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Abstract

A new approach to modeling reactive contaminant transport in groundwater is developed and

evaluated. The approach is unique in that it uses a grid- or mesh-independent representation

of model input parameters, including continuous velocities, dispersion coefficients, and saturated

thickness values obtained directly from analytic element groundwater flow solutions.

The approach is realized within a suite of revised finite element, finite difference, and charac-

teristic methods that are designed to improve the accuracy and reduce the computational costs of

complex reactive vertically-averaged transport simulations in surficial aquifers. These methods are

implemented in a fully object-oriented parallel-friendly software framework, benchmarked against

existing analytic and numerical solutions, tested against traditional discrete methods, and applied

to a set of difficult field-scale test problems.

It was found that the majority of the methods benefited from continuous representation, and

that the use of the analytic element method can facilitate the development of computationally

efficient multi-scale reactive transport models.

Importantly, this work represents the first thorough implementation of a linkage between re-

active contaminant transport models and the analytic element method for modeling groundwater

flow, and the first detailed analysis of such a linkage.

xix



Chapter 1

Introduction

1.1 Motivation

Numerical models of contaminant transport function as descriptive and predictive tools to support

important policy decisions regarding the regulation and remediation of contamination in aquifers.

The usefulness of these models depends upon their ability to provide highly accurate information

about the location and concentration of contaminants within the subsurface. With the increased

application of subsurface fate and transport models, researchers are finding that accurate models of

contaminant transport must increasingly include complex chemistry. For example, a dissolved con-

taminant species can interact with the soil, its non-aqueous liquid phase, biological organisms, and

with other aqueous species in a kinetic, non-linear fashion at varying temporal scales. Complicating

the matter, the advective and dispersive transport of dissolved contaminant is often influenced by

flow processes occurring at geographic scales much larger than the reactive zone of interest. To ef-

fectively simulate reactive transport in large systems, complex regional scale models of groundwater

quality are becoming increasingly desirable (NRC 2000).

Given the increasing complexity of the chemical reactions considered by modelers and the

increasing sizes of model domains, it is necessary to find ways to alleviate the computational

burden associated with complex reactive transport models. There are multiple ways to approach

this problem:

• Rely upon the increasing power of computational hardware,

• Increase the computational efficiency of current numerical reactive transport simulators, or

1
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• Reduce the size (i.e., scope) of the numerical transport problem

This third approach is the tactic taken in this dissertation. The size of the transport problem,

determined by the spatial scale and complexity of the problem domain, may be reduced in several

ways. For example, the model may be conceptually simplified by reducing the number of inter-

acting chemical species, reducing the complexity of the reactions, or reducing the spatial extent

of the simulation domain. However, the assumptions required for such simplifications are often

not applicable. An alternative is to reduce or remove the numerical constraints associated with

the scale, complexity, and resolution of the model. Such constraints increase the computational

cost of simulation by requiring a certain minimum amount of calculation be performed. With

most physics-based simulation models (and particularly contaminant transport models) the most

inhibitive computational constraints are those associated with spatial and temporal discretization.

By reducing or removing such constraints, the computations needed to obtain some desired output

are also reduced.

Traditionally, fate and transport models are solved by discretizing the domain into cells (for

finite difference models) or elements (in finite element models). The governing equations are solved

for each cell or element node in the grid or mesh. First, the groundwater flow problem is discretized

and solved to obtain the hydraulic head and velocity distribution in the aquifer. The transport

model is then solved to obtain the distribution of solute mass in the aquifer over time, using

discrete velocities from the flow model. For transient flow, the flow model must be updated during

the transport solution process. Most commonly, the same grid is used for both transport and

flow modeling, potentially incurring unnecessary computational costs in one or both processes.

While flow models require higher resolution near high pressure gradients, transport models often

require higher resolution near large concentration gradients and/or highly reactive zones. The

locations of such regions are often incongruent. This is a fundamental drawback of the use of a

grid-based discrete flow model as a basis for transport simulation, as it unnecessarily adds more

(computationally demanding) constraints on the grid or mesh geometry of the transport problem.

Superfluous degrees of freedom (either finite element nodes or finite difference cells) are included

to solve the flow problem accurately. The transport simulator uses these nodes because they are

present, not because they are necessary for accurate solution.

In addition to the contradictory needs of flow and transport models, there are other discretiza-

tion constraints placed upon conventional transport models. One of these is the requirement that
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adjacent areas on the grid or mesh have similar resolutions. These “adjacency constraints” make

it difficult to simulate transport at multiple spatial scales. This is particularly problematic for

modeling of remediation systems (e.g., reactive barriers, bioremediation), where the scale of hydro-

dynamic transport and the scale of chemical reaction can be significantly different. It is desirable

to have fine spatial resolution in reactive zones, which exhibit large concentration gradients and/or

high variation in species concentrations. Away from these reactive zones, it is desirable to use coarse

discretization, to minimize the computational cost. Adjacency constraints require fine resolution

of the grid or mesh even away from the areas where it is needed, placing higher computational

demands upon an already complicated model. Thus, models are typically either large in extent at

a low resolution or small in extent with high resolution. This resolution is typically constrained by

the smallest feature in the model.

Despite some of these inevitable drawbacks, the most common practice at this time is to simulate

contaminant transport using models discretized for both flow and transport and limited to a small

range of grid or mesh resolution within a given model. The public domain finite difference program

Modflow (McDonald and Harbaugh 1988) is the most popular method for flow simulation, and

the finite difference program MT3DMS (Zheng and Wang 1999) is the prevalent choice for transport

simulation. While other models are available and used in practice, the large majority are dependent

upon the constructs and assumptions of discrete finite difference (FD) or finite element (FE) models

for transport and flow simulation. Such limitations make it difficult to remove or reduce the

dependence of reactive transport simulation upon “the grid”. Recently, researchers have attempted

to resolve or remove the problems listed above via the use of multi-grid techniques (e.g., (Leake

and Claar 1999; Quarteroni and Valli 1999)) or meshless methods (Belytschko et al. 1996; Šarler

2002). This dissertation instead develops and evaluates an alternative approach to reducing grid

constraints via the intelligent use of analytic flow solutions.

An alternative to finite difference or finite element modeling, the analytic element method

(AEM) solves the groundwater flow problem without the use of a grid, and with greatly reduced

limitations upon model spatial extent. AEM produces continuous velocity and hydraulic head fields

and is essentially scale-independent, with the ability to model hydrogeologic features at small and

large scales simultaneously. These characteristics are promising for developing reactive transport

models that are less constrained by the flow model and more amenable to multi-scale modeling.

To investigate these potential benefits, the primary goal of this dissertation is to develop and
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implement a general framework for coupling transport models to analytic element flow solutions.

The investigation is limited to 2-dimensional (vertically-averaged) transport using steady-state 2-

dimensional flow solutions.

There are multiple potential benefits to an AEM-based contaminant transport model:

• The use of AEM flow solutions allows the transport grid or mesh to be developed with only

minimal regard for how the flow system was conceptualized and discretized. The transport

grid discretization process can be designed specifically to accommodate resolution of the

aqueous and/or sorbed concentration field. The result is that the computational cost of

transport models that use AEM are limited only by relevant hydrodynamic transport and

chemical considerations: the artifacts of flow discretization are no longer a constraint.

• The continuous solutions from AEM models allow for more accurate handling of certain terms

of the governing equation, particularly in finite element methods and Eulerian-Lagrangian

methods. Such incremental improvements may be an insufficient reason to choose one model

over another. However, removal of additional sources of error improves the quality of a given

model.

• Problems attributed to the multi-scale nature of many groundwater remediation scenarios

may be reduced by the ability of AEM to concurrently model local and regional scale flow.

The resultant high-resolution scale-independent flow solution may be used for creative multi-

scale modeling of transport phenomena. With proper handling, the smallest flow feature in

the model (e.g., a thin barrier or fracture) no longer has to dictate the local resolution of the

transport grid or mesh.

• Existing and future analytic element models may be coupled to reactive contaminant trans-

port models. Since the two have never been linked, this option has not been available to

practitioners, and the use of AEM has been generally limited to water resources (rather than

water quality) investigations (e.g., capture zone delineation)

Not all of these benefits will be analyzed within this dissertation, but rather the necessary

groundwork is laid for further investigation.

Coupling transport models to the analytic element method is a step towards removing the

constraints of a grid- or mesh- based representation (and the computational cost associated with
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this representation) from the practice of contaminant transport modeling. It is also a necessary

step in expanding the applicability of the analytic element method.

1.2 Overview of Research

The objective of the research contained in this dissertation is to develop and evaluate a new,

flexible, approach for solving two-dimensional reactive contaminant transport problems in saturated

groundwater systems. The new method has multiple unique features:

1. The approach uses the analytic element method (AEM), rather than traditional finite differ-

ence or finite element flow solutions, as the input to simulations of hydrodynamic (advective

and dispersive) transport of solute. The primary contribution of this dissertation is the de-

tailed development of approaches and algorithms that make use of AEM flow solutions for

transport both possible and beneficial.

2. In the new method, most parameters used for transport (velocity, saturated thicknesses, poros-

ity, dispersion coefficients) are represented as smooth (field-based) or piecewise continuous

(vector-based) functions of position, rather than as cell-averaged (grid-based) and/or grid-

interpolated parameters. Only the aqueous and sorbed concentration fields are represented

as fully discretized/interpolated parameters on a grid or mesh. Concentration-dependent pa-

rameters, such as local retardation factors, the equilibrium immobile concentration field, and

local reaction coefficients benefit from semi-continuous representation. A significant effort

has been made to maintain the integrity of this continuous parameterization.

3. The new approach uses updated formulations for simulating vertically-averaged advective

transport in surficial aquifers. These revised methods are more accurate for vertically-

averaged simulations than commonly used existing implementations. The approach also

uses revised finite element and finite difference methods for simulation of both dispersive

and advective/dispersive transport that minimize loss of information in translating from a

non-discrete to a discrete representation of flow parameters. With regards to finite difference

and finite element transport modeling, this intelligent translation is (1) often required for

adequate results and (2) more accurate than using discrete flow models for lower levels of

grid or mesh resolution.
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4. The approach is supported by a parallel-friendly object-oriented software representation of

flow, transport, and reaction processes that facilitates simulation of spatially non-uniform

transport and reactive phenomena (e.g., different numerical methods in different geographic

locations; different chemical reactions in different spatial zones). This representation simplifies

the allocation of computer resources where necessary. The fully object-oriented software also

simplifies the future addition of new reactions, transport methods, discretization schemes,

and analytic elements.

The four primary features listed above each contribute to the efficiency and accuracy of the

new method. The use of AEM (contribution 1) alleviates many of the problems associated with

velocity interpolation and limitations on model extent in more traditional approaches (e.g., the

“weak well” problem discussed in (Konikow et al. 1996)). Likewise, the continuous representation

of independent model parameters previously linked to “the grid” (contribution 2) removes errors

due to discretization of the flow system and other transport parameters. Both advances reduce

the grid-dependence of the simulated system, allowing for the development of a flexible and generic

formulation of transport algorithms that may facilitate simulations of complex reactive phenomena.

The analysis required for development of accurate vertically-averaged transport modeling in

mixed confined and unconfined systems (contribution 3) improves the ability to model surficial

aquifers in a robust fashion, and provides the opportunity to couple the two-dimensional analytic

element method to transport simulators in the most conceptually consistent manner.

Last, the object-oriented representation of transport and reactive processes (contribution 4) pro-

vides flexibility and efficiency, (e.g., by removing time-consuming global calculation of only locally

important reactive phenomena). The primary benefit is that unnecessary calculations are removed,

thereby allowing each simulation to be optimized for speed of computation. The combination of

this efficient allocation of computer resources and reduction of grid constraints/interpolation effects

facilitates the more rapid solution of difficult problems. In addition, the object-oriented framework

encourages the development of new algorithms and the easy incorporation of new methods.

The new techniques and algorithms needed to construct an AEM-based transport simulator

are rigorously developed in chapter 3. To evaluate these new methods and their implementation,

a set of tests have been developed. The objectives of these tests are to (1) evaluate the ability

of the AEM-based approach to accurately solve the applicable governing equations using novel

methods, (2) evaluate the accuracy of some of these methods, (3) compare the effectiveness of
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various options for coupling AEM and transport simulation, and (4) demonstrate the ability of the

new approach to simulate difficult multi-scale reactive contaminant transport systems. The first of

these objectives is addressed by benchmarking the contaminant transport software against existing

analytic and numerical solutions for vertically-averaged 2-D transport (section 4.1). The second

and third objectives are addressed in a set of tests that compare the new methods to existing

approaches and to alternative methods. The last objective is met by development of two test cases:

(a) simulation of diffusion-dominated transport through a low conductivity barrier (section 4.3)

and (b) mixed large and small scale 2-D reactive transport through a permeable reactive barrier

in a regional scale flow field (section 4.4). Adequate solutions to these two difficult problems have

been previously unavailable due to factors listed above.

Within this dissertation, the developments and simulations have been primarily limited to 2-D,

steady-state models. However, many of the concepts and algorithms can be extended to 3-D, and

to some extent, transient flow. Such extensions are discussed briefly, but are beyond the scope of

this dissertation.

1.3 Outline of Contents

This dissertation is structured as follows.

Chapter 2 (Background) contains background information about modeling of steady-state

saturated groundwater flow and contaminant transport, with particular attention paid to flow and

transport modeling of 2-dimensional vertically-averaged surficial aquifer systems. This literature

review surveys many of the different methods used for transport modeling, and discusses the impact

of system discretization upon the stability, accuracy, and computational cost of a given model. The

section stresses the differences between the analytic element method representation and discrete

(finite difference/finite element) representation of the flow field and its impact upon the practice

of contaminant transport modeling. A considerable amount of attention is paid to the deleterious

effects of flow system discretization upon solute transport, including errors due to interpolation and

averaging. Various approaches for modeling simultaneous transport processes, including reaction

and sorption, are also discussed, focusing upon those techniques that reduce the overall grid-

dependence of the transport model. Section 2.2 extends some of the discussion in the literature

review, with a more detailed explanation of the mathematics behind the analytic element method,
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Eulerian-Lagrangian transport algorithms, vertically-averaged transport, discretization constraints,

and the basics of finite element and finite difference methods for transport simulation.

Chapter 3 (Methods) contains details about the implementation of the new approach, including

a section on the structure of the object oriented software (section 3.1), discussion of a generic mass

balance accounting procedure (section 3.2), required derivations for use of continuous parameters

in finite difference and random walk methods (sections 3.3.2, 3.4, and 3.5), and implementation of

a comprehensive graded parameter finite element method designed to simulate small scale features

embedded in a larger model without overdiscretization (3.6; 3.7). Following this is a brief discussion

of the object-oriented implementation of complex reaction processes (section 3.8).

Chapter 4 (Numerical Testing) contains the results of models run with both the revised meth-

ods and existing formulations. Section 4.1 contains the results of benchmark tests of the software

against existing analytic and numerical solutions. Sections 4.2 and 4.3 contain results from tests

used to analyze the benefits of using the analytic element flow solution with various transport al-

gorithms. Section 4.4 contains the results of a more complicated test case with complex reactive

chemistry.

Chapter 5 (Discussion) relates the significance of this dissertation research, the contributions

to the state of the science, and future research that may grow from this initial use of the analytic

element method as a basis for reactive contaminant transport solutions.

Chapter 6 (Summary) briefly summarizes the research and results contained within this dis-

sertation.



Chapter 2

Background

Most numerical methods for modeling of groundwater flow and solute transport rely heavily upon

the fixed grid representation associated with finite difference and finite element solution techniques.

As a consequence, all existing methods for transport simulation are also strongly limited by the

scale of the modeled physical domain. The following section reviews key aspects of the history and

limitations of grid-based solute transport solution techniques and the flow models upon which they

are based. The first part of the chapter (subsection 2.1) is a literature review that qualitatively

discusses past advances in modeling contaminant transport. The second subsection (2.2) intro-

duces the mathematical underpinnings of the analytic element method, two-dimensional vertically-

averaged contaminant transport, finite element (FE) methods, finite difference (FD) methods, and

the constraints linked to discretization of flow and transport models.

2.1 Literature Review

2.1.1 Groundwater Flow Modeling

A necessary component of a solute transport simulator is a groundwater flow model. The flow

velocity has a strong influence upon contaminant fate because the travel of solutes in moving water

(advection) is usually the dominant mode of solute transport. Hydrodynamic dispersion, another

modeled transport mechanism, is also influenced by the magnitude and direction of groundwater

flow. Analytical methods for solute transport simulation often rely upon simplified (e.g., uniform)

flow fields. However, deterministic numerical methods for transport simulation regularly use more

complex flow fields obtained using FD or FE methods (Wang and Anderson 1982; Huyakorn and

9
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Pinder 1983; Istok 1989; McDonald and Harbaugh 1988). These methods often solve a variation

of the governing equation for saturated groundwater flow, which is based on fluid mass continuity

and Darcy’s law:

∇ · (K∇φ) = Ss
∂φ

∂t
+ q (2.1)

where K is the anisotropic hydraulic conductivity tensor, φ is the hydraulic head, q is a sink/source

term, and Ss is the specific storage of the porous media.

FD and FE methods always produce a discretized solution to Equation 2.1 comprised of a

set of nodal or cell-averaged values for hydraulic head and groundwater fluxes. Because of the

discrete solution, many velocity interpolation techniques have been developed to mimic continuous,

smooth behavior using discrete values of the velocity at nodes or cell faces (Yeh 1981; Pollock 1988;

Goode 1990; Cordes and Kinzelbach 1992; Durlofsky 1994; Zheng 1994; Pokrajac and Lazic 2002).

Alternative methods for obtaining the flow solution, such as the analytic element method (AEM)

(Strack 1989; Haitjema 1995; Fitts 2002) or classical boundary element methods (BEMs) (Liggett

and Liu 1983; Bruch 1991) are also available. These methods supply velocity and hydraulic head

distributions as continuous functions of position, without the need for interpolation. Until recently,

methods such as AEM and BEMs have been infrequently used as a basis for contaminant transport

simulations, and have never been used as the basis for a chemically complex transport model. The

following two sections review relevant information about flow modeling with both discrete methods

and the analytic element method. The boundary element method is not considered here, as the

focus of this dissertation is on the use of the analytic element method.

2.1.1-A Finite Difference/Finite Element Methods for Groundwater Flow

Finite difference (FD) and finite element (FE) methods are used in many scientific and engineering

fields to solve for the behavior of complex systems governed by sets of partial differential equations.

The general approach for both methods is to first discretize the domain of interest into elements

(for FE methods) or cells (for FD methods). Cells are representative volumes over which both the

independent and dependent variables are averaged. Elements are defined as the volume in between

nodes of a finite element mesh. Once the system is discretized, the differential equation may be

approximated as algebraic formulae at each node or cell center and solved using matrix algebra

techniques. The result of such simulations is a single value of the dependent variable (in the case
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of groundwater flow, hydraulic head) for each node or cell in the domain. Both finite element and

finite difference methods, therefore, sacrifice a continuous solution for computational simplicity. In

most situations, this sacrifice is small with respect to the advantages of the methods, especially with

groundwater flow models, which solve a relatively smooth and well-behaved differential equation.

However, flow systems dominated by high contrasts in hydraulic conductivity or relatively small

features such as wells or engineered barriers are prone to difficulties associated with discretization.

There exist a number of references that discuss the application of finite difference methods and

finite element methods to flow models (Wang and Anderson 1982; McDonald and Harbaugh 1988;

Istok 1989; Zheng and Bennett 2002).

The accuracy of both FD and FE methods depends upon the number and relative spacing

of nodes or cells. Therefore, the geographic extent of a model is constrained by the number of

equations that may be stored on a computer. In addition, numerical constraints upon the proximity

of nodes and cells for an accurate solution require a higher density of nodes or cells near locations

of higher complexity (i.e., a pumping well). These numerical constraints limit the spatial extent

and/or complexity of the domain. While there are numerical techniques that assist in relaxing these

constraints using mixed-resolution “multi-grid” models (Leake and Claar 1999; Székely 1999; Mehl

and Hill 2002), FD/FE simulations are always limited at some level by either the size or complexity

of the domain. These methods always produce a non-continuous set of point values for hydraulic

head and discharge.

Finite difference and finite element methods continue to be the most used methods for solving

groundwater flow problems, as indicated by the success of such software packages as Modflow

(McDonald and Harbaugh 1988) and FEFlow (Diersch 1998b). In addition, Modflow acts as

the groundwater flow program of choice for input into FD-based contaminant transport models

such as MT3DMS (Zheng and Wang 1999) and MOC3D (Konikow et al. 1996).

2.1.1-B The Analytic Element Method

The analytic element method is an alternative method for modeling groundwater movement (solving

equation 2.1) based upon the principles of potential theory. It is independent of a grid or mesh.

Earlier advances of potential theory as applied to groundwater simulation were developed in the

19th century by Dupuit (1863) and Forcheimer (1886), who independently proposed the application

of potential theory to 2-dimensional steady-state groundwater flow by neglecting the variation of
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hydraulic head in the vertical direction. This application of potential flow theory was limited to

confined flow and solutions were thus developed in terms of hydraulic head. Later advances by

Girinski (1946) allowed for application of potential theory and complex analysis to both confined

and unconfined flow by introducing the concept of the discharge potential. Polubarinova-Kochina

(1952), Verrujit (1970), and Hálek and Švec (1979) outlined many developments in this earlier

application of potential theory, primarily based upon conformal mapping. One of the principal

concepts behind these flow solutions was superposition. Superposition allows groundwater flow

to be modeled by the summation of functions, each of which represents the influence of a single

hydrogeologic feature. In earlier application of these methods, the solutions were limited to the

superposition of a few simple features, such as a set of wells or a single circular lake in uniform flow.

This method of combining individual continuous solutions to local groundwater flow phenomena is

quite different from the FD/FE paradigm, which solves the entire problem on a discretized grid.

Many of these early superimposed solutions, in addition to using a distinctively different conceptual

method, were exact solutions to a mathematical problem.

The analytic element method (AEM), which is based upon these previous innovations, was devel-

oped primarily by O.D.L. Strack and is thoroughly described by Strack (1989) and summarized by

Haitjema (1995). Much like its predecessors, AEM relies heavily upon the concept of superposition

of local solutions to the governing equations of steady-state groundwater flow. With AEM, how-

ever, the superposition of these functions (“elements”) no longer required the exact mathematical

solution demanded by earlier applications of potential theory. Instead, the elements, such as rivers

or inhomogeneities in hydraulic conductivity, met hydrogeologic constraints along their boundaries

by solving for adjustable coefficients within the functional form of general analytic solutions. These

“analytic elements” allowed for a more complex and arbitrary geometry than their predecessors.

In addition, because the implementation did not require exact solutions, AEM could apply earlier

developments in potential theory to domains with hundreds or thousands of hydrogeologic features.

Applications and advances of the method may be found in Strack (1981a), Strack (1981b), Strack

and Haitjema (1981a), Strack and Haitjema (1981b), and Fitts (1985). These papers highlight

some of the earliest applications of AEM to two-layer systems with and without spatially varying

hydraulic conductivity. The papers also presented the capability of analytic elements to accurately

depict groundwater flow on a scale that was impossible to model using traditional finite difference

or finite element models.
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While multiple 3-dimensional solutions have been developed (Haitjema 1985; Haitjema 1987;

Janković 1997), the most common applications of the method continue to be comprised of 2-

dimensional steady-state solutions. The current state of AEM, mostly dealing with these 2D ap-

plications, was summarized by Strack (1999). These newer advances include more flexible and

accurate high-order elements (Janković and Barnes 1999a; Janković and Barnes 1999b), methods

for computational speedup known as Superblocks (Strack et al. 1999; Craig et al. 2004), and more

versatile analytic elements for modeling recharge and leakage in 2-dimensional aquifers (Strack and

Janković 1999). The transport model within this dissertation is based upon this most current,

high-order implementation. A detailed summary and analysis of high-order elements is outlined

by Janković (1997). These collective advances have made it possible to model regional-scale con-

fined/unconfined systems with high precision.

There have been very few attempts to couple contaminant transport models to flow solutions

obtained from the analytic element method. The only existing linkage of AEM to a advective-

dispersive transport model, WinTran (Rumbaugh 1993; Scientific Software Group 2003), uses a

very simple implementation of the analytic element method and non-robust discretization of the

flow solution as input to a simple finite element transport algorithm. For the most part, transport

simulations based upon AEM have been limited to the task of tracing particles through the flow

domain (Strack 1984; Strack 1989; Haitjema 1995), rather than attempting to solve the more

difficult problem of dispersive and reactive groundwater transport. Currently, the simulation of

transport phenomena using AEM flow solutions continues to be limited (both in research and in

practice) to the identification of contaminant travel times and basic random walk simulations.

An exception to this trend is the application of non-reactive particle tracking through massive

heterogeneous 3-dimensional domains to investigate the process of hydrodynamic dispersion by

large-scale advective mixing (e.g., Fiori et al. (2003) and Janković et al. (2003)).

2.1.2 Contaminant Transport Modeling

Deterministic modeling of contaminant transport has been the primary technique for assessing and

predicting the impact of contaminants in the subsurface. This success is due to the adaptability

and relative simplicity of discrete numerical methods. Research in numerical reactive contaminant

transport modeling is intense, both in the broad scope of study, and in the large quantity of

information published each year. A thorough review of the entire field is not within the scope of
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this literature review. Instead, an overview of the methods and conceptual models applicable to

vertically-averaged reactive transport in 2-dimensional domains is presented.

The transport modeling review is divided into 3 parts. First, relevant advective/dispersive

transport modeling techniques are reviewed. Second, common methods for incorporating sorption

and chemical transformations of modeled solutes are discussed. The operator-splitting technique is

emphasized, focusing on the mathematical decoupling of transport and reaction. The final sections

discuss the effects of discretization upon accuracy and efficiency of transport simulation. The focus

of this literature review emphasizes the potential advantages and limitations of coupling transport

methods with continuous flow solutions such as those provided by the analytic element method.

