 (no recharge, no leakage)
Constant along streamlines

Difference in ¥ between streamlines equals
flow between streamlines

2?0 D _ *y oty

— — +—= =0
oz dy? oxz | oy

Complex Discharge, W

 Just an expression for the discharge in

terms of complex functions
0

W = _K =Q, — 'F'Qy




Simplest Elements

The Global Constant, C
Uniform Flow

Wells

Linesinks

Line doublets

The global constant, ®,=C

The “baseline” of our model

— If there are no forcing functions in our model (i.e.,
wells, rivers, etc.), it is the potential everywhere in the
domain.

It is usually calculated by specifying the head at

a distant point (the “reference point”)

Mathematical necessity- essentially specifies the
boundary condition at infinity (AEM works with
an infinite model domain)

h

h

spec




Global constant, @
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Head-specified model boundaries (e.g., rivers) extract more to compensate

Uniform Flow

» Used to represent influence of distant
features not included in model

S!uf(‘,) = 7Q“(‘z _ ‘:Wf‘)',_‘éc\
QO
1T’u‘f{:) - (.;)(J(:éﬂ r
= (Queosa) —i(—CQysinaw)
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Q Q,
Confined Unconfined
MW
Qo~> h=h, pec Qo~> h=hspeo

Z=Zref




Point Sink

» The steady-state influence of extraction at a
point
 a.k.a. the Thiem solution for a well

Qui(2) %ln(z — Zw)

:27r

» The basis for many of our standard elements —
the function In(|z|)/2r is actually the Green’s
function for the Laplace equation

Complex Potential Due to a Well

plan view r
Qu 0= 0
R6:71t
Quw
Bua(z) = %z (r)

" Q, =Extraction Rate [L3/T]

o z =xtiy =Location where Q is evaluated
wi(z) = 220 Z,=X, iy, =Location of well
27 r =lz-z,| =VI(X, 2+ (YY)
6 =arg(z-z,) =arctan(y-y,/x-x,,)




Potential Due to a Well

Element: River

head distributions along the
river specified (using digital
elevation maps)

Dirichlet (specified head) condition:

Simulated using “Linesinks”:

distributed extraction along river
represented as a function of
distance along the river

Extraction calculated so specified
head is obtained




Linesink

~ without line sink

~ y Specified head distribution

» Well strength is represented
using continuous functions with
unknown coefficients

S e DR + Coefficients are computed from
specified head distribution

* Integrated distribution of well
strength gives baseflow to the
river

Distance along the river

Linesink

* N evenly spaced wells of pumping rate Qn
may be superimposed to get:

N -
Cp)n 1. r
B nzzl o 1z~ R (FL'))) 2w(X) =21+ %(22 — 1)
 Taking the limit as N>, x=1)
Q(z) = f#i(zif)f'f?-(z - Zw(X))d)( L \z (X=0.7)
/ (X=0.

This integral can be evaluated
analytically if the distributed pumping
rate, u(X), is a polynomial z,(X=0)




Linesink: Uniform Strength

 If u(X)=c (constant), then we get a basic y

linesink:
] al Z
Q(z):?[(Z+1)111(Z+1)—(Z—1)111(Z—1)} v
205+ D)
Where Z=X+iV =—F1—— X=1

0.5(%+ 2)

* o can be calculated to meet a specified head at
one point along the line (collocation) or
calculated to meet a specified in the best
manner possible at many points (least squares)

2

Linesink: Arbitrary Strength

« If u(X) is an arbitrary function (usually a polynomial),
then we get a high-order linesink:

1 _

27 2m

2T

Ve(Z) = — (,_r(Z)z-n;+ i + q(Z)) )z B Yz 401y

» Here, q(2) is used to ensure that the influence of the
linesink dies off as 1/r in the distance (for numerical
stability)- it is directly calculated from p(X)

* We can calculate the coefficients of u(X) to best meet
our desired boundary condition




Rivers: Head specified

Qext

¢spec1 q)
spec2

Extracts enough water along boundary to
meet head specified conditions

Example: Head-specified element

Without well or river

With well; no river

Desired head along river

River adds/removes enough
water along its border to meet
specified head boundary
conditions




Boundary Condition: Change in
Conductivity

high conductivity zone Head and flow (normal

component of discharge
vector) continuous across
interface

low conductivity zone

Analytic Element: Line Doublet

Two linesinks with
opposite extraction
rates

point doublet
high conductivity zone

OO0 ODOODODODO O
CNCXCNC)

CEEOEOLOLEON -Net extraction=0

low conductivity zone
@ A

High K
2 Low K |A®

jumps across interface  same on both sides




Analytic Element: Line Doublet

* Doublet strength is represented
using continuous functions with
unknown coefficients

+ Coefficients are computed by

Strength, A®
enforcing head continuity

Distance along the segment * Total amount of water added to
(or extracted from) the aquifer is

always zero

Inhomogeneities: Higher K zone
; Without element to

\ . compensate for jump in head

K+ -

—> K- -t ke
do

Changing K creates discontinuity in head
(@ from other elements is continuous by definition)

With element to
compensate for jump in head

Notice slight curvature- higher gradient on
boundary, lower gradient inside




Inhomogeneities: Lower K zone

Without element to
compensate for jump in head

I:>K+ \\I\

With element to
compensate for jump in head

K+ b0

Notice slight curvature- lower gradient on
boundary, higher inside

Law of Refraction

streamline —
Normal component of flux
continuous across change
in conductivity

Tangential component
changes

Change in ratio Q,/Q, (and
thus streamline angle)
proportional to change in K

tana™ tana”
K* K~




Example Inhomogenelty

A Highly conductive
Kin/Kout=10
Kin/Kout=2
Kin=Kout
Kin/Kout=0.5
Kin/Kout=0.1

Y Impermeable

R —_ L/ Inhomogeneity bends
Sne /WS 7| streamlines along its border in
T N/ 4 order to meet law of refraction