The governing equation for transport of a miscible solute in saturated groundwater systems is

the advective-dispersive-reactive (ADR) equation (e.g., Bear (1979)):

θ
∂cj

∂t
= −∇(~qcj) + ∇ (Dθ · ∇cj) +

NR
∑

k=0

Rkj − ρb
∂Sj

∂t
(2.2)

where cj [M/L3] and Sj [M/M] are the aqueous and sorbed concentration of species j, ~q [L/T] is

the three-dimensional discharge vector, D [L2/T] is the dispersion coefficient tensor, which includes

the effects of hydrodynamic dispersion and molecular diffusion, Rkj [M/T] is the rate of solute

production in reaction k of NR different reactions, ρb is the bulk density of the solid [M/L3], and

θ is the porosity. The velocities, dispersion coefficients, and the system geometry (for unconfined

systems) are typically obtained from discrete solutions to the flow equation.

There are three general classes of methods for solving the advective and dispersive transport

terms of the ADR. Eulerian methods (e.g., finite difference, finite element, flux-limiting schemes,

and finite volume methods) solve all the terms of equation 2.2 on a fixed spatial grid. Because of

the extensive use of finite difference models in computational modeling, these were among the first

published numerical models of solute transport (Huyakorn and Pinder 1983; Wang and Anderson

1982).

The second category of transport methods, Lagrangian methods, represents transport on a

moving frame of reference by directly moving parcels of solute mass along pathlines. This category

includes the random walk (Prickett et al. 1981) and Finite Cell methods (Sun 1999). The combined

use of Lagrangian methods for advection (the first term on the right hand side of equation 2.2)

and Eulerian methods for dispersion and/or reaction are referred to as Eulerian-Lagrangian (EL)
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methods (e.g., the method of characteristics, Konikow and Bredehoeft (1978)).

An alternative to traditional Eulerian, Lagrangian, or EL methods is the deterministic stream-

line method, which was developed primarily in the petroleum engineering field (Thiele 1994; Baty-

cky 1997). The method uses streamlines (the paths of particle trajectories in a steady-state flow

field) as the primary frame of reference. A transformed 1-dimensional version of equation 2.2 is

solved along each streamline.

Because of the prevalence of grid-based flow and transport models, independent model param-

eters (such as conductivity and porosity), and derived parameters (such as saturated thickness,

dispersion coefficients, and some reaction parameters), have been limited to a grid- or mesh-based

representation. Parameter values are most often averaged over a cell or element, with cells and

elements (for independent parameters), or nodes (for derived parameters) being assigned a specific

value of the variable. Some finite element formulations additionally allow for linear or quadratic

variation in parameters within elements (Istok 1989). However, both derived and independent pa-

rameters typically conform to the geometry of the finite difference grid or finite element mesh, and

evaluated using some form of interpolation. While there have been attempts to distort the grid to

conform to the flow geometry and parameter distribution (e.g., Cirpka and Kitanidis (2000)), the

parameters themselves have never been fully decoupled from the grid.

2.1.2-A Methods for Solving Transport Problems

The following subsection discusses the various approaches for solving the advection dispersion

equation (ADE) given by equation 2.2. The need for more than one transport simulation method

is ascribed to the lack of a single approach that is accurate and computationally efficient for all

problem types. Common errors incurred during the numerical simulation process include:

• Oscillation - The solution of advection-dominated transport problems is often complicated

by the occurrence of “oscillation” of the solution near the advancing front of a plume. This

oscillation is exhibited as sinusoidal concentration distributions, often leading to (unrealistic)

negative concentrations. This is a symptom of having too large of a grid resolution.

• Numerical Dispersion - Some numerical methods may lead to artificial spreading of the plume.

This error is often intentional, as higher degrees of dispersion reduce or remove the aforemen-

tioned oscillation of the solution. This spreading is an artifact of discretization and may be
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reduced by using finer resolution grid or mesh.

• Global Mass Balance Errors - Many methods for contaminant transport simulations are non-

conservative. Such non-conservative schemes are subject to non-physical (and unintentional)

loss or gain of mass. The degree of mass balance error is generally dependent upon the degree

of variation in the flow solution (i.e., highly heterogeneous domains will exhibit higher mass

balance errors than homogeneous domains).

• Local Mass Balance Errors - Local mass balance errors occur when non-physical loss of mass

occurs at the sub-grid or sub-mesh level, even though the total mass in the system is conserved.

In this case, the mass influx to a sub-region is not equal to the outflux from the same region.

While all methods perform relatively well for dispersion-dominated transport, alternative meth-

ods have been developed to avoid oscillation or numerical dispersion. Unfortunately, many of these

methods can be either non-conservative, computationally inefficient, or require assumptions not

applicable to the problem at hand (e.g., no transverse dispersion). Some numerical methods, not

discussed here, are also subject to stability problems, where not even a poor numerical solution can

be obtained unless the system has been sufficiently discretized.

Eulerian Methods

Eulerian methods for solving contaminant transport models rely upon the same premises as that

of finite difference or finite element simulation of groundwater flow. Because of the extensive use of

finite difference and finite element models for flow modeling, these were among the first numerical

models of contaminant transport (Wang and Anderson 1982). At a set of fixed grid points in

the model domain, numerical approximations of the governing equations (the advection-dispersion-

reaction equation for each species) are developed. These approximations applied to each node

to yield a set of algebraic equations (one per species per node), which may then be solved using

matrix solution methods for each time step. While such problems have been well characterized

mathematically, the behavior of the governing equation varies in space and time and can exhibit

stability and accuracy problems, especially when coupled with complex chemical and hydrodynamic

initial and boundary conditions. In addition, though robust when implemented for dispersion-

dominated problems, finite difference and finite element methods exhibit “numerical dispersion” for

advection-dominated problems (problems with high velocities and low dispersion)(e.g., Zheng and
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Bennett (2002)). Such problems are typically overcome by strict adherence to rules governing cell

size and time step duration (Peaceman 1977; Huyakorn and Pinder 1983; Zheng and Bennett 2002).

The result is that sufficiently complex problems solved in a globally implicit Eulerian framework

(which solves all parts of the governing equation simultaneously) may require both prohibitively

small time-step durations and fine spatial resolution of chemically and/or hydraulically complex

regions. Global Eulerian methods, limited by computer memory, become intractable once the

accuracy and stability constraints require an excessive number of cells or nodes or an excessively

small time step. A discussion of these constraints and their impact upon the computational costs

of transport problems is given in section 2.2.5.

Most of the current research into purely Eulerian methods addresses software/hardware im-

plementation (e.g., parallel processing) and/or incorporation of new types of reaction phenomena.

Much of the improvements to the numerical methods themselves occurred in the 1990s, including

Total Variation Diminishing (TVD) schemes (Datta-Gupta et al. 1991) and the Flux-Corrected

transport (FCT) methods (Leonard 1988; Hills et al. 1994). Both TVD and FCT schemes reduce

oscillatory behavior in highly advective Eulerian domains. A newer Eulerian technique, the Finite

Analytic Method (Li and Wei 1998; Lowry and Li. 2002), relax some of the cell size constraints of

classical Eulerian models, but are mathematically complex, like many of the revisions to the pure

Eulerian approach, and can presently only simulate steady-state transport.

While Eulerian methods may seem ill-suited for connection to analytic flow solutions, it is

important to note that there has been a significant degree of research into streamline-oriented grid

modification (Cirpka et al. 1999b; Cirpka et al. 1999a) and incorporation of stream functions into

fully Eulerian schemes (Frind and Matanga 1985). Both of these techniques embrace the benefits

inherent in analytic flow models: a spatial discretization structure referenced to the transport

patterns rather than the arbitrary geometry of a rectangular grid. It is likely that the most

robust combination of Eulerian transport methods and AEM would replicate this approach, as the

analytic element method is intrinsically non-rectilinear (i.e., AEM models do not generally conform

to the orthogonal geometry of a rectangular grid). In addition, discrete Eulerian approaches for

transport require a precise water balance from the flow solution to properly allocate solute mass. In

certain formulations, this precise water balance is also required to maintain a mass balance on the

contaminant. The analytic element method provides exact (water balance-maintaining) solutions

to the flow problem, and is therefore well-suited for removing any errors linked to inadequacy of
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the water balance in Eulerian methods.

Lagrangian Methods

Lagrangian methods represent an alternative method approach to solving contaminant transport

problems where the frame of reference is not fixed in space. In the Lagrangian approach, the

solute concentrations are not associated with fixed points or volumes, but with moving parcels of

water associated with a mass of contaminant. Pure Lagrangian methods include the random walk

method (Prickett et al. 1981) and the finite cell method (Sun 1999). These methods are inherently

less grid-limited than traditional Eulerian methods (a grid is typically only needed to visualize

the distribution of mass) and do not exhibit numerical dispersion or oscillation when simulating

advection-dominated problems. However, the Lagrangian methods are typically restricted by their

ability to accurately represent the concentration field and dispersion without a prohibitively large

number of particles/parcels.

The random walk method, first implemented for contaminant transport modeling by Ahlstrom

et al. (1977) and Prickett et al. (1981), represents the transport of contaminant as the movement of

thousands of discrete particles, each associated with some initial mass. These particles are advected

based upon the flow solution (by traditional particle tracking), then randomly displaced (according

to a normal probability distribution). This normal probability distribution is used to simulate two

similar phenomena: (1) the diffusion of contaminant based upon gradients in concentration and (2)

the randomness of the pathway each particle follows (assuming this randomness is not reflected by

the flow model itself). These calculations (advection, then dispersion) are repeated for each particle

and time step. In order to establish concentration profiles, the particles are placed on a grid. Volume

averaging is then used to calculate concentration by identifying the number of particles in each grid

cell, and averaging the particle mass over the volume of the cells. Concentrations obtained in this

manner are used for visualization of the plume and, in some cases, to perform reaction calculations.

This series of calculations is designed to replicate the continuous change of the contaminant in

the subsurface over short time steps. The random walk method has been been the subject of

extensive analysis (Valocchi and Quinodez 1989; LaBolle et al. 1996; Hathorn 1996); in particular,

there are multiple publications addressing the application and implementation of the random walk

method to represent macrodispersion in aquifers (Uffink 1985; Kinzelbach 1988; Kinzelbach and

Uffink 1991; Zheng and Bennett 2002). A primary conclusion of nearly all of these studies is that a
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very large number of particles is necessary to sufficiently resolve the detail of a contaminant plume

(dependent upon the application). Some attempts have been made to develop dynamic particle

allocation schemes to ameliorate this problem (Schafer-Perini and Wilson 1991). However, the

secondary problem of local mass conservation (LaBolle et al. 1996) is more difficult to overcome,

and increases as higher degrees of dispersion are introduced.

Lagrangian methods are intrinsically grid-independent. However, the Lagrangian methods now

available typically use a grid-based velocity field, and thus require interpolation of nodal velocity

values linked to the fixed frame of reference (the grid) rather than the moving frame of reference

(the particle). The grid-independent merger of analytic flow solutions and the random walk method

could be very fruitful; continuous velocities could better simulate particle trajectories. In fact,

an AEM-based implementation has been successfully used by Janković et al. (2003) to simulate

advective-diffusive transport in highly heterogenous aquifers. However, implementation using an

analytic flow solution does not remove the limitations of purely Lagrangian methods: local mass

conservation problems near sinks, sources, and boundaries and the need for a large number of

particles are still problematic.

Eulerian-Lagrangian methods

Pure Lagrangian methods continue to advance incrementally (e.g., with the development of

the Finite cell method (Sun 1999)), but most recent developments in transport modeling favor

the combination of Eulerian methods (better for dispersive transport) and Lagrangian methods

(better for advective transport). These mixed approaches are designated Eulerian-Lagrangian (EL)

methods. Different implementations of EL methods were studied extensively in the 80s and 90s

(see Ewing and Wang (2001) for an exhaustive summary). The approaches include those derived

directly from “characteristic” methods and those based upon the Localized Adjoint Method (LAM).

The prototypical EL method, the traditional method of characteristics (MOC) (Konikow and

Bredehoeft 1978; Zheng 1993) operates on a fixed spatial grid. For every time step, a prescribed

number of particles are placed in each cell. Each particle is assigned the concentration associated

with that cell (rather than the mass used in random walk methods). These particles are then tracked

forward in time using particle-tracking algorithms and new cell concentrations are calculated based

on the average concentration associated with the particles within a cell at the end of the time step.

Variations on this theme, including the backward and modified method of characteristics (BMOC;
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MMOC) (Cheng et al. 1984; Baptista 1987) and the hybrid method of characteristics (Zheng 1990;

Zheng and Bennett 2002), were developed to ameliorate the computational burden of traditional

MOC and/or more effectively simulate dispersion-dominated systems. The BMOC tracks one

particle backwards from each grid cell center over the time step. The new cell concentration is

equal to the space-weighted old concentration at the backtracked particle location. The MMOC

also relies upon backtracking of particle paths, but with multiple characteristics per cell. Both

the BMOC and MMOC tends to behave well in highly advective domains, but introduce some

numerical dispersion at the sharp front of a plume if low-order concentration interpolation is used

(Healy and Russell 1989). The hybrid method of characteristics (HMOC) (Zheng 1990) combines

the computational advantages of MMOC and the dispersive robustness of traditional MOC by

dynamically choosing which method to use depending upon the local behavior of the system. At

sharp advective fronts, traditional MOC is used; elsewhere, MMOC is used. While characteristic

methods are far less computationally demanding than pure Lagrangian methods, they do not

conserve mass (Tompson and Dougherty 1988), because of the inaccuracies from concentration

interpolation and the incomplete treatment of boundary conditions (Celia et al. 1990).

The characteristic-based approach remains one of the most commonly used transport simulation

techniques, predominantly due to its ease of implementation and its availability in the most popular

transport program, MT3DMS (Zheng and Wang 1999). Another category of EL methods is that

of Eulerian-Lagrangian localized adjoint methods (ELLAMs), introduced by Celia et al. (1990).

Though characteristic methods (such as MOC) can be considered a specific variation of ELLAMs,

the standard implementation is generally quite different, using features of optimal spatial methods

(OSMs), which are Eulerian methods with upstream weighting schemes. ELLAMs provide the de-

sirable advantage of global mass conservation and comprehensive treatment of boundary conditions

(neither of which apply to classical characteristic methods). The ELLAM continues to advance at

a steady pace (Healy and Russell 1993; Healy and Russell 1998; Bellin et al. 1994; Binning and

Celia 2002). ELLAMs have been applied to multi-dimensional domains with simple reaction.

All of these Eulerian-Lagrangian methods, much like their Lagrangian predecessors, are con-

strained by the large number of particles needed to accurately characterize the concentration field

(Yeh et al. 1992; Zheng and Bennett 2002). However, the flexibility provided by the merger of the

two solution methods allows for robust solution of a wide variety of contaminant transport prob-

lems using a single approach. The robustness of the EL methods, combined with their Lagrangian
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representation of advection, suggest beneficial integration with analytic flow solutions.

2.1.2-B Modeling Chemical Transformation

Chemical reactions are widespread in the subsurface, ranging from simple decay processes to bio-

geochemical interactions between multiple chemical species and bacteria. For this reason, many

transport models have incorporated algorithms for modeling complex reactions in conjunction with

hydrodynamic transport.

Modeling Aqueous Chemical Reactions

It is often assumed that transformation of and interactions between chemical species or com-

ponents may be described by a finite set of mathematical formulae derived from thermodynamic

and kinetic considerations (i.e., rate laws and mass balance relationships) (Yeh and Tripathi 1989;

Steefel and MacQuarrie 1996; Parkhurst and Appelo 1999). Different types of reaction (e.g., aque-

ous complexation, acid/base, redox, sequential decay, etc.) are expressed in terms of different

thermodynamic relationships between species or components (Rubin 1983). The speed of the re-

action dictates whether the reaction is represented by algebraic equations or ordinary differential

equations. Equilibrium processes, where the reaction is fast relative to the transport process, may

generally be expressed in terms of a set of algebraic equations. Kinetic reactions, however, must

be represented by ordinary differential equations. Depending upon the specific reaction behavior,

these equations may be either linear or non-linear functions of the local aqueous and sorbed con-

centrations. General-purpose reaction solvers, such as PHREEQC (Parkhurst and Appelo 1999)

require a set of robust solvers that can handle the specific mathematical behavior of a wide variety

of kinetic and equilibrium reaction types.

Regardless of the particular functional form of the chemical reactions, the coupling of reaction

phenomena and transport is most often handled in one of two ways. In the first method, dubbed

the “one-step”, “globally implicit” or “fully-coupled” method (Steefel and MacQuarrie 1996), the

reactions are explicitly included within the governing equations (coupled partial and ordinary dif-

ferential equations) and the interaction of chemical species or components are simulated through

solution of fully coupled advection dispersion reaction equations. This method is used exclusively

within fully Eulerian transport models. However, this technique incurs even more constraints upon

temporal and spatial discretization than the methods for modeling hydrodynamic transport, and
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usually requires extensive iteration within each time step. This is because geochemical reactions

proceed at different rates of speed, introducing stiff behavior into the system of equations.

To remove the inhibitive constraints of the globally implicit formulation, operator-splitting

(a.k.a., the “sequential approach” or “two-step” approach ) may be used. Operator-splitting is a

numerical technique whereby the transport processes of advection, dispersion, reaction, and sorp-

tion, which in reality occur simultaneously, are represented as a sequence of distinct events (Valocchi

and Malmstead 1992). In the technique of operator-splitting with respect to reaction, the contami-

nant is transported by the mechanisms of advection and dispersion for a short period, assuming no

reaction during this time step. Then the reaction transformation is simulated using the local con-

centrations over the same time duration, simulating a process that in reality occurs concurrently.

An alternative method of operator-splitting is to represent advection alone as a distinct operation

and treat reaction and dispersion as a simultaneous process (e.g., within MT3DMS). There is one

primary assumption underlying the applicability of any operator-splitting method. If the time step

is sufficiently small, the local concentrations are similar at the beginning and end of the contami-

nant movement, and the reactions would proceed in the same manner with either initial condition.

Because it is used so often, the accuracy and applicability of operator-splitting has been studied

extensively by those within the groundwater modeling community (Valocchi and Malmstead 1992;

Miller and Rabideau 1993; Kaluarachchi and Morshed 1995; Steefel and MacQuarrie 1996; Barry

et al. 1996; Barry et al. 1996; Barry et al. 2000).

When implemented in an operator-splitting framework, complex reactions are often solved as lo-

cal “batch-reactor” problems, typically solved using a generic batch reaction solver (e.g., PHREEQC

(Parkhurst and Appelo 1999)). In such problems, concentrations of chemical species are averaged

over a volume (often the same volume associated with the finite difference grid) and transforma-

tion is simulated over a single time step, ignoring location as a variable. If the reactions are at

equilibrium, the result is a single set of algebraic equations that need only be solved once for the

time step. If all of the reactions are kinetic in nature, the solution procedure may be much more

involved, requiring the solution of a set of mixed ordinary differential and algebraic equations that

use the concentrations at the beginning of the time step as initial conditions. This kinetic behav-

ior may affect the applicability of the operator-splitting procedure (Steefel and MacQuarrie 1996).

Regardless of the specific type of reaction problem, operator-splitting enables computational decou-

pling of hydrodynamic and reactive phenomena, which allows bigger and more chemically complex
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problems to be solved with fewer constraints upon spatial and temporal discretization.

In addition to those issues discussed above, there may be other difficulties encountered when

modeling reactive transport. Restrictions on allowable time step duration and the potential non-

linearity of multi-species reactions often impede the development of extremely complex reactive

transport models: the computational cost of the reaction simulation simply becomes too cumber-

some. This problem may be exacerbated by simulating reactions uniformly across the domain,

regardless of their site-specific relevance to the application. In addition, while the hydrodynamic

behavior of the system is usually unaffected by chemical transformations, certain reactions (e.g.,

precipitation of solids, growth of microbial mass) can decrease the conductivity/permeability of the

media. Also, the oscillatory behavior of some methods for simulating contaminant transport may

create negative concentrations, which often induce instabilities in the algorithms used to simulate

reactive phenomena. Special treatment is required to handle each of these phenomena.

For further information regarding the development of numerical models for chemical reactions,

the reader is referred to Parkhurst and Appelo (1999) and Bethke (1996). Yeh and Tripathi (1989)

and Steefel and MacQuarrie (1996) have compiled thorough reviews that discuss the coupling of

geochemical and hydrodynamic transport models.

Modeling Sorption

Sorption processes, like reaction processes, have a significant effect on the transport of contam-

inant in the subsurface (Weber et al. ). Sorption is defined as the transfer of chemical species or

components from the (mobile) aqueous phase to the (immobile) surface of the porous media. The

general effect of sorption is to slow the progress of the contaminant as it reacts with the immobile

aquifer material. Conceptual models of sorption range from simple equilibrium between sorbed

and aqueous phases to rate-limited kinetic processes. While multiple conceptual models are used

to represent the interaction of sorbed and aqueous species, the inclusion of sorption phenomena in a

model leads to an additional term in the ADRE. This additional term may be expressed in explicit

form within the transport solution (e.g., in fully Eulerian methods), by the use of operator-splitting

(Kirkner and Reeves 1988), or by the use of a “retardation factor”.

If the sorption phenomenon in a given model is non-competitive equilibrium sorption (i.e.,

sorbed and aqueous concentrations are always at equilibrium and this equilibrium relationship is

independent of the concentrations of other species), the sorption phenomenon may be simulated
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using what is dubbed the “retardation factor” approach. Writing out the simplest form of the

single-species 1D advective dispersion equation with sorption,

∂c

∂t
= −q

θ

∂c

∂x
+ D

∂2c

∂x2
− ρb

∂c

∂S

∂S

∂t
(2.3)

The equation may be rewritten as follows:

Rf
∂c
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= −q

θ

∂c
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∂2c

∂x2
where Rf = 1 + ρb

∂c

∂S
(2.4)

This is the basic form of the ADR with an apparent reduction in velocity (v′ = v/Rf ) and in

dispersion (D′ = D/Rf ). This apparent reduction is a function of the sorbed concentration (S),

the aqueous concentration, c, the porosity, θ, and the bulk density of the porous media, ρb. Once

a relationship between the sorbed and aqueous concentrations has been identified, the inclusion of

sorption phenomena into contaminant transport modeling may be handled by a simple reduction

in the velocity and hydrodynamic dispersion coefficients (Zheng and Bennett 2002). The reduction

factor (retardation coefficient) may be (1) constant (for a linear isotherm) or (2) a function of

the sorbed and aqueous concentrations. There are numerical difficulties associated with non-linear

sorbed/aqueous relationships (Zheng and Bennett 2002), but the retardation factor is the most com-

mon approach for representing sorption in transport simulations, especially in Eulerian-Lagrangian

schemes (e.g., (Konikow et al. 1996)). Sorption is difficult to simulate with the retardation factor

approach if the sorption process is either kinetic or competitive. In those cases, the local retardation

factor is often a complicated non-linear function of local species concentrations and time.

An alternative means of representing sorption phenomena is via inclusion of sorption into the

conventional mass balance scheme as an additional reaction term with an additional set of chemical

components (that of the sorbed species). This option is preferred to the retardation factor approach

for modeling kinetic or competitive sorption.

2.1.3 Discretization of Transport Parameters

Velocity Discretization

One of the primary benefits of the analytic element method is the production of highly accurate

continuous velocity fields as output. This benefit has been touted by the users and developers
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of AEM, but no research within the analytic element community has pointedly addressed the

significance of the continuous velocity fields in groundwater modeling. However, a great amount

of literature has been devoted to improvement and analysis of velocity interpolation techniques in

the finite difference / finite element literature, mostly in the context of particle tracking (Yeh 1981;

Pollock 1988; Goode 1990; Cordes and Kinzelbach 1992; Durlofsky 1994; Zheng 1994; Pokrajac

and Lazic 2002). Many of the results of this research can be extrapolated to AEM, which may

be conceptualized as providing a flow solution with infinitely fine grid or mesh resolution. For

analytical solutions, the velocity is known explicitly at any point in the domain. However, in finite

difference and finite element models, the velocity is known only at a set of discrete points. Therefore,

velocity interpolation techniques have been developed to mimic continuous, smooth behavior using

discrete values of the velocity at nodes. With a similar rationale, modified flow solution methods

have been developed that represent the velocity in a more exact sense without additional cells or

finite elements (e.g., Frind and Matanga (1985); Mosé et al. (1994)).

A common use of velocity information in transport modeling is to advect (“track”) particles

(either backward or forward) by integrating the velocity along the particle’s path. Tracking is used

in both Eulerian-Lagrangian and pure Lagrangian methods to represent advection of contaminant in

the subsurface. Additional uses of velocity information include determination of discharge between

finite difference cells, calculation of hydrodynamic dispersion coefficients, and calculation of the

residual expression in finite element methods. The coarseness of velocity field discretization, in

conjunction with the interpolation method used and the accuracy of the integration algorithm,

drastically affect the outcomes of particle tracking or other uses of velocity information (Mosé

et al. 1994).

Initially, particle tracking was performed using traditional integration methods (e.g., Runge-

Kutta methods) based upon a velocity field represented using simple linear or bilinear interpolation

between discrete nodal values (i.e., Prickett et al. (1981)). However, simple interpolation methods

cause discontinuities in velocity or the velocity gradient, particularly in complicated flow domains.

In addition, simple interpolation overlooks the local influence of certain features in the flow field,

such as wells (Yeh 1981). Though bilinear interpolation (the most common technique) is in agree-

ment with the general assumptions of the finite difference method (Goode 1990), there are still

inherent errors associated with its use. Therefore, many adaptations of bilinear and linear velocity

interpolation techniques have been developed. Pollock (1988) developed an oft-used semi-analytical
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method that provides semi-analytic pathlines within each individual finite difference block, circum-

venting the need for Runge-Kutta methods. Cordes and Kinzelbach (1992) adapted Pollock’s

method for finite element geometries. Other, more complicated, schemes have been developed to

reduce the “mesh error”, or error due to spatial interpolation (Zhang et al. 1994; Cheng et al.

1984; Bensabat et al. 2000; Pokrajac and Lazic 2002). Some of these are higher order interpolation

schemes (i.e., the cubic interpolation of Zhang et al. (1994)) and, while they create a smoother

representation of Darcian velocity, do not maintain the water balance (Zheng and Bennett 2002).

In addition to new interpolation schemes, tracking techniques have been adapted to counter

specific problems caused by the discrete representation of velocity fields. Goode (Goode 1990)

developed a technique that preserved the discontinuity in the normal component of flow at trans-

missivity boundaries. Zheng (1994) presented techniques for handling velocity interpolation near

“weak wells” (wells that pull water into less than 4 sides of a finite difference cell). In the same

paper, Zheng also provided a means to repair velocity errors due to discontinuous discretization in

the vertical direction.

While many of these papers cited the inaccuracies of particle tracking techniques, most of them

did not examine, in detail, how this affects contaminant transport models that use particle tracking

(either pure Lagrangian or Eulerian-Lagrangian (EL) methods). However, Oliveira and Baptista

(1998) directly addressed the effects of poor tracking procedures in EL methods by both formal

analysis and numerical experiments. Oliveira and Baptista concluded that poor tracking could

cause both negative and positive numerical dispersion and significant mass balance errors. Their

conclusion, citing multiple sources of incurred transport errors, was that the effect of tracking

errors upon the accuracy and stability of Eulerian-Lagrangian methods is “severe”. The primary

problem mentioned is that inaccurate tracking of characteristic lines and non-conservative flow

fields leads to incorrect positioning of the feet of characteristic lines, thus causing local mass balance

errors. Similar results were obtained by Ruan and McLaughlin (1999), who investigated the effects

of using various high-order velocity interpolation (and concentration interpolation) schemes for

contaminant transport simulation. These high-order schemes are designed to compensate for a

discrete representation of velocity.

The non-continuous representation of discharge and head in FD flow models introduces some

other disadvantages. For example, finite difference models have to resort to complex algorithms for

velocity refinement near “weak” sources and sinks (Zheng 1994; Charbeneau and Street 1979; Sun
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et al. 1994). Such refinement schemes are required to adequately define capture zones and capture

particles. Without these schemes, particles that should be captured pass through the grid cell.

With the analytic element method, the act of interpolation is unnecessary, as the velocities

are continuous functions of space. Additionally, the continuous velocity representation in AEM

bypasses the need for algorithms to handle “weak wells” or incongruous spatial discretization (i.e.,

for moving front algorithms), which are fully symptomatic of the flow grid representation. The

only decision to be made is the integration method used for particle tracking. Strack (Strack 1989)

presents a simple constant time step Euler method for use in analytic flow fields. However, research

(i.e., Goode (1990)) suggests that higher order adaptive Runge-Kutta methods are preferable and

provide more accuracy for minimal additional computational expense. Other alternatives for track-

ing within analytic flow domains are based upon the stream function (e.g., Frind and Matanga

(1985); Strack (1989)). These methods can be used for verification of the accuracy of Runge-Kutta

techniques, but are generally more time consuming and are not applicable to divergent flow fields.

Property Field Discretization

Discretization of the property fields (e.g., porosity), is typically overlooked as a source of error.

This information is usually not known at a spatial scale sufficient to warrant precise representation.

The conceptual model of porous media property distributions is therefore modified so that it easily

conforms to the model; i.e., it is therefore represented discretely. However, there are some scenarios

in which local perturbations in the porosity or sorption coefficients at a scale less than the desired

mesh resolution may be desired, or cases where the gradient in a property has a notable impact on

the solution. Because continuous representation of transport parameters is uncommon, there is no

published error analysis of its effects upon transport simulation. However, the study of continuous

non-homogeneous materials in material engineering has shown that modeling continuous parameter

fields in a discrete, cell- or element-averaged manner reduces the accuracy of numerical solutions

(Santare and Lambros 2000).

Researchers in groundwater modeling have directly investigated the effects of parameter dis-

cretization in flow models (not transport models) and its effects upon the simulation of highly

heterogeneous media at varying scales. The process of “upscaling” is of great importance for

groundwater modelers in understanding the behavior of groundwater systems at small and large

scales simultaneously (Farmer 2002). Investigators in this field have compared the effects of solving
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the same governing equations with random parameter fields at various levels of resolution (Farmer

et al. 2003; Chen et al. 2003). It was found that the act of reducing the resolution of the parameter

field (in these cases, hydraulic conductivity) induced significant differences (i.e., errors) in model

results (expressed in terms of head). Similar errors will be incurred in transport simulations that

use lower resolution representations of velocity and dispersion coefficients, except that errors in

transport simulations will accumulate over time.
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2.2 Mathematical Background

The following section provides the mathematical background for the methods developed in chapter

3.

2.2.1 The Analytic Element Method

For steady-state irrotational two-dimensional flow with piecewise constant aquifer properties, the

governing equation for groundwater flow (equation 2.1) may be written as the Poisson equation in

terms of a discharge potential, Φ[L3/T ] (Strack 1989):

∇2Φ = N (2.5)

where N [LT−1] is the vertical flux of water out of the aquifer.

The 2-D analytic element method (Strack 1989; Haitjema 1995) expresses the steady-state flow

solution to equation 2.5 in terms of the complex potential, Ω[L3/T ]:

Ω(z) = Φ(z) + iΨ(z) (2.6)

where Ψ[L3/T ] is the stream function (undefined when N 6=0), and z = x + iy is a location

in the complex plane. Discharge potential is related to piezometric head, φ[L], by the following

relationships for confined and unconfined flow, reliant upon the Dupuit-Forcheimer assumption:

Φ =















1
2kφ2 if φ < H

kHφ − 1
2kH2 if φ > H

(2.7)

where H [L] is the layer thickness and k [L/T ] is the hydraulic conductivity.

The AEM is based upon superposition: Ω and W at any location z are expressed as the sum

of complex potentials or discharge functions due to a set of distinct hydrologic features (elements).

The vertically-integrated discharge in the domain is directly related to the complex potential by

the following relationship:

W = Qx − iQy = −∂Ω

∂z
(2.8)

where W is termed the discharge function, and Qx and Qy[L
2/T ] are the vertically-integrated
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discharge components, given by:

Qx =

h
∫

0

qxdz′ Qy =

h
∫

0

qydz′ (2.9)

where h[L] is the saturated thickness of the domain, qx and qy[L
3/T ] are components of the specific

discharge vector, and z′ is the vertical coordinate measured from the aquifer base. The discharge

function is evaluated via superposition of element discharge functions in the same manner as the

complex potential. Thorough discussions and surveys of the mathematical principles behind the

analytic element method may be found elsewhere (Strack 1989; Haitjema 1995; Janković 1997; Fitts

2002; Strack 2003).

The vertically-averaged horizontal velocity components vx and vy, essential for transport sim-

ulation, are related to Qx and Qy by:

vx =
Qx

hθ
vy =

Qy

hθ
(2.10)

where the porosity, θ, may be any continuous function of space (e.g., analytic, radial basis function,

piecewise continuous, etc.) and the saturated thickness, h, is a function of the hydraulic head and

thickness. The functional form of the porosity has no effect upon the flow solution.

While it is adequate for the flow solution to express the leakage/recharge outflux N in its

aggregate form, the magnitude of each component must be specified for transport modeling. The

following convention is used:

N = N−
t + N−

b − N+
t − N+

b (2.11)

where N−
t [LT−1] is the volumetric loss of water per unit area through the top of the aquifer,

N−
b [LT−1] is the loss of water through the bottom of the aquifer, N+

t [LT−1] is the gain of water

through the top of the aquifer, and N+
b [LT−1] is the gain of water through the bottom of the

aquifer. All values are positive.

Due to the analytic element representation, the velocity, saturated thickness, recharge/leakage

terms, and porosity may all be expressed as continuous functions of x-y coordinates. This allows

for highly accurate particle tracking though continuous domains and continuous representation of

species-specific dispersion coefficients, which are dependent upon velocities. It is important to note

that the steady-state flow assumption often used in AEM is not necessarily a limiting factor in
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solute transport modeling. Contaminant transport problems often involve long time scales where

the short-term transients are often unimportant (Frind and Matanga 1985).

2.2.2 Vertically-Averaged Transport

For the approach presented in this dissertation, the applicable governing equation is the vertically-

averaged advective-dispersive transport equation with sorption and reaction. The traditional three-

dimensional advection-dispersion equation with retardation for a single solute may be expressed as

(adapted from Bear (1972)):

Rf
∂c

∂t
= −1

θ
∇(~qc) +

1

θ
∇ (Dθ · ∇c) (2.12)

where c is the concentration of the solute at a point in space, Rf is the retardation factor, and D

is the three-dimensional dispersion tensor. Assuming no variation of concentration or flux in the

vertical direction (∂c/∂z = 0; ∂q/∂z = 0), this equation may be integrated in the vertical direction

to obtain a vertically-averaged formulation (adapted from Bentley and Pinder (1992), Gray (1982),

and Yeh (2000)):

hθRf
∂C

∂t
= − ∂QxC

∂x
− ∂QyC

∂y

+
∂

∂x

(

hθDxx
∂C

∂x

)

+
∂

∂x

(

hθDxy
∂C

∂y

)

+
∂

∂y

(

hθDyx
∂C

∂x

)

+
∂

∂y

(

hθDyy
∂C

∂y

)

+ N+
t c+

t + N+
b c+

b − N−
t C − N−

b C

(2.13)

Where c+
t and c+

b are the concentrations of water entering the system through the top and bottom

of the aquifer, respectively. This revised formulation only has two spatial dimensions, and the

dependent variable is the vertically-averaged concentration, C, defined as the aqueous concentration

averaged over the saturated thickness of the aquifer:

C(x, y) =
1

h

h
∫

0

c(x, y, z′)dz′ (2.14)

Where z′ [L] is the vertical coordinate measured from the base of the aquifer. If the advective

terms (∂QxC/∂x, ∂QyC/∂y) of equation 2.13 are expanded using the chain rule, a first-order term
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is obtained:

−∂QxC

∂x
− ∂QyC

∂x
= −Qx

∂C

∂x
− Qy

∂C

∂x
−
(

∂Qx

∂x
+

∂Qy

∂y
− N−

t − N−
b

)

C (2.15)

From a mass balance on water in the system, the rightmost term reduces to −(N+
t + N+

b )C, and

the governing equation may be rewritten as:

hθRf
∂C

∂t
= − Qx

∂C

∂x
− Qy

∂C

∂y

+
∂

∂x

(

hθDxx
∂C

∂x

)

+
∂

∂x

(

hθDxy
∂C

∂y

)

+
∂

∂y

(

hθDyx
∂C

∂x

)

+
∂

∂y

(

hθDyy
∂C

∂y

)

+ N+
t

(

c+
t − C

)

+ N+
b

(

c+
b − C

)

(2.16)

where N+
t and N+

b [LT−1] are the influxes of fluid from the top and bottom of the domain, re-

spectively (both are components of the net vertical flux, N), and c+
t and c+

b are the concentrations

of solute in this recharged water. Additional source and sink terms (often considered boundary

conditions for this governing equation) may also be included in this formulation. This form of the

governing equation is valid for both discrete and continuous parameterization.

Equations 2.13 and 2.16 have been labeled the “divergence form” and the “convective form”

of the solute transport equation, respectively (Diersch 1998a; Gresho and Sani 1998). They are

distinguished by the inclusion or exclusion of the flow mass balance equation and, if the flow

equation is met exactly, are identical. However, the convective form is more susceptible to errors

introduced by improper spatial and temporal discretization of the flow system (Saaltink et al.

2004; Gresho and Sani 1998), and may not preserve mass balance if the level of discretization is

insufficicent.

While there has been some research into the vertically-averaged transport formulation (Gray

1982; Bentley and Pinder 1992; Yeh 2000), robust implementations of this approach have been over-

looked with the advent of three-dimensional models. However, regional scale transport models may

benefit from a two-dimensional representation with reduced computational and data constraints.

Also, single-layer three-dimensional contaminant transport models are commonly used in practice.

Such “truncated-dimension” models may not adequately account for the implied vertical averag-

ing, especially in unconfined aquifer systems. Finally, two-dimensional analytic element models are
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commonly used for regional flow modeling. To effectively model transport using these existing flow

solutions, an accurate and robust vertically-averaged formulation is needed.

2.2.3 The Finite Difference Method

The basic finite difference method for solving partial differential equations operates by discretizing

the problem domain using a rectangular grid. The unknown variable C(x) (where x is the position

vector) is assumed to be well approximated by its average value over the grid cell, Cij (where i and

j denote the column and row, respectively, of the grid cell). Once the unknown variable is expressed

in this discrete fashion, the spatial and temporal derivatives may be written in terms of discrete

algebraic finite difference approximations. Such approximations are obtained from a truncated and

rearranged Taylor series expansion. A Taylor series expansion expresses any continuous function

C(x) at one location (x) by its value and that of its derivatives at another location (a). In one

dimension, the Taylor series may be written as

C(x) = C(a) +
∂C

∂x









a

(x − a) +
∂2C

∂x2









a

(x − a)2

2!
+

∂3C

∂x3









a

(x − a)3

3!
+ ... (2.17)

By rearranging this expression, an approximation of the first derivative at a is available based on

the values of C at x and at a

∂C

∂x









a

=
C(x) − C(a)

x − a
−
[

∂2C

∂x2









a

(x − a)

2!
+

∂3C

∂x3









a

(x − a)2

3!
+ ...

]

(2.18)

The term in the square brackets is the error associated with truncation of the Taylor series. In

the finite difference method, this low order approximation is expressed in terms of the average or

representative values over the grid cell, Cij , and the distance between grid cell centers, ∆x and

∆y, instead of the value (x − a). Expressing the truncation error as E, a simple finite difference

approximation of the first derivative of C may be written as

∂C

∂x









ij

≈ Ci−1,j − Cij

∆x
− E(∆x) (2.19)

By varying both the number of terms retained in the Taylor series and the choices for how x and

a are defined, both low and high order finite difference approximations may be written for spatial

and temporal derivatives. These finite difference approximations are written in terms of discrete
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quantities (the unknown values of Cij , Ci+1,j−1, etc.) and are algebraic in form. By expressing a

partial differential equation (PDE) in terms of its constituent finite difference approximations, an

algebraic equation may be used as an approximation of the PDE at each grid cell. The resultant

system of equations may be solved using standard linear matrix algebra algorithms (e.g., Gauss

elimination), resulting in an adequate approximation of the solution for the actual partial differential

equation. The accuracy of these methods is generally linked to the truncation error term, E, which

is a function of the spatial grid resolution (∆x and ∆y) and, for transient PDEs, the temporal

resolution (∆t).

2.2.4 The Finite Element Method

Finite element solutions consider a differential equation of the form:

£(C(x, t)) − F(x, t) = 0 (2.20)

where £ is a differential operator in space, x, and time, t, C is the field variable (vertically-averaged

concentration in this case), and F is a known “forcing” function, which often includes the influence

of boundary conditions. Finite element methods define an approximate solution, Ĉ of the form:

Ĉ(x, t) =
NN
∑

i=0

Ni(x, t)Ĉi (2.21)

where Ni are interpolation functions (also referred to as basis or “shape” functions), Ĉi are the

unknown values of the concentration field at the nodes of the FE mesh, and NN is the number of

nodes in the FE mesh. When the approximate solution is substituted into (2.20), the differential

equation is no longer satisfied exactly, and creates a residual, R(x, t):

£(Ĉ(x, t)) − F(x, t) = R(x, t) 6= 0 (2.22)

In the method of weighted residuals, the residuals at the nodes of the problem domain, Ω, are set

to zero:
∫

Ω

w(x, t)
[

£(Ĉ(x, t)) − F(x, t)
]

dΩ = 0 (2.23)
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where w(x, t) is the weighting function, which assigns weights to each residual. To evaluate this

equation, we must specify the mathematical form of the approximate solution, Ĉ(x, t) and the

weighting function. In the finite element Galerkin method, the functional forms for N(x, t) and

w(x, t) are the same. Within this dissertation, the upstream-weighted Petrov-Galerkin method

is also considered, where the weighting function is not equal to the shape function for terms in-

volving advection. Only low-order linear triangle basis functions are considered (see appendix D).

However, much of the analysis contained herein is equally valid for other basis function types (i.e.,

quadrilateral, hermite, etc.).

Finite element methods, well-explained by Huyakorn and Pinder (1983) and thoroughly ana-

lyzed for advection-dispersion simulations by Gresho and Sani (1998), are able to minimize the

computational demand of the preceding problem by discretizing the domain into “finite elements”.

The nodal weighting functions and basis functions are defined as only being non-zero within el-

ements adjacent to the node they are associated with. This simplifies the problem considerably,

and still provides much flexibility in the geometry of the problem. However, requirements of this

revised method demand intelligent discretization of the system and require extensive bookkeeping

and complicated algorithms for computing the integrals in the residual term. The accuracy of FE

methods depends upon (1) the malleability of the approximate solution (the mesh resolution, order

of the basis functions, etc.) and (2) the accuracy of the residual integration.

2.2.5 Discretization Constraints: Peclet and Courant Numbers

As briefly discussed previously in this chapter, both finite difference and finite element methods for

transport simulation are limited by constraints upon spatial and temporal discretization. There are

four primary constraint types considered here: two (Peclet and Courant constraints) are associated

with the solution of general advection dispersion equations. These constraints, required for accurate

and stable solution of the solute transport equations, are best expressed in terms of grid- or mesh-

based dimensionless variables, as discussed below. The second two constraints, labeled here the

“adjacency” constraints and the “row-column” constraints, are associated with discrete solution of

any partial differential equation (though the row-column constraint is a limitation only of finite

difference methods).

The Peclet number, Pe indicates the relative influence of advective transport to dispersive

transport, and is given as (Peaceman 1977):
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Pe =
vL

D
(2.24)

Where v is the velocity, D is the dispersion coefficient, and L is a representative length scale. For

simulation models, the “grid Peclet” or “mesh Peclet” number is defined with the length scale set

equal to the local representative grid or mesh spacing. Within this dissertation, the representative

length scales, ∆L, for any rectangular grid cell or triangular finite element are given as:

∆L =















min(∆xi, ∆yj) for FD grid cell i,j

√
2A(e) for FE element e

(2.25)

Where A(e) is the area of finite element e and ∆xi and ∆yj are the grid spacings of finite

difference cell ij. Dispersion is considered to dominate when the Peclet number is much less than

one, and advection is considered to dominate when it is much greater than one. For simulation of

both advection and dispersion, the unconditionally stable Crank-Nicholson implementation of the

finite difference method requires that grid Peclet numbers be less than 2 to avoid oscillation of the

solution (Huyakorn and Pinder 1983). The equivalent Crank-Nicholson implementation of the finite

element method requires mesh Peclet numbers less than 10 (Huyakorn and Pinder 1983), though

other sources recommend Peclet numbers less than 4 (Voss 1984). Note that finite element methods

have less stringent requirements on the node density to avoid oscillations, and therefore reduced

constraints on the total number of degrees of freedom in the model. In order to meet the Peclet

constraints, grid/mesh resolution usually must be the same order or smaller as the hydrodynamic

dispersivity. Thus, highly dispersive systems can have fewer degrees of freedom and still avoid

oscillation of the solution.

Another dimensionless number, the Courant number, is used to determine the appropriate tem-

poral discretization required for non-reactive transport (individual reactions often require shorter

time steps for accurate and stable simulation). The Courant number, Cr, is defined as (Peaceman

1977):

Cr =
v∆t

∆L
(2.26)

The Courant number is an indicator of the speed of advection relative to the mesh. If Cr << 1,



CHAPTER 2. BACKGROUND 37

then a parcel of solute within the grid cell will likely have stayed inside of the grid cell during the

duration of the time step. If Cr >> 1, then the parcel will have entered and exited many grid cells

or finite elements before the end of the time step. Without dispersion or diffusion, fully Eulerian

approaches for solving any advection phenomenon are unstable when the Courant number is greater

than one. This requirement, based upon the inability of discrete numerical methods to transfer

information at a speed greater than ∆x/∆t, is called the Courant-Friedrichs-Lewy (or CFL) sta-

bility criterion (Hoffman 1992). With dispersion (either numerical or intentional), this requirement

is relaxed. Implicit or Crank-Nicholson approximations to the temporal derivative will provide

unconditionally stable, but conditionally accurate solutions to the governing equations. Therefore,

a maximum Courant number of one is still suggested for most even mildly complex simulations

(Huyakorn and Pinder 1983). In addition, certain reaction formulations require Courant numbers

that are even smaller than required for non-reactive transport simulations. When equilibrium or

kinetic sorption is handled using operator-splitting, Courant numbers as low as 0.01 may be re-

quired to adequately characterize the interaction between mobile and immobile phases. While the

Courant constraint is generally considered a means of determining the temporal discretization (∆t),

it can also be considered as an inverse constraint upon spatial discretization (i.e., shrinking ∆l can

lead to a computationally inhibitive ∆t).

As can be seen from the above constraints, the spatial and temporal discretization process

is highly dependent upon the flow-based parameters (v; D) that fuel the governing equation for

reactive solute transport. However, there are additional requirements of grid or mesh discretization

needed for accuracy. The adjacency constraint, a property of both finite difference and finite element

methods, requires that adjacent grid cells or elements be of similar size. For finite elements, this

requirement stems from the improved behavior of condensed element geometry (e.g., an equilateral

triangle) over long, thin elements (Knupp 2000; Shewchuk 2002). To ensure that each element

is roughly equilateral, adjacent elements must be of similar size. For finite difference methods,

truncation error is higher for grids that have nonuniform spacing. The degree of error is proportional

to the change in spacing (as well as the size of the spacing). A general rule-of-thumb (as reported

by Zheng and Bennett (2002)) is to increase grid spacing by no more than a factor of 1.5 or 2.

A final constraint, specific to the finite difference method, is the “row-column” constraint.

Because the standard finite difference method operates upon a rectangular grid, the grid spacing

must be uniform for each row and column. Therefore, even though fine discretization may only be
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required at a single point, the small grid spacing is propagated across the entire gridded domain.

Multigrid techniques (e.g., that of Leake and Claar (1999)) have been developed specifically to deal

with this wholly geometric constraint.

In addition to the constraints above, it is desirable to have higher discretization in areas with

high concentration gradients, in order to sufficiently resolve the complexity of the plume. However,

such a discretization constraint is dependent upon the results of the transport model, and thus

often cannot be determined until the simulation process has begun.



Chapter 3

Methods

The following section discusses in detail the software, algorithms, and new methods developed for

this dissertation. The first of these developments is the software architecture upon which most of

the research rests, the object-oriented flow and transport libraries developed specifically for this

dissertation. The benefits of object-orientation are introduced and the structure of the libraries

is presented and explained in section 3.1. A general calculation for estimating mass balance is

presented in section 3.2. This is followed by an in-depth explanation of revisions applied to existing

contaminant transport algorithms to effectively use AEM flow solutions and better account for

continuous parameterization. Section 3.3 discusses the development of techniques for solving finite

difference models of contaminant transport using translated AEM fluxes. Section 3.4 discusses the

development and implementation of a new “effective parameter” method for modeling vertically-

averaged transport using continuous representations of parameters. Section 3.6 and 3.7 discuss the

development of a graded-parameter finite element method for use with analytic flow solutions. Many

of these developments are primarily algorithmic in nature; but their implementation resulted in

multiple fundamental observations about modeling with continuous parameters. Most importantly,

this work represents the first fundamental analysis of the requirements and revisions required to

use AEM flow solutions as a basis for transport simulation.

Much of section 3.3.2 was published in the proceedings of the Computational Methods in Water

Resources 2004 International Conference (Craig and Rabideau 2004).

39



CHAPTER 3. METHODS 40

3.1 Object-Orientation

3.1.1 Motivation

Many of the computer models in the environmental sciences are “legacy” models, a term commonly

used to describe computer programs written in Fortran in the mid-seventies and updated by major

rewrites. The process of maintaining and modifying such codes can be intimidating, as many of

these codes are written in a style that does not allow for simple revision. The acceptance of object-

orientated programming (Booch 1994) has been a slow process for the scientific community due to

the steep learning curve, the persistence of legacy code, and the once slower speed of many object-

oriented programming languages. However, object-oriented programming has design benefits that

enhance the understandability and modifiability of scientific code, potentially leading to a higher

rate of development of environmental simulation algorithms.

To accommodate revision and addition, and to insure the extendibility of the code developed for

this dissertation, object-oriented implementations of both the groundwater flow model (Bluebird)

and the contaminant transport models (Cardinal) have been developed in C++. A thorough

discussion of the object-oriented implementation of Bluebird is given by Craig (Craig 2002),

included in the digital appendix. Many of the object-oriented constructs, such as inheritance and

encapsulation of data within object structures, are directly applicable to the inherently object-

oriented nature of the analytic element method. Similarly, various transport simulation schemes

use many of the same constructs and conceptual models (i.e., pathlines, grids, meshes) in their

solution. These models benefit from an object-oriented implementation by the re-use of these data

structures and a common conceptual model. Additionally, an object-oriented implementation allows

for unification of multiple methods (i.e., analytic solutions along streamlines working in tandem

with fully Eulerian numerical schemes). In an object-oriented framework, a library of methods,

reaction schema, and solution techniques may be easily revised and supplemented.

3.1.2 Flow Modeling Library: Bluebird

The Bluebird library contains a suite of classes and algorithms for modeling two-dimensional

flow with the analytic element method. Details about the library are provided in the Bluebird

Developers manual (Craig 2002), included in the digital appendix. The general organization and

functionality is discussed here. A basic working knowledge of the concepts of inheritance, data
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encapsulation, instantiation, and communication in object-oriented programs is assumed. Readers

is referred to Booch (Booch 1994) for an introductory discussion of these concepts.

The analytic element method, by its very nature, lends itself to an object framework based

upon elements as the atomic classes. Elements each have their own geometric data (coordinates,

shape), mathematical data (coefficients), and functionality (harmonic functions associated with the

element). Individual elements may have very similar functional form but often different boundary

conditions, suggesting the usefulness of inheritance relationships. The very nature of analytic

elements seems to suggest the structure of the code.

Individual element structure and functionality are the primary sources of complexity in any

software implementation of the analytic element method. For this reason, the focus of an OO

implementation of the method is a robust classification of these elements, their similarities, and

their dissimilarities. To effectively classify analytic elements into an object-oriented structure, a

general description of the definition and requirements of an individual element is needed. An

analytic element may be generically defined as having:

• Coordinates/dimensions that fully describe its location, shape, and orientation.