This is the same as trying to
meet a jump in potential to
preserve continuity of head

Area Sinks

 Satisfies Poisson equation inside (i.e.,
N=0) polygon or circle, and Laplace
Equation outside




Circular Area Sink

« Simplest Case — radial symmetry

0o 108 o L
2 ror or? rar
e Basic solution:
outside

inside
P = 7%;\777.? +C O =Aln(r)+ B
3 unknowns, 2 eqns :
continuity of potential/head at r=R
Conservation of Net flux (2rA=-NnR?)

® = —IN[* — R*]+D & = —INR*In(r/R)+D

D is “folded into” global constant

Circular Area Sink in Uniform Flow

Branch cut

(from log ' el i
term) N "y 7= Stream

)y S S A function
e / : undefined




AEM: Solution Method

+ All of the AEM elements have adjustable
coefficients

» For each coefficient we can write an equation to
— Meet a boundary condition at a point or
— Meet a boundary condition in the best manner at a set

of points (least-squares)

* This results in a fully-populated system of

equations

— Potential at any point is determined by the sum of all
potential functions

— Each equation includes all unknown coefficients

AEM Software

* Freeware
— Visual Bluebird (soon to be Visual AEM)

 http://www.groundwater.buffalo.edu/software/

— WhAEM (US EPA)
— TimML (UGA)
« 9
— MLAEM/SLAEM (Otto Strack)
— GFlow
— TwoDAN




Advanced AEM:
Hot Research Topics

AEM for Resistance Elements




AEM for 3D flow

* The Laplace equation is still valid in 3D, except in terms
of a specific discharge potential (a.k.a. velocity potential)

o ]_Uh a !__(f)h. %) ,I-Oh' _0
de \ " ox + oy \ Dy + dy \ 0z )]

+ ®d=kh->
Pd PP 90 _
Or2  dy? 022
* A maijor problem is that our system is not infinite in 3
dimensions

— Phreatic surface
— Confining layer

AEM for 3D Flow

* We have point sinks, line sinks, and
ellipsoidal “doublets” (inhomogeneities),
but we don’t have the solution for an
arbitrary panel (i.e., a 3D triangular
doublet/sink)

« Limits the applicability to unconfined
systems




AEM for 3D Flow

» Phreatic surface generated using “image” sinks

3-D surface o o = point sinks
Dupuit-Forchheimer o

.............. surface R
streamlines

AEM for 3D Flow




AEM for Multilayer Aquifers

* Most work done by Mark Bakker at UGA

» Based upon theories proposed by Hemker
(1984)

» Bakker & Strack (Journal of Hydrology 2003)

[ ~ oy layes 1 =
= redmen) T-mooooo
Aguer | Q- — —
[y
Aguter 2 T
[t
Agte u
"I.'l-.-r-l;y'll-l """ L= —
< (moemsatia) SEemmt— }

AEM for Multilayer Aquifers

» Governing Matrix Differential equation
(Helmholtz) — D-F Assumption in each layer

resistance ; top
b, = EpnHplu e

aquifer layer 1

N

2 —
\— C|}” - Z Aruncl)m
m

1 1

Aun = P PR

Ay = —We, T, ),

Appir = —1cu 11Ty 1)

n=1,..., N,

A is tridiagonal
matrix which
handles the
“communication”
between layers

2

g‘zl.
e [




AEM for Multilayer Aquifers

» Solved using eigenmethods, general
solution given as:

M—1

b= 7+ Y D, Vo, =0 VO, =/,
m=1

* Where tau is the transmissivity vector
= # T is the comprehensive transmissivity

« And v, are the eigenvectors of A

-

AEM for Multilayer Aquifers

» Solution for Well (Bakker, 2001)

- 0 | Ml Ay o
&= Eln(i‘ T+ Z EK{)(“’AHJ Y

m=1

Standard 2D SS solution Redistributes head
between layers
Where A _are obtained from the
following system of equations
M-1

z Aplym =07, p=1...1 M. p#P
m=1

Most solutions expressed in terms of Bessel and
Mathieu functions

Available from TimML webpage




AEM for 3D Multllayer Aqwfers

From Craig, AGU 2006

+ A different approach:
Series solution methods
on finite domains

Altitude (m)

From Read and Volker, WRR 1996

Depth (m)

From Wérman et al., GRL 2006 !

AEM for 3D Multilayer aquifers




AEM for Transient Systems

* Introduced by Furman and Neuman (2004)
» Governing Equation
a0y T e dr? Oy a Ot

 Where

o J[l.
$ = kh = K

» This can be solved in Laplace Transformed domain as
the Helmholtz eqn. and numerically inverted

AEM for Transient Aquifer Systems

* The LT-AEM currently has a small (but
growing) library of elements
— Wells
— Circular and Elliptical elements
— Linesinks (from degenerate ellipses)
* Kuhlman, 2006 (personal comm.)

e Limited to confined conditions




AEM for Smoothly Heterogeneous
Aquifers?

* In k represented by radial basis functions

« If Y'=Ink, where k=«"-k

aY'od oY’ od

&
=P =
v Jr Or * Jdy Oy

* Or (via Bers-Vekua theory):
ow  9Y’ B

= —W

Jz 0z

9 .9
w=~r"d+ix WV