• An associated functional form/type including coefficients that, when associated with the

appropriate function, describe the influence of the element in a domain

• A corresponding real-life entity/hydrogeologic feature, with a name and associated boundary

conditions

Independently from the rest of the system, any one of these elements should be capable of providing:

• Geometric data about its borders

• Its contribution to the potential, complex discharge, divergence, curl, and other dependent

variables

To be useful in a software implementation, an element data structure requires (1) access to particular

information and (2) certain internal functionality. These requirements include:

• Access to information about the potential, complex discharge, and aquifer properties (e.g.,

conductivity) at its boundaries. This information may only be obtained by evaluating the

influence of all other elements.
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• The ability to solve for its own coefficients, given the latter information.

• The ability to update its “owners” (layers, groups of elements organized for calculation pur-

poses (e.g., the nested superblocks of Craig et al. (2004)) or aggregate elements), either

explicitly or when requested

Not all analytic elements have the same geometry, or the same coefficient structure, or same func-

tional form. However, for an iterative solution method, any element without given coefficients has

the same “need” to know the values of potential, complex discharge, and aquifer system properties

(e.g., conductivity, base elevation, aquifer thickness) along its boundaries. To facilitate this com-

munication, each element has been provided with explicit access to the two-dimensional “layer”

in which it belongs. This layer class, CLayer, and its abstraction, CLayerABC, act both as suppli-

ers of this information and as containers for collections of elements or information about aquifer

properties. Additionally, all elements may have a name and (perhaps) a number of “subelements”

contained within it, as deemed appropriate by Strack and Barnes (Strack and Barnes 2001). Data

structures corresponding to these basic, universal needs are included in the master, or Level 1 class,

CAnalyticElem. Functionality at this level is purely virtual (an instance of CAnalyticElem has no

functional power: simply data). Subclasses (which inherit this more abstract data and function-

ality from their “parent” class) are required to “flesh out” the implementation of fully functional

analytic elements. Figure 3.1 shows the subclass levels for the analytic element inheritance scheme

as implemented in Bluebird. The complete implementation of this scheme (the hierarchy of all

analytic element subclasses) is shown in figure 3.2.

General Element 

Geometry Type 

Boundary Condition Type 

Specialized Type 

Figure 3.1: Multiple levels of inheritance subclasses for the master analytic element abstraction
CAnalyticElem
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Subclasses of CAnalyticElem are designed to be as general as possible without requiring excessive

inheritance beneath them. The groupings should be able to represent as many different types

of elements without being restricted by overburden of data within each element (for example, a

polygonal element shouldn’t have the burden of holding an empty “radius” variable). Therefore,

the design of Bluebird was such that the geometry and functional form were all encapsulated

at the level directly beneath the master class (Level 2). This minimizes overhead, because the

harmonic functions associated with the elements are evaluated at only one level of inheritance.

At the same time, it maximizes generality, allowing head-specified linesinks and inhomogeneities

(which have similar functional form but different boundary conditions) to be represented by the

same class. Most of the virtual CAnalyticElem functions (for Φ, W , γ, β) are defined at this level.

A given instance of a level 2 subclass (e.g., CStringElem in fig. 3.2) is also not fully functional, as

it is still missing the ability to solve itself; it has no boundary conditions associated with it.
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1

1

1

1

Figure 3.2: Bluebird library class organization. Class inheritance is depicted by arrows, and 1:1,
1:N, and N:N container relationships are also depicted. The primary class, CAnalyticElem is the
master class for all analytic elements.

At the bottom (3rd) level of inheritance, the specific boundary condition type is the subdivision
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criteria. Each instance of these third-level classes (e.g., CRiver) represents an element in its most

complete configuration, with specific boundary conditions (defined at level 3), geometry (defined

at level 2), and functional form (also defined at level 2). In addition, it has the generic data and

functionality rendered to it via the level 1 CAnalyticElem parent class. The only virtual subroutine

redefined at the 3rd level is the algorithm for “self-solution”. All of the other CAnalyticElem

functionality is located one level up within the Geometric/Functional subclasses.

In addition, a 4th level of inheritance may be envisioned (i.e., for special elements that meet

different variations of the same boundary conditions, such as a resistance lake).

Aquifer

Top Layer

Bottom Layer

Aquitard

Elements

Figure 3.3: The abstraction of an analytic element model. Elements are contained by layers or
aquitards, which in turn are contained by the aquifer.

A complete model configuration is shown in figure 3.3. A generic set of analytic elements

CAnalyticElem are contained within a layer. This layer, in turn, is contained within a multi-layer

aquifer (CAquifer), as are aquitards (CAquitard). The general solution process (shown in detail in

figures 3.5 and 3.6) proceeds via solution of the aquifer, which requires iterative solution of its

contained layers. These layers, in turn, are solved in an iterative element-by-element fashion (as

discussed by Janković and Barnes (Janković and Barnes 1999a)). Individual analytic elements have

internal functionality that allows them to calculate their own coefficients based upon their known

boundary conditions and the current system conditions, as provided by their access to the CLayer

abstract base class, CLayerABC. In addition, abstract OO classes for nested superblock structures

(Craig et al. 2004) have been implemented. These structures may be superimposed upon groups
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of elements within a single layer to reduce the per-iteration cost the iterative solution process. The

awareness of all of these classes to each other is shown in figure 3.4.

CLayerCSuperblock CAquitard 

CLayerABCCOwner CAquitardABC 

Purely virtual abstract classes

CFlowNode 

CInhom 

CBaseInhom 

CConductInhom 

Property Elements 

CRiver

CStage 

CCirLake

Surface Water Elements

Denotes “aware of” 

(Relationship is cumulative) 

CAnalyticElem

CPropZone 

CEllLake

CCirReservoir

CEllReservoir

Figure 3.4: Bluebird library class awareness. Analytic elements are only aware of the most
abstract form of the layer that they are in, through which they may request information such as
the potential from other elements or the hydraulic conductivity.

The process of developing, solving, and analyzing the results from an analytic element model

heavily depends upon not only the configuration of the analytic element class hierarchy and func-

tionality, but requires certain auxiliary classes and driver routines. The reader is referred to the

Bluebird developer manual (Craig 2002) for detailed information about these classes.
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Figure 3.5: Flow chart of generic Bluebird iterative solution algorithm. The potential evaluation
function is depicted in Fig. 3.6
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Figure 3.6: Flow chart of discharge potential evaluation in the Bluebird library
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3.1.3 Transport Modeling Library: Cardinal

The object-oriented Cardinal library contains a suite of classes and algorithms for modeling two-

and three-dimensional reactive contaminant transport using a wide variety of transport algorithms

and a fully abstract representation of the aquifer. It has been designed specifically for use in

conjunction with Bluebird.

The structure of Cardinal is designed for maximal modifiability: additional algorithms for

hydrodynamic and reactive transport may be added with minimal modification of the original code.

The primary means of ensuring this modifiability is the use of operator-splitting algorithms. The

processes of advection, dispersion, and reaction, which in reality occur simultaneously, may be

simulated sequentially over a given time step (note that this does not preclude the addition of

schemes that model both simultaneously). Operator-splitting allows algorithms for hydrodynamic

(advective and dispersive) transport algorithms to be developed independently from chemical re-

action modules. This approach does not preclude the development of globally implicit algorithms

for solving reaction and transport simultaneously. Rather, the current implementation embraces

the independence of the two processes. In addition, the Cardinal library is not reliant upon

any particular grid or mesh formulation. Finite element, finite difference, or finite volume mesh

discretization are all equally viable.

The two primary OO classes used as a basis for contaminant transport are the “transport

scheme” (CTransportScheme) and the “reaction scheme” (CReactionScheme). An instance of the

transport scheme may take a spatial distribution of concentrations at the start of a given time step

of interest and returns the updated spatial distribution of concentrations at the end of the time

step, after advection and dispersion have been simulated. Likewise, the reaction scheme takes a set

of aqueous and immobile concentrations (not associated with any particular spatial location) and

returns the updated concentrations at the end of the time step.

In addition to the primary classes that simulate the transport and reaction of contaminants, the

Cardinal library contains a suite of other classes for transport simulation. Included in this auxil-

iary group are a generic isotherm class (CIsotherm), a generic particle class (CParticle), and generic

source/sink classes (CAreaSource, CPointSourceSink, CLinearSourceSink). New isotherm types or

source conditions may be added with minimal effort. All of the information regarding the entire

simulation domain (including sink/source geometry, grid/mesh information, transport schemes, and

reaction schemes) are stored in a “driver” class, CChemDomain. CChemDomain is analogous to the
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CAquifer class in the Bluebird library, in that it may be viewed as a “container” class that holds

information about the entire system.

The class organization diagram for Cardinal is shown in figure 3.7. Note that the interaction

between classes is significantly more complicated than the Bluebird library, which is primarily

comprised of different subclasses of analytic elements. The predominant classes of the transport

library, however, are the transport and reaction schemes. New transport schemes and new reactions

may be added with minimal modification of the library.

CSpecies

CParticle 

CPathline

CMassParticle

CStreamline 

C2DMeshABC

C2DTriMesh

C2DRectGrid

CMOC

CMMOC

CRandomWalk

C2DFEEulerian
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C2DDomainABC 

CLinearSourceSink

CPointSourceSink

C2DAreaSource

CPolyAreaSource

CEllAreaSource

CAquiferABC CLayerABC

CReactionScheme

CBasicDecay

CCationExchange

…

CIsotherm 

CLinearIsotherm

CFreundlichIsotherm

CLangmuirIsotherm

Denotes awareness relationship 

Denotes inheritance relationship (cumulative) 

Denotes “friend” relationship 

Figure 3.7: The Cardinal library class organization.

Simulation of hydrodynamic transport of contaminant requires information about the spatial

distribution of groundwater velocities and saturated thicknesses, which are generally obtained via

a numerical flow model. Access to this information in Cardinal is limited to select knowledge of

only two classes in the connected Bluebird library (see section 3.1.2), the abstract aquifer class,
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CAquiferABC and the abstract layer class, CLayerABC, as shown in figure 3.7. While these entities

currently represent flow fields associated with analytic element flow solutions, finite difference or

finite element solutions may also be used. Cardinal does not “know” the source of its velocity

information. Thus the flow engine and transport engine are only loosely bound to each other, but

the essential communication of information is fully preserved.



CHAPTER 3. METHODS 51

Begin

Parse Input File 

solve=true
T

F
Solve Flow 

Problem

End 

Parse/Create Domain 

Create/Fill Domain 

Change Values, Settings 

Read Flow 

Solution

Initialize Domain 

Distribute Sinks/Sources 

Reserve Memory

Initialize Transport Scheme

Initialize Reaction Scheme 

t=StartTime 

Plot Initial Conditions 

done=true 
F

T

Transport Solute 

React

converged 

F

T

Calculate Mass Balance

Output Mass Balance, observation data 

t=t+ t

t=output

time

T

F

Plot Concentrations 

Write Output

Batch react at node i

i< # nodes 
T

F

i=i+1

Identify time step constraints 

Initialize necessary matrices 

Track steady-state pathlines, etc. 

Figure 3.8: Flow chart of generic Cardinal transport algorithm
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3.2 Mass Balance Accounting

For numerical contaminant transport models that are used for regulatory or management decisions,

it is important to provide an assessment of model quality. A particularly useful measure of numerical

performance is the mass balance of aqueous and sorbed species. If a numerical approach does not

preserve this mass balance, it is unclear whether predicted changes in concentration are due to the

modeled process or the numerical method used. For this reason, a comprehensive suite of mass

balance accounting tools have been implemented in Cardinal. These tools are used primarily to

quantify the mass balance error in a given model, and are particularly important for rigorously

evaluating the new methods introduced within this dissertation.

In a typical contaminant transport model, there are a variety of sinks and sources of contaminant

mass. Mass may be lost or gained by the following means:

• Advection and dispersion across system boundaries

• Addition by source terms, which may be specified mass influx (“dry” condition), specified

influx concentration (“wet” condition), or Dirichlet boundary conditions

• Removal by sink terms, which may be “natural” mass outflux or Dirichlet boundary condition

• Chemical reaction (e.g., decay)

Each transport algorithm represents concentration, sources, sinks, and advection in different

ways. Therefore, the appropriate means of calculating contaminant loss must be developed specif-

ically for each method. However, the cumulative mass balance error for a single species, εMB, for

all methods is calculated as follows for time n:

εMB = 2

(Mn − M0) +
n
∑

n=0
(∆Mn

bound + ∆Mn
source + ∆Mn

sink + ∆Mn
dir + ∆Mn

rxn)

Mn +
n
∑

n=0

(

∆Mn
source + ∆Mn

dir

)

+ M0 −
n
∑

n=0

(

∆Mn
sink + ∆Mn

rxn + ∆Mn
bound

)

(3.1)

Where Mn is the mass in the system at time n, ∆tn is the simulation time step, and the ∆Mn terms

correspond to the change in mass over time step n for the various loss/gain terms (bound=boundary

loss (-); source=source gain (+); sink=sink loss (-); dir=dirichlet source gain (+); rxn=mass lost

to reaction(-)).
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The mass balance error expression given above is not particular to any contaminant transport

simulation algorithm. The expressions for the various terms in equation 3.1 are provided in appendix

E for both finite difference methods and finite element methods.
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3.3 Using AEM for Finite Difference Transport Simulation

Eulerian and Eulerian-Lagrangian finite difference-based transport models (e.g., those found in

MT3DMS (Zheng and Wang 1999)) are the prevailing technique for simulating contaminant trans-

port in aquifers. Finite difference methods are mathematically simpler than finite element or finite

volume methods, yet robust in their treatment of many complex transport systems. Finite dif-

ference models solve a discretized version of the governing advection-dispersion equation shown in

equation 2.2 on a finite difference grid, with face- and cell-averaged fluxes of water as input. This

typically requires a finite difference-style representation of the flow system (e.g., that of Modflow

(McDonald and Harbaugh 1988)). Therefore, the first (and most basic) step towards using AEM as

a basis for contaminant transport is to translate analytic element fluxes into a finite difference ana-

logue. These discretized fluxes can then be used as input into an existing two- or three-dimensional

finite difference transport simulator (e.g., MT3DMS), or they may be used within a new vertically-

averaged finite difference formulation, as done here.

The following subsections describe a new Eulerian algorithm for solving the vertically-averaged

transport equation (equation 2.16) using a finite difference method on a rectangular grid with

uneven spacing and arbitrary angular orientation. The first subsection (3.3.1) describes how to

use the finite difference method to discretize and solve the governing equation given initial and

boundary conditions. The second subsection (3.3.2) describes the steps required to translate the

AEM flow solution (fluxes and saturated thicknesses) so that it may be used as input to this

finite difference transport model. This translation process is primarily focused upon preserving the

highly accurate water balance provided by the analytic element method. While the stability and

accuracy of finite difference methods are important, they are discussed only briefly here, as they

are only minimally affected by the use of analytic element flow solutions, once the water balance is

maintained.

The methods discussed below have been implemented in Bluebird and Cardinal and bench-

marked against analytic solutions (subsections 4.1.1and 4.1.2) and the numerical model MT3DMS

(subsection 4.1.3). In addition, a translator has been developed (based upon the methods in section

3.3.2) to export highly accurate AEM fluxes calculated by Bluebird into MT3DMS input files.

The finite difference transport implementation discussed here is the first to fully utilize the

analytic element method. In addition, to the authors knowledge, it is the first finite difference
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simulator designed specifically to solve the vertically-averaged transport equation.

3.3.1 Finite Difference Approximation of the Vertically-Averaged ADE

The vertically-averaged transport equation (equation 2.13) is rewritten here as

Rf
∂C

∂t
= − 1

hθ

∂QxC

∂x
− 1

hθ

∂QyC

∂x

+
1

hθ

∂

∂x

(

hθDxx
∂C

∂x

)

+
1

hθ

∂

∂x

(

hθDxy
∂C

∂y

)

+
1

hθ

∂

∂y

(

hθDyx
∂C

∂x

)

+
1

hθ

∂

∂y

(

hθDyy
∂C

∂y

)

+
N+

t

hθ
c+
t +

N+
b

hθ
c+
b − N−

t

hθ
C − N−

b

hθ
C

(3.2)

Where the notation is the same as that defined in section 2.2.

Note that the “divergent” formulation of the transport equation (rather than the equivalent

“convective” formulation shown in equation 2.16) is chosen for approximation by finite differences.

By handling the advective and dispersive parameters from inside the partial derivative terms,

consistency of mass flux between cells is ensured, thereby maintaining mass balance.

i-1,j+1C

i-1,jC

i-1,j-1C

i,j+1C

ijC

i,j-1C

i+1,j+1C

i+1,jC

i+1,j-1C

i,j+1/2C

i,j-1/2C

i-1/2,jC i+1/2,jC

Figure 3.9: Grid notation for irregular finite difference grid. Row values are indexed with j and
columns are indexed with i. Interfacial values are noted with subscripts of 1/2 (e.g., Ci+1/2,j is the
face-averaged concentration at the interface between cells (i, j) and (i + 1, j))

In the finite difference method, each of the partial derivative terms of 3.2 are expressed as finite

difference approximations, which may be obtained from truncated Taylor series of the continuous

terms. These finite difference approximations are linked to the structure of the finite difference grid
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(shown in figure 3.9). The independent parameters (Qx, Qy, h, θ, etc.) are similarly discretized

on this grid, allowing a single equation to be written for each cell in the system. With NC cells,

there are NC equations, each corresponding to the NC unknowns of cell-averaged concentrations.

This sparse system of equations may be solved using conventional linear algebraic methods for each

time step in the transport simulation. In the Cardinal implementation, a biconjugate gradient

method is used based upon the algorithm presented by Press et al. (2002).

Each derivative term of equation 3.2 may be replaced by its finite difference equivalent. A

first-order approximation of the time derivative is given by:

∂C

∂t









ij

≈
Cn+1

ij − Cn
ij

∆t
(3.3)

where the superscript n refers to the time step used and ∆t is the time interval.

The advective term may be expressed using an upstream weighting scheme, which only in-

cludes the concentrations upstream of the cell, or a central weighting scheme, which includes both

downstream and upstream values (e.g., Zheng and Bennett (2002)). A general expression for the

advective derivative terms in the x-direction is

1

hθ

∂QxC

∂x









n+1

n

≈

(1 − ω)

(

Qx(i+1/2,j)[(1 − α)Cn
i,j + αCn

i+1,j ] − Qx(i−1/2,j)[(1 − α)Cn
i−1,j + αCn

i,j ]

hiθi[(1 − α)∆xi−1 + ∆xi + α∆xi+1]

)

+

(ω)

(

Qx(i+1/2,j)[(1 − α)Cn+1
i,j + αCn+1

i+1,j ] − Qx(i−1/2,j)[(1 − α)Cn+1
i−1,j + αCn+1

i,j ]

hiθi[(1 − α)∆xi−1 + ∆xi + α∆xi+1]

)

(3.4)

Where the subscripts (i ± 1/2, j) denote face-averaged quantities.

A similar expression is available for the advective derivative terms in the y-direction:

1

hθ

∂QyC

∂y









n+1

n

≈

(1 − ω)

(

Qy(i,j+1/2)[(1 − α)Cn
i,j + αCn

i,j+1] − Qy(i,j−1/2)[(1 − α)Cn
i,j−1 + αCn

i,j ]

h(i,j)θ(i,j)[(1 − α)∆yj−1 + ∆yj + α∆yj+1]

)

+

(ω)

(

Qy(i,j+1/2)[(1 − α)Cn+1
i,j + αCn+1

i,j+1] − Qy(i,j−1/2)[(1 − α)Cn+1
i,j−1 + αCn+1

i,j ]

h(i,j)θ(i,j)[(1 − α)∆yj−1 + ∆yj + α∆yj+1]

)

(3.5)

Here the spatial weighting factor, α, is equal to 0.5 for the central weighting scheme and either

zero or one (depending upon the flow direction in the cell) if the upstream weighting scheme is
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used. In addition to this spatial weighting, the spatial derivatives may be expressed in terms of a

weighted average of the cell values Cij from the previous time step (n) and the current time step

(n + 1). The temporal weighting factor, ω, is 0.5 for the unconditionally stable Crank-Nicholson

scheme, zero for a fully explicit scheme (one that is only expressed in terms of known concentrations

from the previous time step), or one for a fully implicit scheme (one that is expressed completely

in terms of unknown concentrations). The strengths and weaknesses of each of these numerical

schemes are discussed elsewhere (e.g., Zheng and Bennett (2002) or Hoffman (1992)). Note that

this finite difference expression does not assume a regular grid spacing. Also, for simplicity of

derivation, it is assumed that the grid is aligned with the global coordinate system of the analytic

element solution (i.e., Qx is normal to the face (i + 1/2, j)). However, in Cardinal the method

has been implemented for arbitrary grid orientation.

The interfacial normal fluxes, denoted by Qx(i±1/2,j) and Qy(i,j±1/2), represent the average

integrated discharge across the cell face between cells i and i+1 or i and i−1. If a finite difference

method is used to solve the flow problem, these values are known explicitly as a byproduct of the

flow solution. However, if the analytic element method is used, an alternative method is required

to evaluate the magnitude of these terms. If poor approximations of these average intercell fluxes

are used, the water balance (and thus the solute mass balance) will not be maintained.

The dispersion terms of equation 3.2 are represented using a central in space weighting and the

same temporal weighting ω, as the advective terms:
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(3.6)
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(3.7)

As with the interfacial integrated discharge terms of equations 3.4 and 3.5, both the interfacial
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dispersion coefficients (Dxx(i±1/2,j) and Dyy(i,j±1/2)) and the average interfacial saturated thickness,

(h(i±1/2,j) and h(i,j±1/2)) must be evaluated based upon the analytic element solution. Methods

for calculating these variables are significantly different from those of conventional finite difference

transport models (e.g., MT3DMS (Zheng and Wang 1999)), and are discussed in the following

subsection.

The cross-dispersion terms are expressed with variable time weighting and non-uniform grid

spacing as follows:
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)

−

(ω)

(

(hθDxy)(i−1/2,j)[∆xiC
n+1
i−1,j+1 + ∆xi−1C

n+1
i,j+1 − ∆xiC

n+1
i−1,j−1 − ∆xi−1C

n+1
i,j−1]

h(i,j)θ(i,j)
1
2∆xi(∆xi−1 + ∆xi)(∆yj−1 + 2∆yj + ∆yj+1)

)

(3.8)

1

hθ

∂

∂y

(

hθDyx
∂C

∂x

)







n+1

n

≈

(1 − ω)

(

(hθDyx)(i,j+1/2)[∆yjC
n
i+1,j+1 + ∆yj+1C

n
i+1,j − ∆yjC

n
i−1,j+1 − ∆yj+1C

n
i−1,j ]

h(i,j)θ(i,j)
1
2∆yj(∆yj+1 + ∆yj)(∆xi−1 + 2∆xi + ∆xi+1)

)

−

(1 − ω)

(

(hθDyx)(i,j−1/2)[∆yjC
n
i+1,j−1 + ∆yj−1C

n
i+1,j − ∆yjC

n
i−1,j−1 − ∆yj−1C

n
i−1,j ]

h(i,j)θ(i,j)
1
2∆yj(∆yj−1 + ∆yj)(∆xi−1 + 2∆xi + ∆xi+1)

)

+

(ω)

(

(hθDyx)(i,j+1/2)[∆yjC
n+1
i+1,j+1 + ∆yj+1C

n+1
i+1,j − ∆yjC

n+1
i−1,j+1 − ∆yj+1C

n+1
i−1,j ]

h(i,j)θ(i,j)
1
2∆yj(∆yj+1 + ∆yj)(∆xi−1 + 2∆xi + ∆xi+1)

)

−

(ω)

(

(hθDyx)(i,j−1/2)[∆yjC
n+1
i+1,j−1 + ∆yj−1C

n+1
i+1,j − ∆yjC

n+1
i−1,j−1 − ∆yj−1C

n+1
i−1,j ]

h(i,j)θ(i,j)
1
2∆yj(∆yj−1 + ∆yj)(∆xi−1 + 2∆xi + ∆xi+1)

)

(3.9)

Finally, the recharge and leakage source/sink term of 3.2 may be expressed in terms of cell-averaged

quantities as:

N+
t

hθ
c+
t +

N+
b

hθ
c+
b − N−

t

hθ
C − N−

b

hθ
C =

N+
t(i,j)

h(i,j)θ(i,j)
c+
t(i,j) +

N+
b(i,j)

h(i,j)θ(i,j)
c+
b(i,j) −

N−
t(i,j)

h(i,j)θ(i,j)
Ci,j −

N−
b(i,j)

h(i,j)θ(i,j)
Ci,j

(3.10)
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The preceding finite difference approximations of the terms in 3.2 may be rearranged and

assembled into a single equation for each cell (i, j) of the following form:

a1
ij

Cn+1
i−1,j−1 + a2

ij
Cn+1

i−1,j + a3
ij

Cn+1
i−1,j+1+

a4
ij

Cn+1
i,j−1 + a5

ij
Cn+1

i,j + a6
ij

Cn+1
i,j+1+

a7
ij

Cn+1
i+1,j−1 + a8

ij
Cn+1

i+1,j + a9
ij

Cn+1
i+1,j+1 = RHSij

(3.11)

where a1
ij

...a9
ij

are coefficients assembled from the previous expressions, and RHSij is the known

right hand side of the equation. Similar equations may be written for each cell.

Given a set of initial conditions (e.g., C0
ij for each ij) and a set of boundary conditions, this

system of equations may be solved for each time step, ∆t. This process is repeated over and

over again for each time step. Particular issues related to boundary condition implementation and

numerical accuracy/stability are not discussed here, as the issues are the same with fluxes derived

from analytic flow solutions as they are with fluxes obtained from finite difference solutions. The

user is referred to Zheng and Bennett (2002) for a more complete discussion of the numerical

accuracy and stability requirements of finite difference methods for transport. In this dissertation,

the primary goal is to find methods with which to accurately “discretize” the interfacial fluxes,

cell-averaged leakage/reacharge, dispersion coefficients, and saturated thicknesses.

3.3.2 Flux Discretization

As apparent from the derivation of the vertically-averaged transport equation in the previous sec-

tion, there are four necessary flow-based inputs to a finite difference transport model:

1. Average integrated Darcian flux across each cell interface, Qx(i±1/2,j) and Qy(i,j±1/2)[L/T]

2. Cell-averaged vertical fluxes, N+
t(i,j), N−

t(i,j), N+
b(i,j), and N−

b(i,j) [L/T ]

3. Volumetric source/sink fluxes to each cell, Q+|i,j , Q−|i,j [L3/T ]

4. Cell-averaged saturated thickness, hij , and face-averaged saturated thicknesses, hi,j±1/2 and

hi±1/2,j [L]

An additional quantity, often interpolated from adjacent normal fluxes in typical finite difference

methods for flow (e.g., Modflow), but available directly from analytic element solutions, are the
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average tangential integrated discharges along a cell interface (Qy(i±1/2,j) and Qx(i,j±1/2)), which

may be used to quantify the dispersion coefficient at that interface.

The distinction made here between typical source/sinks (e.g., wells, rivers) and recharge/leakage,

is based upon the different handling of the two concepts in the AEM. The remainder of this

subsection is devoted to obtaining precise and robust expressions for these five variables. Once

these variables are calculated in such a way that the local water balance is maintained, they may

be easily exported to any of the transport simulators that rely upon an integrated finite difference

(e.g., Modflow) input structure. These derivations are general, and are useful for other uses of

analytic element flow solutions as well.

Figure 3.10: Single layer finite difference mass balance on water in a cell

A water balance may be written for the finite difference cell shown in Figure 3.10:

Qx(i−1/2,j)∆y + Qx(i+1/2,j)∆y + Qy(i,j−1/2)∆x + Qy(i,j+1/2)∆x+

N+
t(i,j)∆x∆y + N+

b(i,j)∆x∆y − N−
t(i,j)∆x∆y − N−

b(i,j)∆x∆y+

ΣQ+
(i,j) − ΣQ−

(i,j) = 0

(3.12)
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where N+
t , N+

b , N−
t , and N−

b are vertical influx/outflux terms defined in section 2.2.1, averaged

over the cell.

The water balance condition of 3.12 may be expressed in terms of integrated AEM variables as:

y+∆y
∫

y

Qx(xi−1/2, y)dy +

y+∆y
∫

y

Qx(xi+1/2, y)dy+

x+∆x
∫

x

Qy(x, yj−1/2)dx +

x+∆x
∫

x

Qy(x, yj+1/2)dx+

∫

y

∫

x
[N+

t (x, y) + N+
b (x, y)]dxdy −

∫

y

∫

x
[N−

t (x, y) + N−
b (x, y)]dxdy+

ΣQ+|i,j − ΣQ−|i,j = 0

(3.13)

Here, the first four terms represent the net influx through each of the four sides of the cell, the fifth

and sixth term represent the influence of recharge and leakage, and the final terms represent the

source and sink fluxes to that cell. As will be shown, all of these integral terms can be evaluated

analytically, not only ensuring that water balance is met regardless of discretization, but also

ensuring a more accurate representation of average interfacial dispersion coefficients, which are

functions of flow velocity. Closed-form expressions for many of the integrals in equation 3.13 will

prove valuable for translation to non-finite-difference discretization schemes as well.

The following subsections describe the means of evaluating the three types of cell- and face-

integrated fluxes in equation 3.13. In addition, a means for evaluating the face-averaged dispersion

coefficients (required by the finite difference approximations of equations 3.6 through 3.9) is pre-

sented.

3.3.2-A Integrated (Net) Flux Through a Face

The net flux of water through a vertical strip of the aquifer may be calculated to an arbitrary

precision with the analytic element method. The stream function, Ψ, is a byproduct of an AEM

flow solution, and requires no postprocessing to obtain. In non-divergent domains (domains without

recharge or leakage), the stream function provides a relatively simple method for calculating the

integrated flux. If there are no discontinuities in the stream function intersecting an arbitrarily

oriented vertical face from z1 to z2, the net flux through the face may be calculated as the difference
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in the stream function calculated at its two endpoints (Bear 1972; Strack 1989):

z2
∫

z1

Qη(z)dz = Ψ(z2) − Ψ(z1) (3.14)

where Qη is the flux normal to the face. This expression is a generalization of the integrals found

in equation 3.13. Unfortunately, this simple calculation is often complicated by the existence of

“branch cuts”, element boundaries, and divergent flow along the line defined by z1 and z2. Each

of these three cases correspond to discontinuities or undefined regions of the stream function.

Therefore, three steps must be taken to properly calculate net integrated flux using the stream

function:

1. Intersecting branch cuts must be re-oriented

2. The integrated flux due to divergent elements (e.g., area sinks) must be evaluated directly

(i.e., without use of the stream function)

3. Cell face/ analytic element intersections must be identified and specially handled

To simplify the above operations for arbitrary element geometry, the integral defined in (3.14)

is redefined using the principle of superposition, and subdivided based on the influence of each

element. The resulting integral may be calculated on an element-by-element basis as:

z2
∫

z1

Qη(z)dz =

NE
∑

i=1

z2
∫

z1

Qη
i

(z)dz (3.15)

where NE is the number of elements and Qη
i

is the flux normal to the face due to element i. The

total flux due to any single non-divergent, non-intersecting element is evaluated using the element

stream function at the endpoints,
∫

Qη = Ψ(z2)
i

− Ψ(z1)
i

. However, elements that extract or inject

water into the system must first have their branch cuts redirected.

In AEM, for every element that extracts or contributes water to the system (e.g., linesinks

and point sinks), there exists a “branch cut” emanating from part of the element (zsingularity) to

infinity. This branch cut is a discontinuity in the stream function that is equal to the net flux of

the element, Qnet. The orientation of this branch cut is arbitrary, and has no effect upon the flow

solution. To reorient all branch cuts away from a given point, zp, (the center of the face where we
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are calculating flux, in this case), the element stream function may be modified using the algorithm

in Fig. 3.11.

θ1 = arg(z − zsingularity)

θ2 = arg(z − zp)

if (θ2 >= 0 and θ1 >= 0 and θ1 > θ2) then Ψ(z) = Ψ(z) − Qnet

if (θ2 < 0 and θ1 < 0 and θ1 < θ2) then Ψ(z) = Ψ(z) + Qnet

Figure 3.11: Branch cut re-orientation algorithm

The branch cuts (which by default are directed to the left of the singularity in local element

coordinates) will point in the opposite direction from the point zp. This ensures that there is no

branch cut discontinuity in the stream function intersecting the face. Thus the difference in the

stream function reflects the actual flux through the face. The results of this operation are shown

in Fig. 3.12.

Figure 3.12: Branch cuts are realigned to avoid discontinuities in the stream function through a
specified linear region

The second required modification to ensure accurate flux calculation is to incorporate the unique

effects of area-sinks. The stream function is undefined within divergent areas, and, for ease of

calculation, often assumed to be zero. However, the integrated flux can still be calculated without

use of the stream function. The element integral in (3.15) may be evaluated analytically for the

two most common area-sinks, the multi-quadric area-sink (Strack and Janković 1999) and uniform

leakage area sink. The integrated flux across a face internal to the multi-quadric area sink is (Strack



CHAPTER 3. METHODS 64

and Janković 1999):

z2
∫

z1

Qη
AS

(z)dz = −Nave
L2Yc

4
+

NAS
∑

n=0

an
Yn

6

(

L

2

)3

























(−1 − Xn)

√

(−1 − Xn)2 + Y 2
n−

(1 − Xn)

√

(1 − Xn)2 + Y 2
n +

Y 2
n ln

(
√

(−1 − Xn)2 + Y 2
n − Xn − 1

)

−

Y 2
n ln

(
√

(1 − Xn)2 + Y 2
n − Xn + 1

)

























(3.16)

where L is the length of the face, Yc is the y-location of the area sink centroid in local coordinates,

NAS is the order of the multiquadric leakage function with coefficients an and average leakage Nave,

and Xn and Yn denote the location of the multiquadric basis points in local face coordinates. The

local face coordinate system is defined as:

Z = X + iY =
z − 1

2 (z2 + z + 1)
1
2 (z2 − z + 1)

(3.17)

In the case that the cell face intersects the area sink boundary, this integration is only performed

between the intersection point and the internal point.

The final “special case” occurs when an analytic element intersects the cell face. For each

element that exhibits a discontinuity in the stream function across the cell face (e.g., linesinks or

doublets), the points of discontinuity are calculated using simple geometric algorithms. The element

influence in (3.15) is obtained as a summation of the integrals evaluated between discontinuities.

For NINT intersections of the face and the element, the flux integral is evaluated by:

z2
∫

z1

Qη
i

(z)dz =

[

Ψ
i
(z2) − Ψ

i
(z−j=1)

]

+

NINT−1
∑

j=1

[

Ψ
i
(z+

j ) − Ψ
i
(z+

j+1)

]

+

[

Ψ
i
(z+

j=NINT
) − Ψ

i
(z1)

]

(3.18)

where z+
j and z−j are the locations along the face just to the right and left of discontinuity j. These

locations are ordered along the face (i.e., |z−j − z1| < |z+
j − z1| < |z−j+1 − z1| < ...). The particular

case where the stream function is singular along the entire line from z1 to z2 (i.e., the transect

coincides with a linesink border) requires special treatment, because the normal component of flux

is doubly valued along such a border. In that case, the integral is evaluated along a slightly offset

transect.
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3.3.2-B Calculating Cell-Averaged Recharge and Leakage

In addition to calculating cell-wise interfacial fluxes, the continuous multi-quadric leakage terms

used in the analytic element method must be integrated over the cell area to obtain the appropriate

quantity of flux entering and/or leaving the cell from leakage or recharge. In typical finite difference

methods, this cell-averaged leakage is user-specified or calculated on a cell-by-cell basis. However,

AEM allows leakage to be represented as a continuous function of space. Cell-averaged vertical flux

rates can be represented in integral form as

N̄ =
1

A

∫

A
N(z)dA (3.19)

where A is the area of the cell and N(z) [L/T ] is the vertical leakage from the aquifer. Each area

sink element generally only represents a single component of this vertical flux (i.e., N+
t or N−

b ,

etc.). To ensure that this is the case, Bluebird requires separate elements to be used for positive

leakage, negative leakage, and recharge. Vertical flux components may therefore be distinguished

without numerical intervention. The integral of equation 3.19 can be evaluated for any area sink

numerically using Gaussian quadrature. In most cases, such a numerical implementation could be

more efficient than the analytic solution, but less precise. To preserve mass balance exactly, the

analytic solution is evaluated below.

The analytic solution for the integrated recharge/leakage flux is obtained by equating the flux

of water into any internal portion of an area sink with the net flux out through that portion’s sides,

i.e.:
∫

A
N(z)dA =

∫

s
Qη
AS

(z)ds (3.20)

where s is the perimeter of the internal area over which integration is being performed. For an

area boundary defined by linear segments, this integral is a summation of the expression found in

(3.16) over the linear sides of the area, and may be evaluated analytically for each side of the cell

perimeter. For any cell fully internal to the area sink, this result is exact. Likewise, cells fully

external to the area sink will have an exact net leakage/recharge flux of zero. However, if a cell is

only partially contained by the area sink, the integral must be carefully evaluated as a summation

of carefully delineated sub-integrals to maintain the quality of the solution.

Exact flux results may be obtained for cells partially contained within an area sink by simple
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geometric calculations to obtain the integration subareas. The algorithm described below performs

integration of the leakage over an arbitrary triangular area (e.g., half a finite difference cell), as-

suming only that only a single connected portion of the area sink overlaps the triangular cell. This

assumption is always valid if the smallest distance between area sink vertices is less than the max-

imum triangular side lengths. This will be the case for typical models of flow and contaminant

transport.

(b)

(a)

(c)

(d)

(e)
(f)

(f)

Figure 3.13: Six polygon/triangle overlap cases. Sub-triangles used for integration are denoted by
dashed lines

Fig 3.13 displays the six possible configurations of triangle overlap on a polygon given the

above assumption about relative triangle and area sink dimensions. The particular configurations

are related by the number of triangle vertices inside the polygon (N∆) and the number of polygon

vertices in the triangle (M∆). The cases depicted in Fig. 3.13 are handled as follows:

(a) N∆ = 3; M∆ = 0; (the triangle is completely inside of the area sink),

∫

∆
N(z)

AS

dA =
3
∑

k=1

zk+1
∫

zk

Qη
AS

(z)dz (3.21)

where the integrals on the right hand side are given by (3.16)

(b) N∆ = 0; M∆ = 0; (the triangle is completely outside of the area sink)

∫

∆
N(z)

AS

dA = 0 (3.22)
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(c) N∆ = 1; M∆ = 0; A new triangle is defined by the two intersection points and the interior

point. Equation 3.21 is evaluated over this sub-triangle only.

(d) N∆ = 2; M∆ = 0; Two sub-triangles are defined by the two interior points and the two

intersection points. Equation 3.21 is applied to these sub-triangles and the net fluxes are

summed.

(e) N∆ = 1; M∆ = 1; Two sub-triangles are defined by the interior point and the two intersection

points. Equation 3.21 is applied to these sub-triangles and the net fluxes are summed.

(f) N∆ = 1; M∆ = 2; Three sub-triangles are defined by the interior points and the two intersection

points. Equation 3.21 is applied to these sub-triangles and the net fluxes are summed.

3.3.2-C Calculating Source/Sink Distribution To Cells

As with leakage distribution, calculating the source/sink distribution to individual grid cells requires

geometric manipulations. Along each analytic element that contributes to or removes water from

the domain, the distribution of flux is known explicitly, usually as a polynomial function. However,

this flux is not cell-averaged, as with finite difference boundary conditions. Instead, it is provided

as the flux per unit length of the element boundary, which may be linear, curvilinear, circular, or

elliptical. For example, the flux distribution along a (linear) high-order linesink (Janković 1997;

Janković and Barnes 1999a) is given by a Chebyshev polynomial:

QX(X) = − 2

L

N−1
∑

n=0

dnTn(X) (3.23)

where QX is the extraction per unit length of the linesink, the N −1 coefficients dn are based upon

the element strength coefficients, Tn is an order n Chebyshev polynomial, and X is the location

along the linesink in local coordinates (X = −1 on one end of the linesink, X = 1 on the other).

This high-order linesink is used to model head-specified or general head boundary conditions in the

analytic element method. To obtain the net flux, Qnet, from any arbitrary segment of the linesink,

this expression may be integrated over that segment to obtain:

Qnet =

X2
∫

X1

2

L

N−1
∑

n=0

dnTn(X)dX =
2

L

N
∑

n=0

an [Tn(X2) − Tn(X1)] (3.24)
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where an are the known element jump coefficients (see (Janković 1997) for details on the high

order implementation). Unfortunately, dividing this net flux into influx (Q+) and outflux (Q−)

components requires separating the integral into its positive and negative parts, which cannot be

done analytically. The following equations identify and separate the positive and negative portions

of the integral in (3.24):

Q+ =
1

L

X2
∫

X1

N
∑

n=0

|dnTn(X)| − dnTn(X)dX

Q− =
1

L

X2
∫

X1

N
∑

n=0

|dnTn(X)| + dnTn(X)dX

(3.25)

These integrals are calculated using quadrature and corrected with the analytic net flux so that

the mass balance over the segment from X1 to X2 is maintained. If the segment extracts only

or injects only (i.e., Q+ = Qnet or Q− = −Qnet), the analytic solution is used directly (this is

the most common case). Otherwise, adjustments to the numerically calculated extraction and

injection fluxes are made based upon the segment mass balance error due to numerical integration,

∆Q = Qnet − (Q+)NUM + (Q−)NUM as follows:

Q+ = (Q+)NUM

(

1 +
∆Q

(Q+)NUM + (Q−)NUM

)

Q− = (Q−)NUM

(

1 − ∆Q

(Q+)NUM + (Q−)NUM

) (3.26)

As before, triangles (two per cell) may be used to identify the intercepts between the cell and the

element. The intersection points (in local element coordinates) are used as the integration bounds

X1 and X2.

The above analysis was illustrated for a linear element; similar expressions may in the future

be obtained for circular, elliptical, and curvilinear elements. The functional form of the flux distri-

butions along the element boundaries for these geometries is either a Fourier series (circular and

elliptical elements) or Chebyshev series (curvilinear elements).

The final type of source/sink to be considered is that of a pumping well (point sink). The net

flux from this element is obtained exactly as in conventional finite difference methods: if the well

is located within a cell, the flux is linked to that cell. No geometric manipulation or integration is

necessary.



CHAPTER 3. METHODS 69

3.3.2-D Calculating Face-averaged Dispersion coefficients

A generic expression for the dispersion coefficients in terms of longitudinal and transverse disper-

sivities, αl [L] and αt [L], and species-specific diffusion coefficients is given as (Zheng and Bennett

2002):

Dxx = αl
v2
x

|v| + αt

v2
y

|v| + D∗ (3.27)

Dyy = αl

v2
y

|v| + αt
v2
x

|v| + D∗ (3.28)

Dxy = Dyx = (αl − αt)
vxvy

|v| (3.29)

where αl, αt are the longitudinal and transverse dispersivities, and D∗ is the species-specific diffusion

coefficient. As shown in subsection 3.3.1, each of these dispersion coefficients must be calculated (in

an average sense) across each cell face to develop the system of finite difference equations. Typically,

this has been done directly from the (known) normal discharge through the face– the values for

vx(i±1/2,j) are easily obtained from the integrated flux Qx(i±1/2,j) and the values for vy(i,j±1/2) are

easily obtained from the integrated flux Qy(i,j±1/2). However, face-averaged dispersion coefficients

require estimates for |v|(i,j±1/2), which requires estimates of the face-averaged tangential fluxes.

Tangential flux values are not available as a byproduct of traditional finite difference flow solution.

Therefore, the tangential component of flux along a cell face is typically estimated as the average

of the four normal fluxes calculated at the adjacent perpendicular cell faces. These calculations are

discussed at length by Zheng and Bennett (Zheng and Bennett 2002).

With the analytic element method, the velocity is known as a continuous function of space,

and this averaging process, which may introduce minor parameter evaluation errors in zones with

rapidly changing velocity or low-resolution spatial discretization, is not necessary. As an alternative

to the method of Zheng and Bennett (Zheng and Bennett 2002), the following formulation for the

face-averaged dispersion coefficients is derived:

Dxx(i+1/2,j) = αl

v2
x(i+1/2,j)

|v|(i+1/2,j)
+ αt

v2
y(i+1/2,j)

|v|(i+1/2,j)
+ D∗ (3.30)

Dxy = (αl − αt)
vx(i+1/2,j)vy(i+1/2,j)

|v|(i+1/2,j)
(3.31)
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where

vx(i+1/2,j) =
Qx(i+1/2,j)

h(i+1/2,j)θ(i+1/2,j)
(3.32)

vy(i+1/2,j) =
Qy(i+1/2,j)

h(i+1/2,j)θ(i+1/2,j)
(3.33)

|v|(i+1/2,j) =
√

v2
x(i+1/2,j) + v2

y(i+1/2,j) (3.34)

The magnitude of Qx(i+1/2,j) is calculated using the divergence-corrected version of equation

3.14. The magnitudes of h(i+1/2,j) and θ(i+1/2,j) may be calculated using low-order numerical

integration, and the magnitude of Qy(i+1/2,j) requires evaluation of the average tangential discharge

along the cell face (since the y-direction is not normal to the cell face). Such a calculation is briefly

described in the next subsection.

3.3.2-E Average Tangential Discharge along a Face

The average tangential discharge, as shown in the previous section, is useful for calculating the face-

averaged dispersion coefficient. As with the net flux of water through a vertical strip of the aquifer,

the average tangential discharge normal to a vertical strip may also be calculated to an arbitrary

level of precision in AEM. In irrotational domains (i.e., domains where the discharge potential, Φ,

is defined because the aquifer conductivity, base elevation, and thickness are piecewise continuous),

the integrated tangential flux may be calculated in a manner analogous to that used for the normal

discharge. If there are no discontinuities in the potential function intersecting an arbitrary face

from z1 to z2, the average tangential flux through the face may be calculated as the difference in

the potential function calculated at its two endpoints, normalized by the length of the segment.

Q̄t =
1

|z2 − z1|

z2
∫

z1

Qt(z)dz =
1

|z2 − z1|
(Φ(z2) − Φ(z1)) (3.35)

where Qt is the integrated discharge tangential to the face defined by z1 and z2. Note the similarity

between this formulation and equation 3.14. In fact, this calculation is subject to the same problems

ascribed to intersecting elements (line doublets in this case) and undefined zones of the potential

function (e.g., area vortices). These problems may be handled in a manner analogous to their

treatment during the calculation of net flux.
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3.3.3 Pseudo-3D Flux Discretization

The above analysis was carried out for vertically-averaged flow systems linked to a vertically-

averaged transport algorithm. For transport simulations in shallow aquifers (those approximated

with the Dupuit-Forcheimer assumption), the aquifer system may also be discretized vertically,

and solved using a three-dimensional finite difference approximation. Vertical flow components

are approximated using an approach developed by Strack (Strack 1984). This analogous finite

difference discretization of the fully 3D governing equation (equation 2.2) will not be discussed

here, as it has been rigorously derived elsewhere (Zheng and Bennett 2002; Zheng and Wang 1999).

However, the following section will discuss the appropriate measures for discretizing the horizontal

and vertical fluxes in pseudo-3D Dupuit-Forcheimer models.

3.3.3-A Horizontal flux across a Face

In Dupuit-Forcheimer models, one of the common assumptions is that horizontal discharge is uni-

form across the saturated thickness. Making this assumption, the horizontal flux across a vertical

cell face in the aquifer may be calculated as a fraction of the integrated flux across a face in 2D.

Unfortunately, if the height of each 3D grid cell is constant in space, the integral must be evaluated

as

qnet =

z2
∫

z1

min(z′+∆z′,h)
∫

z′

Qη(z)

h
dz (3.36)

where z′ is the vertical coordinate measured from the aquifer base, ∆z′ is the height of the three-

dimensional finite difference cell, and the face is oriented vertically from z1 to z2. If h(z) is non-

uniform (as is the case for unconfined flow), numerical integration is required.

(a) (b) 

Figure 3.14: Vertical discretization schemes for Pseudo-3D simulations. (a) Uniform discretization
(b) Smooth vertical discretization

However, if the system is discretized so that planes of constant z′/h are used to subdivide the
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domain in the vertical (as shown in figure 3.14), the horizontal flux through the face will simply be

some fraction of the net integrated flux through the saturated thickness:

qnet =
∆z′

h

z2
∫

z1

Qη(z)dz (3.37)

Here, the uniformity of the specific discharge vector in the vertical was used to simplify the

expression for horizontal flux. The integral in equation 3.37 may be evaluated exactly as presented

above in subsection 3.3.2-A. Caution must be used with this formulation, as the finite difference

approximation must be revised to account for the curved geometry of each grid cell.

3.3.3-B Vertical flux across a horizontal face

The vertical flux in a shallow aquifer may be approximated with the following formula (developed

in appendix B:

qz(z, z′) = ζ
|W |2
kh3

z′ − N(z)

h
z′ + Nb(z) (3.38)

Integrating this over an arbitrary triangle,

∫

∆
qz(z, z′)dz = ζz′

∫

∆

|W |2
kh3

− z′
∫

∆

N(z)

h
dz +

∫

∆
Nb(z)dz (3.39)

If the vertical discretization of the aquifer system is uniform in space (as in figure 3.14a), this

integral may only be evaluated exactly if the aquifer is confined (i.e., ζ = 0 and h = H). However,

if the system is discretized such that the vertical discretization follows surfaces of constant z′/h (as

shown in figure 3.14b), the integrated flux normal to the face simplifies to:

∫

∆′
qz(z, z′)dz = −z′

h

∫

∆
N(z)dz +

∫

∆
Nb(z)dz (3.40)

Note that ∆′ is now a curved surface. Here, both integrals may be evaluated analytically, and

the projection of the curved surface ∆′ back into the z plane may be used as a surrogate for the

exact integral, because the fluxes N(z) and Nb(z) are purely vertical.
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3.3.4 Backwards Method of Characteristics

The backwards method of characteristics (BMOC) uses a Lagrangian approach to model the influ-

ence of advection and an Eulerian approach to model the influence of dispersion. The method, as

implemented for this dissertation, has been configured to be used with both finite difference and

finite element methods for simulating dispersion, and is briefly described here.

The AEM-based BMOC algorithm, briefly introduced in chapter 2, simulates advection by

backtracking a particle along a flow path (or “characteristic” path) from the nodes of the com-

putational grid or mesh. With the finite difference method, these nodes are located at the center

of the grid cells. For each time step, the concentration change due to advection is calculated by

simply interpolating the old concentration at the “foot” of the characteristic path and assigning

this interpolated concentration to the cell. Dispersion is then simulated using the finite difference

method, as described in section 3.3.1, but without including the approximations of the advective

terms within the governing equation.

The primary difference between the implementation of the BMOC method within Cardinal

and previous implementations is the use of the highly accurate Runge-Kutta method (described in

appendix F)to calculate the characteristic path.

.
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3.4 The Effective Parameter Formulation

3.4.1 Overview

This section presents an alternative approach for formulating the two-dimensional transport prob-

lem with continuous flow parameters (velocity, dispersion coefficient) and porous media properties

(porosity, sorption coefficients). The approach is independent of transport system discretization

and is therefore amenable to simulation using a variety of Eulerian or Lagrangian methods. The

primary difference between this new approach and existing methods is the use of the non-discrete

analytic element method as the source of velocities, saturated thicknesses, dispersion coefficients,

and their derivatives.

As explained previously, the analytic element method represents the flow solution via super-

position of analytic functions that are continuous in space; head or flux may be obtained at any

x-y location in space without the need for interpolation. Currently, the only practical method of

linking an AEM flow solution to a transport model is to discretize the velocity field and export it

to a transport solver such as MT3DMS (Zheng and Wang 1999) or use the revised finite difference

methods discussed in section 3.3. While this approach allows the transport domain to be discretized

independently of any flow grid or mesh, it results in information loss. Depending upon the model

configuration, finite difference discretization can result in smoothing and clipping of local flow fea-

tures and/or discontinuity of the velocity derivative. This will occur even though (1) the original

AEM solution was fully conservative, high-resolution, and continuous and (2) the discretized AEM

solution meets local mass balance requirements to a high degree.

In this section, continuous expressions for saturated thickness, dispersion coefficients, and dis-

persion coefficient spatial derivatives are derived from an AEM representation. These expressions

exploit the continuous AEM flow solutions and preserve the smooth nature of the parameter fields

for use in transport simulations. The information loss in translating an AEM flow solution to a

discrete finite difference or finite element nodal representation is removed, leading to a potential re-

duction in overall spatial truncation error, particularly for Lagrangian methods. Importantly, using

these continuous parameters does not prohibit the transport simulation method from “smearing”

the information due to averaging of these continuous quantities over a finite element or finite dif-

ference cell. It merely provides the highest quality parameterization for the transport algorithm to

then manipulate as necessary. Thus any method using these continuous parameters is still subject
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to discretization error. However, if the continuous parameters are used appropriately, these errors

will be smaller than if interpolated or approximated parameters were used.

In addition, an alternative “effective parameter” formulation of the vertically-averaged trans-

port equation is here developed to facilitate robust use of continuously-represented parameters.

Closed-form expressions for these effective transport parameters are derived from analytic element

functions. A discussion of the difficulties of using such a formulation in an Eulerian framework is

given in section 3.5.1. Implementation of this new effective parameter vertically-averaged transport

approach using a revised random walk method is discussed in section 3.5.4.

With the analytic element method, the flow-solution-derived independent parameters in Equa-

tion 2.16 (and their derivatives) may be expressed as continuous functions of space. This continuity

has been exploited in section 3.3 for accurate volume and facial averaging of properties in Eulerian

finite difference solution schemes. Here, this continuity is exploited for highly accurate represen-

tation of subtle property changes in Eulerian, Lagrangian, or Eulerian-Lagrangian methods. By

explicitly evaluating the spatial derivatives of continuous parameters, truncation and interpolation

errors introduced by the transport method may be minimized or removed. In contrast, traditional

methods for solving the advection-dispersion equation introduce Taylor series truncation error into

parameter gradients, and interpolation error into characteristic paths.

To extend the discussion herein to continuous representation of all parameters (not just those

supplied by the analytic element method), the derivations below assume that the aquifer poros-

ity, base elevation, and aquifer thickness are represented with singly differentiable functions (e.g.,

polynomials; radial basis functions; kriged fields) and that the retardation factor and recharge con-

centration distribution may be spatially integrated. Variability of the aquifer base and thickness

has not yet been fully realized in current analytic element models beyond a piecewise continuous

representation, but more complex formulations are mathematically viable and considered here. The

AEM flow solution requires no information about the spatial distribution of porosity, concentration,

or retardation factors. Therefore, assumptions about the functional form of these properties only

impact the transport solution.

To facilitate a continuous representation, the terms of the convective form of the vertically-
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averaged transport equation (2.16) are expanded as follows:

Rf
∂C

∂t
= − v∗x

∂C

∂x
− v∗y

∂C

∂y

+ Dxx
∂2C

∂x2
+ 2Dxy

∂2C

∂x∂y
+ Dyy

∂2C

∂y2

+
N+

t

hθ
(c+

t − C) +
N+

b

hθ
(c+

b − C)

(3.41)

where the terms v∗x and v∗y are labeled the “effective velocities” because they act as multipliers of

the first derivatives of concentration. These effective velocities are expressed as a combination of

the actual velocities and the relative effects of independent parameter gradation:

v∗x =

















vx − ∂Dxx

∂x
− ∂Dyx

∂y

− Dxx

θ

∂θ

∂x
− Dyx

θ

∂θ

∂y

− Dxx

h

∂h

∂x
− Dyx

h

∂h

∂y

















(3.42)

v∗y =

















vy −
∂Dyy

∂y
− ∂Dxy

∂x

− Dyy

θ

∂θ

∂y
− Dxy

θ

∂θ

∂x

− Dxy

h

∂h

∂x
− Dyy

h

∂h

∂y

















(3.43)

The preceding formulation of the vertically-averaged transport equation is henceforth labeled the

“effective parameter vertically-averaged” (EPVA) formulation. The remainder of this section deals

with identifying closed-form continuous expressions for (3.42) in terms of superimposed analytic

element functions and generic differentiable expressions for the flow system and porous media

properties (porosity, recharge, retardation factor, base, and thickness).

3.4.2 The Discharge Derivative

Developing a closed-form expression for effective velocity requires evaluation of the spatial deriva-

tives of velocity. These spatial derivatives may be obtained by use of a newly defined analytic

function, the discharge derivative, Gx [LT−1], which is defined as follows:

Gx =
∂W

∂z
=

∂Qx

∂x
− i

∂Qy

∂x
(3.44)
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This represents the derivatives of the discharge vector with respect to the x-direction. The y-

direction derivative may be obtained from application of the definition of curl and from mass

continuity. From the definition of curl,

∂Qx

∂y
= β +

∂Qy

∂x
(3.45)

where β is the curl of the discharge vector. From mass continuity,

∂Qy

∂y
= −N − ∂Qx

∂x
(3.46)

Therefore, the y-directional discharge derivative Gy may be written,

Gy =
∂Qx

∂y
− i

∂Qy

∂y
= iGx + β + iN (3.47)

The functions Gx and Gy may be derived for each individual element type by differentiating the

discharge function with respect to z. Most elements contribute zero curl and zero divergence to

the domain, with the exception of the area-sink and area-vortex (Strack and Janković 1999; Strack

1999). The discharge derivatives for all elements in the model may be superimposed, as with

the complex potential or discharge function. Discharge derivative functions for common analytic

elements (point sinks, Laurent series, Taylor series, elliptical inhomogeneities, and high-order line

elements) are derived in appendix C.

3.4.3 Dispersion Coefficients and Their Spatial Derivatives

The various components of the two-dimensional dispersion tensor may be written as follows (Zheng

and Bennett 2002):

Dxx = αl
v2
x

|v| + αt

v2
y

|v| + D∗ (3.48)

Dyy = αl

v2
y

|v| + αt
v2
x

|v| + D∗ (3.49)

Dxy = Dyx = (αl − αt)
vxvy

|v| (3.50)

where αl [L] is the longitudinal dispersivity, αt [L] is the transverse dispersivity, and D∗ [L2T−1] is

the diffusion coefficient of the solute.
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These coefficients are functions of velocity and, if analytic expressions are used as a basis for

the velocities, are continuous functions of space. Closed-form expressions for the derivatives of

dispersion coefficients are necessary for use in (3.42). For example,

∂Dxx

∂x
=

∂

∂x

(

αl
v2
x

|v| + αt

v2
y

|v| + D∗

)

(3.51)

Equation 3.51 can be expanded and written as:

∂Dxx

∂x
=

αlv
2
x

|v|
2

vx

∂vx

∂x
+
(

αlv
2
x + αtv

2
y

)

(

∂|v|−1

∂x

)

+
αtv

2
y

|v|
2

vy

∂vy

∂x
(3.52)

This formula (and similar expressions for other dispersion coefficient spatial derivatives) require

closed-form expressions for the derivative of velocity and its magnitude, which are provided in

appendix A. Substituting in the equations (A.8), (A.9), and (A.20), explicit closed-form expression

for the x-direction dispersion derivative is obtained,

∂Dxx

∂x
=

αlv
2
x

|v|

[

2
ℜ(Gx)

Qx
− ℜ(WGx)

|W |2 + Υx

]

+
αtv

2
y

|v|

[

−2
ℑ(Gx)

Qy
− ℜ(WGx)

|W |2 + Υx

]

(3.53)

where the Υ terms [L−1], derived in appendix A, represent the combined influence of spatial gra-

dients in saturated thickness and porosity. Similar analysis for the y-derivative of Dyy provides:

∂Dyy

∂y
=

αtv
2
x

|v|

[

2
ℜ(Gy)

Qx
− ℜ(WGy)

|W |2 + Υy

]

+
αlv

2
y

|v|

[

−2
ℑ(Gy)

Qy
− ℜ(WGy)

|W |2 + Υy

]

(3.54)

The cross-dispersion terms are similarly developed as:

∂Dxy

∂x
=

∂Dyx

∂x
=

(αl − αt)
vxvy

|v|

[ℜ(Gx)

Qx
− ℑ(Gx)

Qy
− ℜ(WGx)

|W |2 + Υx

] (3.55)

∂Dxy

∂y
=

∂Dyx

∂y
=

(αl − αt)
vxvy

|v|

[ℜ(Gy)

Qx
− ℑ(Gy)

Qy
− ℜ(WGy)

|W |2 + Υy

] (3.56)

These expressions are exact- the only numerical error introduced is that induced by the truncation

of polynomials in some of the analytic element expressions (high-order AEM implementations suffer

from piezometric head errors on the order of millimeters or less (Janković and Barnes 1999a); a
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similar order of errors is expected here).

If the derivatives of Equations 3.55 and 3.56 are approximated using finite differences, Taylor

series truncation errors are generated. For example, the standard central difference truncation

errors are on the order of ∆x2, where ∆x is the representative spacing between nodes. This error

is in addition to any velocity errors resulting from discretization of the flow model.

This dispersion derivative truncation error is rarely discussed in the context of transport model-

ing in part because the errors affect only regions with significant velocity gradients. Also, researchers

tend to be primarily concerned with truncation error of the dependent variable, because it controls

the stability of the solution. However, truncation of any input parameter contributes to overall

model error.

3.4.4 Effective Velocities

The expressions for the dispersion coefficients and their derivatives (equations 3.48; 3.53-3.56) are

combined with expressions for the influence of variable saturated thickness and porosity (equations

A.4 and A.5 from appendix A) to obtain closed-form solutions for the effective velocities as an ex-

plicit function of space (note that vx and vy are also closed-form). Substitution of these expressions

into equation 3.42 with minor rearrangement leads to:

v∗x =vx

− αlv
2
x

|v|

[

2
ℜ(Gx)

Qx
− ℜ(WGx)

|W |2
]

−
αtv

2
y

|v|

[

−2
ℑ(Gy)

Qy
− ℜ(WGx)

|W |2 − (Υx − Υy)

]

− (αl − αt)
vxvy

|v|

[ℜ(Gy)

Qx
− ℑ(Gy)

Qy
− ℜ(WGy)

|W |2
]

+ D∗ [Υx − Υy]

(3.57)
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v∗y =vy

−
αlv

2
y

|v|

[

2
ℜ(Gy)

Qx
− ℜ(WGy)

|W |2
]

− αtv
2
x

|v|

[

−2
ℑ(Gy)

Qy
− ℜ(WGy)

|W |2 − (Υy − Υx)

]

− (αl − αt)
vxvy

|v|

[ℜ(Gx)

Qx
− ℑ(Gx)

Qy
− ℜ(WGx)

|W |2
]

+ D∗ [Υy − Υx]

(3.58)

As with the dispersion coefficient derivatives, equations 3.57 and 3.58 are nearly exact, limited

only by the accuracy of the AEM solution. However, these effective velocities are independent of

the numerical technique used to obtain the flow parameters. The discharge derivatives Gx and Gy

may, in fact, be obtained using discrete flow solutions with first or higher order derivatives of flux.

However, it is likely that this will not be very advantageous, particularly if fluxes are obtained

as a byproduct of the solution for hydraulic head (as is often the case). Cumulative truncation

error will likely invalidate the accuracy of the expression, and the traditional handling of parameter

derivatives within the vertically-averaged ADR will provide similar results.

The difference between the effective velocity and the flow velocity will normally be small, ex-

cept for systems characterized by (1) large dispersivities, (2) large gradients in flux (e.g., close

to hydrologic features such as wells), and (3) small saturated thicknesses. Most of the terms in

equations 3.57 and 3.58 represent relative changes of parameters (i.e., the change in parameter

normalized by the value of that parameter). Therefore, locations with small property magnitudes

and high property gradients are particularly sensitive to the additional effective velocity terms. For

example, the effective velocity will be appreciably different from the flow velocity on the edge of an

engineered vertical barrier where the porosity is low but the porosity gradient is high. For the most

part, however, the additional effective velocity terms will have values that are a small fraction of

the velocity. One of the benefits of the EPVA formulation is that the relative influence of parameter

gradients (in dispersion coefficients, porosity, and saturated thickness) may be directly analyzed

and visualized using the function (v∗ − v), which controls the hyperbolic behavior of the dispersive

portion of the PDE.
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3.4.5 Effective velocities in 3D

Analytic element method flow solutions, based upon a 2-dimensional approximation for simulating

groundwater flow, may nonetheless be used to calculate vertical fluxes in an approximate fash-

ion (Strack 1989). For “pseudo-three-dimensional” flow in Dupuit-Forcheimer models, a vertical

component of the velocity vector may be estimated as (revised from Strack (1989), as shown in

appendix B):

vz(z, z′) = ζ
|W |2
kh3θ

z′ − N(z)

hθ
z′ +

Nb(z)

θ
(3.59)

where z′ is the vertical coordinate measured from the aquifer base (the superscript is used to

differentiate it from the complex coordinate, z), and ζ is a boolean variable equal to one for

unconfined flow, zero otherwise. The above expression is particular to irrotational systems (where

the base and thickness of the aquifer are piecewise constant). The general expression may be found

in appendix B.

For three-dimensional transport simulations within Dupuit-Forcheimer flow systems, the expres-

sions for effective velocities must be modified. The effective formulation of the governing equation

for contaminant transport in saturated three-dimensional aquifer systems (neglecting source/sink

and reaction terms) is given as:

∂c

∂t
= − ~v∗∇c + D∇2c (3.60)

where the components of the effective velocity vector, ~v∗, only include the influence of variable

porosity and dispersion coefficients:

v∗x =









vx − ∂Dxx

∂x
− ∂Dyx

∂y
− ∂Dzx

∂z′

− Dxx

θ

∂θ

∂x
− Dyx

θ

∂θ

∂y
− Dzx

θ

∂θ

∂z′









(3.61)

v∗y =









vy −
∂Dyy

∂y
− ∂Dxy

∂x
− ∂Dzy

∂z′

− Dyy

θ

∂θ

∂y
− Dxy

θ

∂θ

∂x
− Dzy

θ

∂θ

∂z′









(3.62)

v∗z =









vz −
∂Dzz

∂z′
− ∂Dxz

∂x
− ∂Dyz

∂y

− Dzz

θ

∂θ

∂z′
− Dxz

θ

∂θ

∂x
− Dyz

θ

∂θ

∂y









(3.63)

where the diagonal components of the dispersion tensor are modified in definition to account for a
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non-zero velocity in the vertical direction (ignored in the vertically-averaged transport formulation):

Dxx = αl
v2
x

|v| + αt

v2
y

|v| + αtv
v2
z

|v| + D∗ (3.64)

Dyy = αl

v2
y

|v| + αt
v2
x

|v| + αtv
v2
z

|v| + D∗ (3.65)

Dxy = Dyx = (αl − αt)
vxvy

|v| (3.66)

where αtv [L] is the vertical transverse dispersivity and |v| is now defined as the magnitude of

the three-dimensional velocity vector (|v| =
√

v2
x + v2

y + v2
z), but approximated with the two-

dimensional velocity vector (nearly equivalent in shallow flow systems well described by the Dupuit-

Forcheimer assumption). The additional five dispersion tensor components related to the third

dimension are given as (from (Zheng and Bennett 2002)):

Dzz = αl
v2
z

|v| + αtv
v2
x

|v| + αtv

v2
y

|v| + D∗ (3.67)

Dzx = Dxz = (αl − αtv)
vxvz

|v| (3.68)

Dzy = Dyz = (αl − αtv)
vyvz

|v| (3.69)

As was done for the 2D vertically-averaged formulation, velocity spatial derivatives have been

calculated for any general pseudo-3D Dupuit-Forcheimer flow solution in appendix B. Together

with the definitions in 3.64 and 3.67, they may be assembled into closed-form solutions for effective

velocities. Because both the vertical transverse dispersivities and vertical velocities are small in

relation to longitudinal and horizontal transverse dispersivities, the expressions for the spatial

derivatives of Dxx, Dyy, Dxy, and Dyx derived in equations 3.53 though 3.56 can be used as

surrogates for an exact expression obtained from taking the derivatives of their 3D expressions

(equation 3.64). The expressions for the derivatives of the vertical dispersion coefficient are:

∂Dzz

∂z′
= αl

v2
z

|v|
2

vz

∂vz

∂z
(3.70)

∂Dzz

∂z′
= αl

v2
z

|v|
2

vz

(

ζ
|W |2
kh3θ

(

1 − θ′z
θ

)

− N

hθ
− Nb

θ′z
θ

)

(3.71)
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Similar expressions may be obtained for the vertical spatial derivatives of Dzx and Dzy:

∂Dzx

∂z′
=

∂Dxz

∂z′
= (αl − αtv)

vx

|v|

(

ζ
|W |2
kh3θ

(

1 − θ′z
θ

)

− N

hθ
− Nb

θ′z
θ

)

(3.72)

∂Dzy

∂z′
=

∂Dyz

∂z′
= (αl − αtv)

vy

|v|

(

ζ
|W |2
kh3θ

(

1 − θ′z
θ

)

− N

hθ
− Nb

θ′z
θ

)

(3.73)

And for the horizontal spatial derivatives of Dxz and Dyz:

∂Dxz

∂x
=

∂Dzx

∂x
= (αl − αtv)

vx

|v|

(

∂vz

∂x
+ vz

(ℜ(Gx)

Qx
− ℜ(WGx)

|W |2 + 2Υx

))

(3.74)

∂Dyz

∂y
=

∂Dzy

∂y
= (αl − αtv)

vy

|v|

(

∂vz

∂y
+ vz

(ℜ(Gy)

Qy
− ℜ(WGy)

|W |2 + 2Υy

))

(3.75)

where ∂vz

∂y and ∂vz

∂y are too complicated to be included here, but are also closed-form expressions (de-

rived in appendix B). The full expression for effective velocities may be assembled by substitution

of equations 3.52-3.56 and 3.71-3.75 into equation 3.61.

Note that these closed-form solutions for effective velocity are only valid for Dupuit-Forcheimer

flow using the estimated vz of equation 3.59. Similar expressions may be obtained from fully three-

dimensional analytic element models, given redefined elementary solutions for the analogous 3D

discharge derivatives Gx, Gy, and Gz (each vectors with three components).

3.4.6 Computational Considerations

Computation of the effective velocity, v∗, requires about fifty percent more calculations than stan-

dard velocity terms derived from the analytic element method. To calculate the velocity at a given

spatial location, computation of all element discharge potential functions (for the saturated thick-

ness) and all element discharge functions (for the integrated discharge) is required. The effective

velocity term requires additional computation of all element discharge derivatives. Each of these

calculations are roughly of order n, where n is the number of degrees of freedom in the model. The

cost of calculating vx and vy is roughly 2n, and the cost for the effective velocities is 3n. For Eule-

rian methods, where such values need only be calculated a few times per degree of freedom, this is

a minor computational limitation. This additional cost may be inhibitive, however, for Lagrangian

simulations where the characteristic paths of the effective velocity are tracked using higher-order

Runge-Kutta methods.
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3.5 Implementation of EPVA Methods

3.5.1 EPVA Applicability

While the EPVA approach is attractive due to its rigor and its reduced dependence upon numerical

differentiation of independent parameters, the successful solution of the revised differential equation

(equation 3.41) using standard Eulerian or Eulerian-Lagrangian numerical methods proved either

problematic or impossible in practice, as discussed below. In this dissertation the EPVA approach

was applied only to purely Lagrangian simulation. However, it may eventually prove valuable for

solution of transport problems using mesh-free methods.

The initial motivation for deriving the effective parameter formulation was to solve an iden-

tical differential equation where the parameter derivatives were decoupled from the derivatives of

concentration, the dependent parameter. The concentration derivatives must be numerically dis-

cretized and approximated to solve the governing equation; the independent parameters should

ideally have no such limitations. It was expected that the effects of continuous parameter grada-

tion would likely be averaged in some way, but the averaging technique would ideally be flexible,

and errors from the averaging could be reduced in the traditional fashion, with increased grid or

mesh resolution. However, unforeseen limitations of finite element and finite difference methods

impede the successful numerical solution of the EPVA formulation of the governing equation. This

is despite the fact that the EPVA formulation, in a purely mathematical sense, is identical to the

classical governing equation successfully solved by both methods. The sources of these limitations

are presented in this section, as is the successful EPVA implementation of a purely Lagrangian

technique, the random walk method.

3.5.2 EPVA Limitations: Finite Difference Methods

Finite difference methods are limited not by their ability to solve the effective parameter formulation

of vertically-averaged transport, but rather by their ability to conserve mass with this particular

formulation. Simply stated, partial differential equations of the “divergence” form:

∂f

∂t
= ∇ · (af) + ∇ · (b∇ · f) (3.76)
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Where f is the dependent variable and a and b are spatially variable independent parameters, are

conservative when approximated with finite differences. The mathematically equivalent formulation

of the partial differential equation,

∂f

∂t
= a∇f + f∇a + (∇b)(∇f) + b∇2f (3.77)

is not conservative, due to the different methods of handling the spatially variable parameters a, b,

∇a, and ∇b. In the first case, the parameters a and b are face averaged, in the second case they are

cell-averaged. The EPVA formulation, equivalent to equation 3.77, thus cannot be implemented in

a conservative manner using finite difference techniques.

3.5.3 EPVA Limitations: Finite Element Methods

The difficulty with solving equation 3.41 using finite element methods is not one of accuracy, as with

finite difference methods. Rather, it results from the inability of FE methods to mathematically

separate out the influence of graded parameters in the “weak” form of the governing equation (for

a discussion of the significance of the weak form in finite element methods, the reader is referred

to Gresho and Sani (1998)). To illustrate this point, the appropriate weak form of an effective

parameter formulation for 1-dimensional transport is derived below.

Essentially, the use of the weak form enables a partial differential equation to explicitly include

the influence of discontinuities and boundaries (PDEs, expressed in their general “strong” form are

applicable to a continuous non-bounded system). The weak form is obtained by first integrating

the governing PDE multiplied by a weighting function, w(x) over the model domain:

∫

w(x)

(

∂C

∂t
+ [v(x) −∇D(x)] · ∇C − D(x)∇2C

)

= 0 (3.78)

The term in square brackets is the effective velocity for the simple 1D case. If w(x) is once

differentiable, the following identity is valid (using the chain rule):

∇[wD(x)∇C] = wD(x)∇2C + w∇D(x) · ∇C + D(x)∇w · ∇C (3.79)

By integrating equation 3.79 over the model domain and applying the divergence theorem, the

second partial derivative term in equation 3.78 may be redefined in terms of both internal and
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boundary integrals, which only involve first order derivatives of concentration.

∫

wD(x)∇2C =

∫

Γ
wD(x)n∇C −

∫

w∇D(x) · ∇C −
∫

D(x)∇w · ∇C (3.80)

where Γ is the system boundary. Using the relationship in 3.80, equation 3.78 becomes:

∫

w
∂C

∂t
+

∫

w [v(x) −∇D(x)]·∇C−
∫

Γ
wD(x)n∇C+

∫

w∇D(x)·∇C+

∫

D(x)∇w·∇C = 0 (3.81)

Here, the spatial derivative of the dispersion coefficient in the second term cancels the fourth term,

giving
∫

w
∂C

∂t
−
∫

wv(x) · ∇C −
∫

Γ
wD(x)n∇C +

∫

D(x)∇w · ∇C = 0 (3.82)

This weak form is equivalent to the weak form of the traditional 1-dimensional ADE, despite the

attempt to restate the governing equation. Because of approximations induced by the removal of

the second partial derivative term of equation 3.78, the closed-form expressions for gradients in

continuous parameters may not be handled explicitly in standard finite element methods, and the

EPVA approach may not be used. Instead the gradients in spatial derivatives are handled using

the the numerical derivatives of the weighting function, an approximation apparently induced by

the application of the divergence theorem. This derivation extends to the two-dimensional case.

It is possible that alternative formulations of the EPVA weak form may be used that do not

suffer from the drawbacks of the above approach. The development of such alternate formulations

were considered beyond the scope of this research.

3.5.4 Effective Parameter Random Walk Technique

The random walk method (Prickett et al. 1981; Kinzelbach 1986; Kinzelbach and Uffink 1991)is a

fully Lagrangian approach for simulating advective and dispersive transport of solute in an aquifer.

Dissolved species in the aquifer are represented by a set of discrete particles, each associated with

some solute mass. The method simulates advection of the plume via particle tracking techniques.

The effects of hydrodynamic dispersion and diffusion are modeled by adding a random displacement

of the particle location (correlated to the local dispersion coefficient).

For each time step ∆t in the transport simulation, the two-dimensional random walk method

moves each particle, initially located at the point zp(t) to an updated location, zp(t+∆t), according



CHAPTER 3. METHODS 87

to the following equation (modified from Zheng and Bennett (2002)):

zp(t + ∆t) = zp(t) + ∆za + ∆zd (3.83)

Where ∆za is the advective displacement over the time step, ∆t, (from particle tracking) and ∆zd

is the dispersive displacement over the time step, given by:

∆zd =







(

2αl
v2
x

|v|∆t

)

1
2

κ′ +

(

2αt

v2
y

|v|∆t

)

1
2

κ′′






+ i







(

2αl

v2
y

|v|∆t

)

1
2

κ′ +

(

2αt
v2
x

|v|∆t

)

1
2

κ′′






(3.84)

Here, the values κ′ and κ′′ are two distinct normally distributed random numbers with a mean

of zero and a standard deviation of 1. This expression for dispersive displacement is obtained via

analogy between purely dispersive transport of a point source and the functional form of a normally

distributed random variable.

As described by Kinzelbach (1986), the preceding approach causes the density of the particles

to satisfy the Fokker-Plank equation, not the advection-dispersion equation. In order to properly

account for this deviation, Kinzelbach (Kinzelbach 1988) proposed using a corrected velocity during

the particle tracking, v′, given as (for the two-dimensional non-vertically-averaged case without

spatial variation in porosity):

v′x = vx +
∂Dxx

∂x
+

∂Dxy

∂y

v′y = vy +
∂Dyy

∂y
+

∂Dyx

∂x

(3.85)

This additional term is often referred to as the drift term (e.g., as in (LaBolle et al. 1996)). Notice

the similarity to the effective velocities presented in equation 3.42. The only difference is that the

spatial gradients are added, rather than subtracted from, the seepage velocity. When accounting for

vertical averaging, the correction assumes a form directly related to that of the effective velocities:

v′x = 2vx − v∗x

v′y = 2vy − v∗y

(3.86)

This particular use of the closed-form dispersion derivatives and saturated thickness derivatives

does not suffer from the numerical limitations associated with finite element or finite difference
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methods. The random walk method allows these derivatives to be utilized directly, and there are

no mass balance errors or mathematical cancellations to impede their direct use. It is for this

reason that the random walk method is the only numerical technique tested herein that is well-

suited for directly using continuous parameters in the form presented in section 3.4. This is not

surprising, since the fully Lagrangian method lacks any fixed grid over which to average continuous

parameters, and the method is globally mass conservative regardless of the particular formulation

of the differential equation.

The EPVA random walk method has been implemented in Cardinal and tested in section

4.2.2.
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3.6 Implementation of a Graded Finite Element Method

The following section discusses the solution of the standard vertically-averaged formulation of the

advective-dispersive equation presented in section 2.2.2 using a revised finite element method.

Unlike the EPVA formulation, the solution of equation 2.16 is feasible using finite difference, finite

volume, or streamline methods. However, finite element methods (FEMs) offer three distinct

advantages: (1) the FEM more easily accommodates continuously varying aquifer properties, (2)

FEM provides the mesh flexibility needed to conform to AEM geometries, and (3) FEMs may be

more easily configured to simulate transport at regional and local scales simultaneously. The fully

Eulerian graded-parameter finite element approach outlined below and in the following section has

all of these properties. This approach has also been extended to use Eulerian finite element schemes

for the dispersive portion of the ADR and a Lagrangian scheme (BMOC) for the advective portion.

The graded parameter finite element solution technique has been implemented in Cardinal,

benchmarked against analytic solutions (section 4.1), and applied to test cases (sections 4.2.3 and

4.4) to verify its numerical accuracy. A discussion of its advantages and disadvantages may be

found in chapter 5. The following section only outlines its mathematical formulation.

3.6.1 Finite Element Formulation

The vertically-averaged advective-dispersive equation (equation 2.16) may be solved using trian-

gular finite elements by approximating the concentration field with a function Ĉ of the following

form

Ĉ(x, t) =
NE
∑

e=1

3
∑

i=1

N
(e)
i (x, t)Ĉi (3.87)

where NE is the number of linear triangle finite elements, N
(e)
i are the basis functions associated

with the ith node of element e (see appendix D for details) and Ĉi is the vertically-averaged

concentration at node i. Within this dissertation, only linear triangle finite elements are used.

While more advanced element geometries are available (Istok 1989; Akin 1994), the process of

linking alternative element types to AEM flow solutions is similar to the approaches proposed here.

The finite element method solves the divergence form of the transport equation (2.16) by min-
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imizing the following system residual (as in Yeh (2000)):

∫

Ω



























− Qx
∂C

∂x
− Qy

∂C

∂y

+
∂

∂x

(

hθDxx
∂C

∂x

)

+
∂

∂x

(

hθDxy
∂C

∂y

)

+
∂

∂y

(

hθDyx
∂C

∂x

)

+
∂

∂y

(

hθDyy
∂C

∂y

)

+
(

N+
t (c+

t − C) + N+
b (c+

b − C)
)

− Rfhθ
∂C

∂t



























dA (3.88)

where Ĉ(x, t) has been rewritten as C for simplicity of notation. This residual expression is tem-

porally discretized using a finite difference approximation of the time derivative. This discrete

approximation to the residual expression is minimized over each time step by solving a single

system of equations. Similar to Yeh (2000) and Istok (1989), this system may be expressed as:

[

[A] + (ω)∆t
(

[D]n+1 + [K]n+1
)]

{C}n+1 =

[[A] − (1 − ω)∆t ([D]n + [K]n)]{C}n

+ ∆t
[

(ω)[{Q}n + {F}n] + (1 − ω)[{Q}n+1 + {F}n+1]
]

(3.89)

where the temporal weighting factor (0 < ω ≤ 1) determines whether an explicit, implicit, or

Crank-Nicholson scheme is used. These schemes are analogous to those used in the finite difference

algorithm.

Each equation in the system of NN equations represented by 3.89 corresponds to a single

unknown value of concentration at each of the NN nodes in the mesh. The various matrices in this

system are assembled on a node-by-node basis based upon the properties of the adjacent elements.

The entries of the NN x NN “sorption matrix” or “mass matrix” [A] are given by (e.g., Yeh (2000)):

Aij =

NEi
∑

e=1

∫

A(e)

N
(e)
i RfhθN

(e)
j dA (3.90)

where NEi are the number of elements within the region where the basis function Ni for node i is

non-zero (element basis functions are defined in appendix D) and A(e) is the element area. With

the exception of the advection term, the weighting functions are equivalent to the basis functions

(this is referred to as the Petrov-Galerkin formulation).
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The entries in the global “dispersion matrix” or “stiffness matrix” [D] are given by (Yeh 2000)

Dij =

NEi
∑

e=1

∫

A(e)

w
(e)
i Q · ∇N

(e)
j −

NEi
∑

e=1

∫

A(e)

∇N
(e)
i hθD · ∇N

(e)
j dA (3.91)

where w
(e)
i are the upstream weighting functions for node i, applied only to the advective terms

and Q is the integrated discharge vector (in vector form). Three alternative FEM formulations for

the upstream weighting terms were implemented in Cardinal: (1) standard upstream weighting

(defined by equation D.11 in appendix D), (2) streamline upwind weighting (defined by equation

D.13), and (3) standard Galerkin weighting (where w
(e)
i =N

(e)
i ).

The influence of distributed linear and point sink terms (the sink “load vector”), is expressed

as

Kii =

NSi
∑

s=1

∫

L(s)

N
(s)
i Q−

XdX + Q−
i (3.92)

where Q−
i is a point flux of water from the system at node i, NSi is the number of element sides

intersecting node i and Q−
X [L2T−1] is the distributed loss of water along element side s (of length

L(s)). These terms may be obtained directly from an analytic element flow solution, as shown later

in section 3.6.3.

The influence of point, linear, and areal source terms (the source “load vector”, {Q}) is given

by

Qi =

NEi
∑

e=1

∫

A(e)

N
(e)
i

[

N+
t c+

t + N+
b c+

b + qs

]

dA +

NSi
∑

s=1

∫

L(s)

N
(s)
i Q+

Xc+
s dX + Q+

i c+
i (3.93)

where qs(x, y) is a distributed “dry” influx of mass per unit area [MT−1L−2], Q+
X [L2T−1] is the

distributed gain of water with concentration c+
s along finite element side s (of length L(s)), N+

b (x, y)

and N+
b (x, y) are areal fluxes of water to the aquifer with concentrations of c+

t and c+
b , respectively,

and Q+
i is a point flux of water into the aquifer at node i with concentration c+

i . These areal,

linear distributed, and point source fluxes are also directly obtained from an analytic element flow

solution as shown in section 3.6.3.

The {F} vector is the “flux” vector and is used to handle specified flux boundary conditions

and special flux conditions not explicitly associated with conventional sources and sinks and not

typically used in traditional finite element methods (such special conditions are outlined later in

section 3.7).
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The above sparse system of equations, solved using a biconjugate gradient method based upon

Press et al. (2002), may be modified to meet Dirichlet (specified concentration), Neumann (spec-

ified flux), or Dankwerts (mixed) conditions at nodes or along element sides. Most models are

additionally subject to the “natural” boundary condition along the mesh boundary Γ:

−hθDη
∂C

∂η
= 0 if Qη < 0

−
(

QηC − hθDη
∂C

∂η

)

= 0 if Qη > 0

(3.94)

where η is the vector normal to the boundary. The first (outflux) condition of equation 3.94

ensures that there is no dispersive flux through outflow boundaries. This is equivalent to a zero

concentration gradient across the boundary. The second (influx) condition of 3.94 ensures that

there is no net flux of mass through inflow boundaries.

The primary revision to existing finite element approaches for solving the vertically-averaged

transport equation (e.g., Yeh (2000)) is the use of an continuous AEM-based representation of flow

parameters. By integrating continuous parameters (V, D, Rf , θ, h etc.) in the finite element

residuals, the variation of these parameters on a sub-element scale is accounted for (something that

standard FE methods do not do). Because the variation of these parameters within an element

is known precisely, the residual expressions are evaluated to a higher degree of accuracy, without

addition of nodes. In addition, the sink and source flux integrals of equations 3.92 and 3.93 may

be evaluated to an arbitrary degree of precision using analytic element flow solutions, as shown in

section 3.6.3.

The second revision to conventional finite element methods is the use of specialized “discontin-

uous” internal boundary conditions along certain analytic elements. These special physics-based

flux conditions are enforced at sharp discontinuities in the dependent variable of vertically-averaged

concentration, allowing for the influence of local scale features to be explicitly modeled without

excessive overdiscretization. These approximate discontinuous boundary conditions are described

in section 3.7.

3.6.2 Finite Element Discretization

Unlike with finite difference methods for flow modeling, finite element methods are not inherently

mass conservative. Rather, they approach perfect global mass balance as the mesh resolution is
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increased (Huyakorn and Pinder 1983; Yeh 2000). Likewise, local mass balance is not mathemati-

cally ensured, but is a likely byproduct of a successful global solution. The magnitude of this global

and local mass balance error is directly related to the quality of the flow solution: the discretized

AEM solution must satisfy the water balance (∇·Q=0) (Gresho and Sani 1998). Therefore, just as

with FD methods, the manner in which the flow system is discretized is of paramount importance.

In addition, the accuracy of the finite element method increases as the accuracy of the residual ex-

pression is improved. Such improvements may be attained by (1) increasing mesh resolution or (2)

more accurately evaluating the residual integrals in the FE formulation of the transport method.

When using a flow solution obtained from a finite element technique, these integrals are limited

in accuracy by the quality of the flow solution. With the analytic element method, these integral

expressions may be evaluated numerically (using standard Gaussian quadrature) to a high level of

precision. In a few particular cases, they may be evaluated exactly.

The improved material and flux integral evaluation, directly attributed to the use of analytic

element solutions, reduces the mesh resolution required to reach a specified level of solution accu-

racy. Ideally, this will enable the development of chemically complex models with fewer degrees of

freedom, and therefore lesser computational cost. However, certain constraints on mesh geometry

are required to ensure numerical stability of the solution. These constraints, which are dictated by

the need to accurately calculate residual expressions, are as follows:

• Analytic elements may not intersect finite element sides. Fluxes from linesinks, wells, etc. are

constrained to be distributed along finite element sides. This also ensures that discontinuities

in saturated thickness, normal flux, or tangential flux do not occur within a finite elements

interior.

• Analytic elements that enforce a sharp discontinuity in saturated thickness or normal flux that

results necessarily in a discontinuity in vertically-averaged concentration require an internal

“hole” in the mesh so that the discontinuity may be handled using special flux conditions or

constraints (described in section 3.7).

• Sharp discontinuities in porosity and retardation factor must be located along finite element

sides.

The reasons for these constraints are well founded. Analytic element models are vector-based:

the underlying geometry is not based on a grid or mesh, by rather on polylines, polygons, points,
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ellipses, and, in some cases, splines. The formulation of the method is such that all important

discontinuities in the flow field occur along these boundaries. Important discontinuities include

influx/outflux boundaries or spatial changes in conductivity, base, or thickness. Many parameters

required for transport simulation (velocity, dispersion coefficients, saturated thickness, etc.) are

derived from these flow parameters, and are therefore perfectly continuous between elements, but

discontinuous across them. It is for this reason that the transport mesh must be discretized in a

way such that finite elements are not intersected by analytic elements. By discretizing with this

constraint, numerical or analytic integration of finite element residuals is more accurate (Gaussian

integration of continuous functions is significantly more effective than that of discontinuous ones).

In addition the specialized spatial discretization constraints outlined above, Peclet constraints (as

described by Yeh (2000)) must still be met to ensure the accuracy of the numerical solution. Such

constraints are independent of the particular style of flow solution used.

3.6.3 Finite Element Flux Discretization

As with finite difference methods, accurate translation of fluxes from an analytic representation to a

discrete representation requires intelligent manipulation of information. In standard finite element

methods for transport, fluxes of water are of three primary types:

1. Point fluxes, either those that occur at a node or within an element

2. Area fluxes, which are distributed over an entire element. Their influence is distributed to

the three (or more) element nodes, and

3. Linear distributed fluxes, which are distributed over an element side. Their influence is

distributed to the two nodes along that side.

Each of these three flux terms impacts the contaminant transport simulation and must therefore

be properly identified and calculated.

Material fluxes are generally handled in finite element methods via a source/sink term added to

the vertically-averaged ADR (equation 2.16). This flux is distributed to nodes of the finite element

mesh and incorporated into the system of equations used to represent the governing equation (as

shown in equations 3.92 and 3.93). The material flux term associated with each finite element node
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i may be generally expressed as:

Qi =

NEi
∑

e=1

∫

A(e)

N
(e)
i (x, y)q(x, y, t)dA (3.95)

where NEi is the number of elements adjacent to the node, A(e) is the area of each element, N
(e)
i

is the basis function within element e associated with node i (see appendix D for details), and

q(x, y, t) [M/TL2] is the spatially distributed mass flux per unit area. This spatially distributed

flux term is a function of local concentrations (the dependent variable) for sinks, but generally

independent of concentration for sources. Therefore, flux components show up on both the left and

right hand side of the system of equations in 3.89.

For “dry” fluxes (mass added independently from the influx of water), the integral in equation

3.95 may be evaluated directly using Gaussian quadrature. For “wet” fluxes, which are linked to

the analytic element method representation, a formal method for flux discretization is desirable.

The following subsections discuss the evaluation of these “wet” fluxes for point features (wells),

area features (e.g., contaminated recharge) and polylinear features.

Point Fluxes

The mesh generation constraints discussed earlier in this section requires that pumping wells

(the only point flux dealt with here) are located at nodes of the mesh. Any material flux to or from

the domain may be written as a component of the finite element flux vector:

Qi =















QwellĈi if Qwell < 0

Qwellc
+
s if Qwell > 0

(3.96)

where Qwell is the pumping rate of the well, Ĉi is the vertically-averaged concentration at the node,

c+
s is the concentration of solute in the injected fluid, and Fi is an element of the FE material flux

vector, defined as in (Istok 1989). This formulation is equivalent to that of standard finite element

methods.

Area Fluxes

In the traditional 2-D finite element method for flow, areal fluxes (recharge or leakage) are often

specified as piecewise constant on an element-by-element basis. However, the analytic element



CHAPTER 3. METHODS 96

method allows these fluxes to be represented in a continuous manner (e.g., multi-quadric basis

functions (Strack and Janković 1999)). The contaminant flux due to an areal element may be

distributed to the adjacent nodes via the following expression:

Qi =

NEi
∑

e=1

∫

A(e)

N
(e)
i N−(x, y)ĈidA +

NEi
∑

e=1

∫

A(e)

N
(e)
i N+(x, y)c+

s dA (3.97)

These integrals are best evaluated using Gaussian quadrature. However, in domains with uniform

source (recharge or leakage) concentration, the area integrals may be evaluated exactly (as shown

in the finite difference analysis of section 3.3.2).

Linear Fluxes

Linear fluxes are those fluxes associated with linesinks. Such features are used to represent head-

specified or flux boundaries in the analytic element method. Since these features are polylinear,

they produce a concentrated flux per unit length along their boundaries, QX [L2T−1], which may be

an outflux from the aquifer (Q−
X) or and influx to the aquifer (Q+

X) with associated concentration

linked to the feature c+
s . These fluxes may be distributed to adjacent nodes via the following

relationship:

Qi = −
NSi
∑

s=1

∫

L(s)

N
(s)
i Q−

XĈdX +

NSi
∑

s=1

∫

L(s)

N
(s)
i Q+

Xc+
s dX (3.98)

where NSi is the number of sides (finite element edges) linked to node i, and S(s) is the side length.

Neither Q−
X nor Q+

X are defined along sides that are not along linesink borders. The effect of flux

redistribution is shown in figure 3.15. Note that this formulation of linesink fluxes may be expanded

to include other (elliptical or curvilinear) features that distribute concentrated fluxes of water to

the domain.

3.6.4 Finite Element Material Integral Evaluation

The global matrices discussed in section 3.6.1 are usually assembled on an element-by-element

basis. The contribution of node i to the residual within element e, R
(e)
i , for the vertically-averaged
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q(X)AEM W31qAEM W35qAEM

W31(X) W35(X)

Q+
31 Q+

35

Q-
35Q-

31
31

35

Finite element mesh

Linesink border

Figure 3.15: Fluxes from analytic elements are evaluated analytically along finite element sides.
These fluxes are distributed to nodes using the same basis functions (Ni) as used for solution.

transport equation may be divided into the multiple integral terms and expressed as:

R
(e)
i =

∫

A(e)

−w
(e)
i

[

Qx
∂Ĉ(e)

∂x
+ Qy

∂Ĉ(e)

∂y

]

dA

+

∫

A(e)

N
(e)
i

[

hθDxx
∂2Ĉ(e)

∂x2
+ hθDxy

∂2Ĉ(e)

∂x∂y
+ hθDyy

∂2Ĉ(e)

∂y2

]

dA

+

∫

A(e)

N
(e)
i

[

N+
t

(

c+
t − Ĉ(e)

)

+ N+
b

(

c+
b − Ĉ(e)

)]

dA

−
∫

A(e)

N
(e)
i

[

Rfhθ
∂Ĉ(e)

∂t

]

dA

(3.99)

This may be written as a local system of equations (as in Istok (1989)) as:























R
(e)
1

...

R
(e)
M























=
[

D(e)
]























C1

...

CM























−
[

K(e)
]























C1

...

CM























+
[

Q(e)
]

+
[

A(e)
]























∂C1
∂t

...

∂CM

∂t























(3.100)

where M is the number of nodes that define the element (3 for linear triangle elements)
[

D(e)
]

is

the element dispersion matrix (composed of the first two terms on the RHS of equation 3.99,
[

K(e)
]

is the element sink load matrix,
[

Q(e)
]

is the element source load matrix, and
[

A(e)
]

is the element

sorption matrix. Each of these is defined differently, and is closely related to the expression of the
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global matrix. In fact, the global matrix may be assembled as a summation of individual element

contributions, as shown by Istok (1989). This dissertation will only present means of evaluating the

element dispersion matrix for linear triangle elements. Similar representations for more complicated

finite element basis functions are available.

The element dispersion matrix is generically defined for linear triangular finite elements as:

[

D(e)
]

=

∫

A(e)

[

N ′
]T







hθDxx hθDxy

hθDxy hθDyy







[

N ′
]

+ [w]







Qx 0

0 Qy







[

N ′
]

dA (3.101)

where

[

N ′
]

=







∂N
(e)
i

∂x

∂N
(e)
j

∂x

∂N
(e)
k

∂x

∂N
(e)
i

∂y

∂N
(e)
j

∂y

∂N
(e)
k

∂y






(3.102)

and

[w] =













w
(e)
i w

(e)
i

w
(e)
j w

(e)
j

w
(e)
k w

(e)
k













(3.103)

Depending upon the functional form of the parameters (Qx, Dxx, etc.), this residual will be

evaluated in a different manner. Three cases, that of uniform (or averaged) parameterization within

an element, linearly varying parameterization, or continuous parameterization are considered here.

The three cases are shown in figure 3.16.

Figure 3.16: Three forms of parameterization for finite element integral evaluation. (a) Element-
averaged parameters (b) Linearly-varying (nodal) parameters (c) Continuous parameters
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3.6.4-A Element-averaged Parameters

In finite elements, independent parameters (e.g., velocity, dispersion coefficients) are generally

assumed to be piecewise constant over the element. Often this is because the velocity is obtained

from conventional FE flow models that solve for hydraulic head with linear basis functions, and

calculate velocity as a byproduct of this solution. Assuming uniform parameter values and a

weighting function w
(e)
i equal to the basis function, the integrals in equation 3.101) may be obtained

analytically, and the matrix is expressed as (Istok 1989):

[

D(e)
]

=
hθD

(e)
xx

4A(e)













b2
i bibj bibk

bjbi b2
j bjbk

bkbi bkbj b2
k













+
hθD

(e)
yy

4A(e)













c2
i cicj cick

cjci c2
j cjck

ckci ckcj c2
k













+

hθD
(e)
xy

4A(e)













bici bicj bick

bjci bjcj bjck

bkci bkcj bkck













+
hθD

(e)
yx

4A(e)













cibi cibj cibk

cjbi cjbj cjbk

ckbi ckbj ckbk













+

Q
(e)
x

6













bi bj bk

bi bj bk

bi bj bk













+
Q

(e)
y

6













ci cj ck

ci cj ck

ci cj ck













(3.104)

where bi and ci are related to the spatial derivatives of the basis function, bi = 2A(e) ∂Ni

∂x and

ci = 2A(e) ∂Ni

∂y . Notice that in this particular formulation, the continuous parameters Dij , and v∗i

are represented in a piecewise constant fashion by their average value over the element, D
(e)
ij and

v
(e)
i , respectively. This approach will be less accurate for regions with large variations of these

properties. The following sub-section presents a formulation that allows these parameters to vary

linearly across the element, using the same representation as the concentration field, Ĉ.

3.6.4-B Linearly Graded Parameters

The averaging of (hθD)(e) and v(e) over a whole element is adequate for fine discretization, but can

introduce some errors at coarser discretization when the parameters vary across the element. A

better approximation (since these AEM-based parameters are changing over an element) to allow

the parameters to vary across the element in a linear fashion. Note that the following derivation

is not used elsewhere in the dissertation (because it does not allow for upstream weighting), but is
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novel and closed-form, and thus a worthy contribution. With this formulation (once again assuming

that the weighting function is equivalent to the basis function), our residual becomes:

R
(e)
i = −

∫

A(e)

Ni



































3
∑

j=1

Nj (hθDxx)j





∂2Ĉ(e)

∂x2
+



2
3
∑

j=1

Nj (hθDxy)j





∂2Ĉ(e)

∂x∂y
+





3
∑

j=1

Nj (hθDyy)j





∂2Ĉ(e)

∂y2































dA −
∫

A(e)

Ni





















3
∑

j=1

Nj (Qx)j





∂Ĉ(e)

∂x
+





3
∑

j=1

Nj (Qy)j





∂Ĉ(e)

∂y

















dA

(3.105)

Using integration by parts,

−
∫

A(e)

Ni









3
∑

j=1

Nj (hθDxx)j





∂2Ĉ(e)

∂x2



 dA

=

∫

A(e)

∂Ni

∂x









3
∑

j=1

∂Nj

∂x
(hθDxx)j





∂Ĉ(e)

∂x



 dA

−
∫

S(e)

Ni









3
∑

j=1

Nj (hθDxx)j





∂Ĉ(e)

∂x



 ds (3.106)

where S is the perimeter of the element. This last term is the dispersive flux into the element, which

will be zero at system boundaries and is cancelled out along all internal element boundaries. The

only time it needs to be evaluated is at specified flux (Neumann) boundaries. Similar expressions

are available for the other dispersive terms in (3.105). Since

∂Ĉ(e)

∂x
=

3
∑

k=1

∂Nk

∂x
Ĉk (3.107)

The new residual may be written as:

R
(e)
i =

3
∑

j=1

3
∑

k=1

Ĉk

∫

A(e)

−

















∂Ni

∂x

∂Nj

∂x

∂Nk

∂x
(hθDxx)j +

2
∂Ni

∂x

∂Nj

∂x

∂Nk

∂y
(hθDxy)j +

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y
(hθDyy)j

















−









NiNj
∂Nk

∂x
(Qx)j +

NiNj
∂Nk

∂y
(Qy)j









dA (3.108)
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Using Linear finite elements, we may analytically evaluate these integrals using (D.5) and assemble

our element dispersion matrix [D(e)]:

[

D(e)
]

= − 1

8A(e)2













D
′(e)
11 D

′(e)
21 D

′(e)
31

D
′(e)
12 D

′(e)
22 D

′(e)
32

D
′(e)
13 D

′(e)
23 D

′(e)
33













− 1

24













v
′(e)
11 v

′(e)
21 v

′(e)
31

v
′(e)
12 v

′(e)
22 v

′(e)
32

v
′(e)
13 v

′(e)
23 v

′(e)
33













(3.109)

where

D
′(e)
ik =

3
∑

j=1

(

(hθD)xxj
bibjbk + (hθD)xyj

bibjck + (hθD)xyj
cicj(ck + bk)

)

v
′(e)
ik =

3
∑

j=1

(

Qxj
bk (1 + δij) + Qyj

ck (1 + δij)
)

(3.110)

3.6.4-C Continuous Parameters

The two preceding subsections discussed how to obtain element dispersion matrices for the residual

influence of node j on node i using (1) parameters that are constant in the element and (2)

parameters that vary linearly within the element. Both assumed a fully Galerkin representation,

where the weighting function was equivalent to the basis function. The first case is that most

commonly used in linear finite element representations, because they are based upon groundwater

flow models that provide piecewise-constant expressions for velocity within elements. The second

case may be considered an expansion of the representation available from “mixed” finite element

groundwater flow models (Chavent and Jaffre 1986). Within this dissertation however, we are

primarily concerned with obtaining highly accurate residual expressions for parameters that vary

continuously within elements. The following subsection describes the means for evaluating the

terms of the Petrov-Galerkin element dispersion matrix using Gaussian integration.

We can write each term of the element dispersion matrix as (i=col,j=row):

D
(e)
ij =

∫

A(e)



















∂Nj

∂x

[(

hθDxx
∂Ni

∂x
+ hθDxy

∂Ni

∂y

)]

+

∂Nj

∂y

[(

hθDxx
∂Ni

∂x
+ hθDxy

∂Ni

∂y

)]

+

wj

[

Qx
∂Ni

∂x
+ Qy

∂Ni

∂y

]



















dA (3.111)

Defining the bracketed term in 3.111 as Fij(z), we may evaluate the terms using Gaussian quadra-
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ture as:

D
(e)
ij = A(e)

N
∑

k=0

ωkFij(zk) (3.112)

where ωk are the Gaussian weights and zk are the Gauss points at which the values of vx, vy, hθDxx,

hθDxy, hθDyx, hθDxy, wi, wj and wk must be evaluated.

The benefit of the above approach is that loss of information from the continuous AEM flow

model to the discrete transport model is minimized. The information loss that does occur is

due solely to the order of the numerical integration scheme used, which may be improved to an

arbitrary level of precision. Numerical error that occurs in the evaluation of the residual of the

partial differential equation may only be ascribed to the mesh resolution and the functional form of

the basis functions and weighting functions. Previously, evaluation of the residual was also subject

to numerical discretization error within the flow solution. This method, as opposed to the element-

averaged or linear parameter scheme is the preferred approach for analytic element-based transport

modeling.

3.6.5 Mesh Generation

For the purposes of meeting the mesh constraints outlined in section 3.6.2, a robust two-dimensional

unstructured triangular finite element mesh generator was developed within Cardinal. The mesh

generator is based upon previously developed automatic node placement algorithms (Frey 1987;

Frey and Field 1991; Rebay 1993). Node locations and/or node spacing along system boundaries

and internal boundaries (i.e., analytic elements) are specified, and a system-wide “spacing function”

is interpolated between internal nodes as they are added to the mesh. Fig. 3.17 depicts the

automated process of mesh delineation over an analytic element flow domain.
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(a) (b)

(c) (d)

(e)

Figure 3.17: The automated mesh generation process as implemented in Cardinal. The speci-
fied node spacings along the inhomogeneity (circle), leaky wall (polyline), well (triangle), and the
boundary are 2.94m, 2.31m, 2.8m and 7m, respectively. (a)-(e) represent different stages of the
generation process: (a) depicts the initial specified boundary spacing and triangulation (100 nodes).
(b) the intermediate mesh with 200 nodes (c) with 300 nodes (d) with 400 nodes, and (e) the final
mesh with 505 nodes after Laplacian smoothing and relaxation
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The mesh generation process implemented in the Cardinal library primarily echoes that of

Rebay (1993). The basic process is as follows:

1. The geometry of external (domain) and internal (element) boundaries are specified by the

modeler.

2. The spacing of boundary nodes along features is specified by the user (for the mesh generation

in this dissertation, this specification process is automated through the graphical user interface

to Bluebird and Cardinal, Visual Bluebird (Craig and Matott 2004)). This results in

a Delunay mesh of boundary nodes only.

3. The following sequence of events is repeated until the maximum number of nodes is reached

or the mesh is fully populated with desirable elements:

• The triangular elements are classified by their quality (judged by the angles of the

triangle, the relative location of their circumcenter, and their side lengths with reference

to the domain-wide spacing function).

• New nodes are inserted in the “worst” triangular element. The details of the node

insertion algorithm are outlined elsewhere (Watson 1981; Bowyer 1981; Rebay 1993).

4. The final mesh is relaxed and smoothed (Frey and Field 1991).

5. New connections along “special” element boundaries at important physical discontinuities are

created (as discussed in section 3.7).

6. The ordering of mesh node indices is rearranged to obtain the optimal bandwidth of the

resultant finite element matrix.

The preceding algorithm has been robustly implemented using complex arithmetic and fully opti-

mized for rapid use with nearly any arbitrary configuration of analytic elements. The finite element

meshes used for testing of the methods and algorithms for this dissertation were all generated using

the above methods.
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3.7 Discontinuous Concentration Conditions

In most cases, a finite element mesh linked to analytic element geometry will have a structure

similar to that used for any traditional finite element method. However, particular difficulties

(and opportunities) arise when analytic elements enforce flow boundary conditions that cause a

discontinuity in the vertically-averaged concentration. This may occur where there is a discontinuity

in the saturated thickness of the aquifer (the definition of vertically-averaged concentration changes)

or a discontinuity in the normal component of flow (i.e., mass is lost from the aquifer to partially-

penetrating surface water features).

Classical FEMs for flow problems model head as the dependent variable. Because of this,

discontinuities in head (e.g., as found across a vertical barrier such as a slurry wall) are typically

spread out along element sides, i.e., the head is interpolated from one node to the next, and the

grid spacing dictates the gradient between. The accuracy of the flow model depends in part upon

the spatial discretization near the feature. However, analytic elements will enforce a discontinuity

in head over an infinitesimally small distance, with a singularity in the head gradient across the

barrier (as shown in figure 3.18a). Head (and thus saturated thickness in unconfined aquifers) may

be multi-valued at a node that lies along the barrier. Importantly, this requires that the dependent

variable of vertically-averaged concentration is multi-valued along the barrier.

C+ C-

(a) Slurry wall 

C+ C-

(b) River

C+ C-

(a) Jump in base

c+=c-

Figure 3.18: Discontinuous concentration conditions. (a) an infinitesimally thin inhomogeneity
(slurry wall) enforces a discontinuity in saturated thickness across the inhomogeneity, which causes a
discontinuity in vertically-averaged concentration. (b) a river removes all or part of the contaminant
from the aquifer so that the concentration on one bank is different from that on the other bank.

A similar situation occurs with a fully penetrating river (figure 3.18b). In this case, the saturated
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thickness is the same on both sides of the river, but the concentration is discontinuous because there

is mass lost to the river. Solute may be present on one side of the river, but absent on the other.

These special cases of discontinuous vertically-averaged concentration may be modeled using

an internal gap in the finite element mesh. Finite elements on either side of this gap cannot be

mathematically connected in the typical manner, because they do not have shared nodes. The

boundary condition along the border of this “hole” requires “coincident” nodes (nodes sharing the

“same” mesh location) to communicate with each other without a shared element, as is typically

done in FE methods. Flux conditions, equivalence conditions, or some other correspondence may

be used to specify the functional form of the relationship between the concentration on either side

of the discontinuity. While the approach is rather simple in concept, the author has found no

published implementation similar to the one presented here.

Two revisions to the existing finite element formulation of section 3.6 are necessary to account

for these local discontinuities in concentration. First, the automatic mesh generation algorithm

must be able to introduce the discontinuities in the mesh. Additional coincident nodes and sides

must be added, and the topological connections between elements, sides, and these new nodes

must be properly revised and stored in memory. Second, flux- or concentration-based boundary

conditions and constraints must be developed that maintain the appropriate physical relationship

between the dependent variable of vertically-averaged aqueous concentration at the nodes on either

side of the hydrogeologic feature. Possible conditions are here evaluated for thin, low-conductivity

inhomogeneity elements (the “Leaky wall” condition), and for pseudo-partially-penetrating river

elements. Both conditions naturally arise from AEM flow solutions. These discontinuous internal

boundary conditions have been implemented in Cardinal and are demonstrated in section 4.3.

Importantly, this approach allows for some scale-independence by removing the adjacency con-

straints associated with standard finite element models. For example, the mesh along an engineered

barrier does not require elements on the same scale as the thickness of the barrier. Using AEM

flow solutions facilitates the development of transport models that are not discretized based upon

the smallest feature in the model.

NOTE: The boundary conditions and constraints discussed below are by no means the only

possible means of handling the variety of discontinuous hydrogeologic conditions encountered in

practice. Many of the simplifications needed for the following numerical formulations are only

applicable in a subset of cases, and were primarily developed to (1) maintain the applicability of
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the AEM-based FEM methods for domains that contain these problematic features, (2) provide

results that avoid violating certain important behavioral constraints across the discontinuity, and

(3) maintain global mass balance.

3.7.1 Mesh Splitting

As stated above, the first necessary step for handling discontinuous conditions in a finite element

method linked to an analytic element flow solution is to reconfigure the mesh topology to account

for coincident nodes. The initial phase of discontinuous mesh generation may proceed in the same

manner as described in section 3.6.5 with a continuous mesh, as long as element sides are constrained

to fall along the discontinuity boundary. In fact, any standard mesh generation algorithm may be

used. This initial mesh (with only single-valued nodes along the discontinuity) is modified by

(1) creating new nodes and finite element sides along the discontinuity and (2) reevaluating the

connections between all nodes, elements, and sides linked to the discontinuous boundary. While

conceptually simple, the details of implementing this procedure in a robust fashion are tedious.

Triangular finite element meshes must contain a significant amount of information. Along with

information about the geometry of a mesh, topological information must also be preserved in an

internal program structure or database. The connections between nodes, sides, and elements are as

important (if not more important) than their location. Topologic information is here stored with

the sides and the elements, using the nodes as reference. Elements are “aware of” their 3 adjacent

sides, 3 corner nodes, and up to 3 adjacent elements. Sides are “aware of” their two end nodes, up to

two adjacent elements, and up to 2 opposing nodes. This storage criteria is sufficient to completely

explain the topology of a standard mesh. During the splitting procedure, this information must be

reevaluated correctly. In addition, new topological information must be preserved (the connection

between the nodes on either side of the discontinuity). Otherwise, the development of the finite

element system of equations will be flawed.

The “Mesh-splitting” procedure may be decomposed into a single operation applied to one dis-

continuous node flanked by two discontinuous sides (henceforth a “wing”). This splitting operation

is applied repeatedly until all multi-valued nodes have been created. If it is assumed that only a

single discontinuity is allowed (i.e., the variable represented on the mesh may be double-valued at a

location but not triple- or quadruple-valued), then there are only three geometric cases to consider.

Firstly, the node may be flanked by two sides that have not yet been split (fig. 3.19a). The node
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(a) (b)

(c) (d) 

Figure 3.19: Wing-by-wing mesh splitting cases. (a) unsplit node flanked by unsplit sides (b)
unsplit node flanked by one split side (c) unsplit node flanked by two split sides (d) resultant split
node flanked by split side

may be flanked by two sides that have already been split (fig. 3.19c), or the node may be flanked

by one split side and one unsplit side (fig. 3.19b).

The single wing mesh-splitting algorithm that corresponds to case (a) of figure 3.19 is shown in

figure 3.20.
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(a) (b) 

(c) (d) 

Figure 3.20: Mesh splitting procedure. The algorithm for mesh splitting may be simplified to the
repeated splitting of the mesh along a “wing” (a node flanked by two sides). If neither side (shown
in bold in (a)) has yet been split, the process operates as follows. (a) the “internal” area to the
wing is identified (dark background circle). (b) The new sides and node are created as copies of
the existing nodes and sides, with all references to formerly adjacent elements omitted. (c) The
“internal” (lighter) and “external” (darker) elements adjacent to the split are updated, as are all
sides associated with these internal elements. (d) Finally, all other elements are sifted through. If
they are “internal” and associated with the old node, they are updated (as are their sides)
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3.7.2 Leaky Wall Flux Conditions

A element commonly used in AEM that enforces a discontinuity in saturated thickness is the

“Leaky Wall” element (Strack 1989), which represents a relatively thin inhomogeneity in hydraulic

conductivity as a polyline or curvilinear shape. The normal flux, Qη, across the barrier is known

as a function of position along the element border, as are the saturated thicknesses on either side

of the wall. There are multiple approaches available for modeling transport of solute across this

boundary, of varying complexity.

The simplest manner in which to represent mass flux across the barrier is as a Dankwerts type

boundary condition applied to either side of the barrier. With this approximate condition, the

wall is assumed to store no mass, the concentration varies linearly across the wall, the flux across

the barrier is both advective and dispersive, where the dispersive flux is determined by the single

gradient across the wall. The flux across the barrier associated with nodes i+ and i− is given as:

Fi =

2
∑

s=1

∫

L(s)

Ni

[

−QηC
+
i + h̄θ̄D+

η

∂Ĉ

∂η

]

dX (3.113)

where ∂Ĉ/∂η = (C+
i − C−

i )/bw, bw is the thickness of the wall, and two finite element sides (s=1;

s=2) are along the wall adjacent to node i. This flux condition connects the behavior of two

“coincident” nodes on either side of the infinitely thin wall. Neither continuity of concentration

or continuity of vertically-averaged concentration are required along such a boundary. However,

inherent in this formulation is the continuity of mass flux across the wall; what enters the wall

through one side leaves through the other side. No mass is stored within the wall itself, and

the gradient of concentration across the wall is assumed to be an adequate representation of the

average gradient within the wall. These assumptions are invalid if the wall is sufficiently thick or if

transport is dominated by diffusion, as is often the case for engineered slurry walls. However, for

preliminary transport investigations, this approximation may adequately capture the behavior of

a plume. Also, with this particular formulation, the wall meets the zero mass flux condition in the

limiting case where the barrier is impermeable.

A more sophisticated approach to handling the slurry wall condition, likely more accurate for

diffusion-dominated transport prevalent in barrier systems, is to allow the wall to retain mass, and

explicitly model the transport behavior within the wall using a separate 1-dimensional model. The

fluxes from the external model could act as boundary conditions to the model of the wall and
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vice versa. Because transport within the wall occurs on a much longer timescale than transport

outside of the wall, this process may be decoupled via operator-splitting, and the flux boundary

conditions for the internal transport model may be obtained from the concentrations upgradient and

downgradient of the barrier. This more sophisticated numerical approach has not been implemented

in Cardinal, and remains an open research problem.

3.7.3 Transport Beneath a Pseudo-Partially Penetrating River

The final discontinuous condition considered here is that of vertically-averaged contaminant trans-

port beneath a river. Note that river conditions in the 2D AEM are typically assumed to be fully

penetrating. However, the same boundary conditions used to model a fully-penetrating river are

roughly valid for partially penetrating rivers where the head below the river is assumed uniform

and the vertical flux directly beneath the river is negligible. For transport models, this description

of the river condition (in the flow model) may be more apt for realistic simulation of the actual

mass transfer processes occurring (even if the exact vertical distribution of mass and water flux to

the river is not explicitly represented by the flow model).

For a partially-penetrating river (as shown in figure 3.21), the concentration is discontinuous

at the river boundary because some percentage of the mass upgradient of the river is lost from

the aquifer system to the river itself. Typically, with the Dupuit-Forcheimer approximation, a

river will remove all of the water moving towards it (because the 2-dimensional hydraulic gradient

“points” towards the river on both banks). This “strong extraction” condition is well-treated using

typical specified mass flux conditions in the transport model (as derived in section 3.6.3), and no

discontinuity has to be explicitly modeled. If modeled with a mass flux condition, the concentration

at a node along the strongly extracting river roughly represents the concentration on the upstream

bank of the river. The same is true for a river that loses water to the aquifer at a sufficient rate that

the hydraulic gradient points away from the river on both banks (a “strong injection” condition).

However, if the hydraulic gradient is towards the river on one side and away from the river on the

other (as in figure 3.21), some of the aquifer water (and the solute contained within) moves either

(a) into the river and subsequently out of the river (for a fully-penetrating river) or (b) underneath

the river (partially-penetrating conditions).

For the fully penetrating conditions, all of the mass removed by the river is assumed lost to the

river. In actuality, this mass would be tranported downstream, and without conjunctive surface
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Figure 3.21: Discontinuous Condition: Partially Penetrating River

water/ground water transport simulation (beyond the scope of this dissertation), simulating this

transport phenomenon is impossible. For the pseudo-partially penetrating conditions, a discontinu-

ous vertically-averaged concentration condition occurs, and mass flux conditions may be developed

to couple the concentrations at the nodes on either side of the river.

To appropriately model this discontinuous condition within the confines of the Dupuit-Forcheimer

approximation, certain assumptions are made about the vertical distribution of flux to the river.

As shown in figure 3.21, it is assumed that only the upper portion of the saturated thickness is ex-

tracted by the river, and the percentage of the saturated thickness removed is directly proportional

to the jump in integrated discharge across the river. The water (and solute) in the lower part of

the saturated thickness is assumed to move underneath the river. Thus the mass flux from one side

of the river to the other may be calculated as:

Fi =
2
∑

s=1

∫

L(s)

Ni

[

−(Qη − QX)C+
i + hθD+

η

∂Ĉ

∂η

]

dX (3.114)

Where Qη [L2T−1] is the normal integrated discharge towards the river, and QX [L2T−1] is the

volumetric flux of water to the river per unit length of the river. The dispersion across the boundary

is controlled by the concentration gradient across the stream. This may approximated by knowing

the width of the river as:

∂Ĉ

∂η
=

C−
i − C+

i

wr
(3.115)
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Where wr is the width of the river. Alternatively, if the down gradient vertical concentration dis-

tribution is assumed skewed such that the (non-vertically-averaged) concentrations are equivalent

on both sides of the river, a zero-gradient condition may also be enforced such that dispersive flux

is negligible beneath the river in comparison to advective flux. Neither of these approximations

of the flux beneath the river are exact (many assumptions were necessary to obtain their formu-

lations). However, for regional scale transport simulations not dominated by these features, this

approximation may prove adequate.

Note that if the effect of the river is modeled in this manner, the flux conditions derived for

a sink or source along a linear element in section 3.6.3 are no longer used. However, mass is still

lost to the surface water feature, and this lost mass must be explicitly accounted for in the mass

balance calculation.
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3.8 Modular and Adaptive Reactive Transport Modeling

3.8.1 Object-Oriented Reaction Library

As was discussed in section 3.1, the use of object-orientation simplifies the process of adding and

testing new algorithms and model features. In Cardinal, one of the most powerful benefits of

object-orientation is the ability to easily develop and incorporate new reaction types. Since the

use of operator-splitting allows all reactions to be handled in batch mode (without reference to

spatial location), each reaction process is fully defined by the time step of the reaction calculation,

the initial sorbed and aqueous species concentrations, relevant chemical properties of the species

or components in the reaction, and relevant properties (including the porosity, bulk density, and

chemical properties) of the soil type in which the reaction occurs. By making all other information

about the aquifer invisible to the reaction process, non-linear/linear and kinetic/equilibrium reac-

tions may be connected to the overall reactive transport algorithm with equal ease. In addition,

different isotherm types (for modeling non-competitive equilibrium sorption) may be implemented

as subsets of the class CIsotherm.

At the time of this writing, four types of equilibrium sorption have been implemented in CAR-

DINAL: a general cation exchange class (details in appendix G), and three types of single-solute

isotherm (linear, Langmuir, and Freundlich). Sequential parent-daugther first-order decay reac-

tions have also been implemented (based upon the solution of Sun et al. (1999)), but testing is

ongoing and this type of reaction is not discussed in this dissertation.

3.8.2 Adaptive Enabling of Reactions

For transport problems characterized by complex reactions, the primary computational cost is

often the cost of solving the reaction equations for each node of the grid or mesh at each time

step. The time step constraints for reactive transport are a function of the speed of the reaction in

relation to the speed of transport and the simulation period is likely a function of the application

of interest. Thus, the total number of time steps is generally fixed by a combination of Courant

constraints and the needs of the modeler. The Courant constraints may be somewhat relaxed by

using a lower-resolution grid or mesh (this is facilitated via use of AEM solutions). However, Peclet

constraints (for Eulerian methods) may require higher resolution. An alternative is to allow for

adaptive enabling of reactions in which the reactive portion of the transport problem is solved only



CHAPTER 3. METHODS 115

when it is important to do so. This approach reduces the size of the transport problem.

Multiple methods of adaptive enabling have been conceived, all of which fall under two general

categories:

Spatial Adaptivity

• Vary reaction applicability by soil zone. Reactions can be enabled or disabled based upon soil

type.

• User-specified. The user may specify areas of reaction applicability that are consistent with

their observations of the system (i.e., the effects of a given reaction may have little importance

downgradient of a remediation process).

Model-Constrained Adaptivity

• Vary reaction applicability based upon the magnitude of concentration. Oftentimes, reactions

only occur at a non-negligible rate if there is a significant amount of catalyst or a small con-

centration of reaction-inhibiting solute. For instance, redox reactions may require anaerobic

conditions, and reactions may only have a significant impact upon results if the modeled

concentration of oxygen is below a certain threshold.

• Vary reaction applicability based upon flow velocity. In some classes of kinetic sorption reac-

tions, the aqueous phase may be assumed to be at equilibrium if given a sufficient amount

of contact time. Therefore, a sorption reaction may be treated as an equilibrium reaction in

stagnation zones, and a kinetic reaction in faster moving areas. This is a conceptual advantage

of the approach and not covered within this dissertation.

The first three of these enabling constraints have been implemented in Cardinal, and are

simple to implement in any reactive transport code.



Chapter 4

Numerical Testing

The following chapter discusses the demonstration and numerical testing of the new AEM-based

algorithms for solving the vertically-averaged advective-dispersive-reactive equation.

All of the methods discussed in chapter 3 are unique in their use of analytic element flow so-

lutions, and were checked for accuracy against existing analytic and numerical solutions to the

vertically-averaged transport equation. Once the general accuracy of each algorithms was con-

firmed, differences between using analytic element versus using discrete solutions as a source of

flow information were evaluated and analyzed. Test cases were used to investigate the effectiveness

of the multi-scale approach for handling discontinuous conditions of section 3.7 and the effective

parameter random walk method of 3.5.4. Lastly, the finite element implementation of the new

AEM-based approach was used to demonstrate the ability of the new method to effectively simu-

late field-scale reactive transport through an engineered barrier.

The primary contribution of this dissertation is the development and implementation of new

numerical methods, rather than the analysis of contaminant transport phenomena. Therefore, the

particular results of the following simulations are deemed less important than are the robustness,

stability, speed, and accuracy of the numerical solution.

116
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4.1 Comparison with Analytic and Numerical Solutions

This section describes various benchmark tests used to assess the accuracy of the transport sim-

ulators included in the Cardinal software libraries. The Bluebird flow model has previously

been repeatedly tested against the numerical code Split (Janković 2003) and, to a lesser extent,

Modflow (McDonald and Harbaugh 1988). The results of these tests are not discussed here.

4.1.1 Benchmark Test 1: Cleary and Ungs Solution

To confirm the accuracy of the finite element, finite difference, and BMOC implementation in

Cardinal, numerical solutions were first compared to an analytic solution for two-dimensional

transport in uniform flow with a constant concentration source. An exact solution, developed by

Cleary and Ungs (1978) provides a closed-form expression for transport of an inert solute in a

homogeneous, semi-infinite domain with unidirectional flow and a constant concentration source

of length 2a located along the y-axis in the region −a = y = a. The boundary conditions meet

specified conditions along the y-axis and zero-gradient conditions at infinity. The concentration is

expressed explicitly as a function of time and position (Ségol 1994):

C(x, y, t) =
C0x

4(πDx)0.5
exp

(

vxx

2Dx

)

t/Rf
∫

0

exp

[

v2
x

4Dx
τ − x2

4Dxτ

]

τ−
3
2 ·

(

erf

[

a − y

2(Dyτ)0.5
+

vy

2

(

τ

Dy

)0.5
]

+ erf

[

a + y

2(Dyτ)0.5
+

vy

2

(

τ

Dy

)0.5
])

dτ

(4.1)

The analytical scheme was simulated with C0=100 mg/L, vx=1.0 m/d, vy=0.0 m/d, αl=5 m,

αt=0.5 m, and a=10.0 with the analytic solution coordinate system having its origin at x=0, y=50.

Numerical solutions were then obtained and compared to the analytic solution. The numerical

simulations were performed using a grid Peclet number (v∆x/D) of 0.2 (FD) or a mesh Peclet

number of 0.354 (FE) and a grid/mesh Courant number (v∆t/∆x) of 0.1. The concentration con-

tours for the analytic and numerical solutions at t=50 d are shown in figure 4.1.1. It is important

to note that this test case (and that of the following analytic benchmark test) are simulated using

the simplest formulation of the vertically-averaged transport equation, with constant dispersion
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coefficients, porosity, saturated thickness, and velocity. Hence, the accurate evaluation of effective

velocities, the effects of spatial gradation in parameters, or cross-dispersion terms are not demon-

strated by this test case. However, the simulations demonstrate the ability of finite difference,

finite element, and BMOC algorithms to properly simulate advection, longitudinal dispersion, and

transverse dispersion. This particular test case also demonstrates that Dirichlet (constant con-

centration) conditions have been correctly implemented in Cardinal, and that both implicit and

explicit systems of equations have been correctly developed.

As can be seen in figure 4.1.1, the analytic and numerical solutions are visually equivalent

for the test problem. Additional testing (not shown here) confirms that increasing grid/mesh

resolution reduces any discrepancies between analytic and numerical solutions. Table 4.1 and

figure 4.1.1 depict the difference between the analytic and numerical simulations for six different

transport algorithms and spatial weighting schemes. The root mean squared error (RMS) and

median concentration are evaluated on a 100 x 100 grid of points covering the problem domain

(0 < x < 100;0 < y < 100) at t=50, as are the maximum concentration and median concentration.

The mass balance error for each algorithm is evaluated as discussed in section 3.2.

Table 4.1: Comparison of numerical and analytic solutions to Cleary and Ungs benchmark problem

Algorithm spatial RMS error Median Conc. MB Error

weighting t=50 t=50 t=50

AN N/A 0.0 0.1096 0.000%

FD UW 4.3E-5 0.1196 0.000%

FD CW 0.0664 0.1125 0.000%

FD BMOC N/A 0.1451 0.1183 -0.332%

FE UW 0.2018 0.1955 -0.001%

FE CW 0.1410 0.1834 -0.000%

FE BMOC N/A 0.2514 0.3409 -0.782%

FD=Finite difference; FE=Finite Element; UW=Upstream weighting; CW=Central weighting;
CN=Crank-Nicholson; BMOC=Backward method of characteristics; *Note: some portion of the
errors in the finite element method are due to the inability to match the geometry of the initial

concentration distribution near the source.
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(c) Upstream Weighted Finite Difference (d) Finite Difference BMOC

(e) Central Weighted Finite Element (f) Upstream Weighted Finite Element (g) Finite Element BMOC
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Figure 4.1: Comparison of concentration profiles for the Cleary and Ungs analytic solution at t=50
(vx=1.0; vy=0.0; αl=5; αt=0.5) with Cardinal transport schemes. (a) analytic solution; (b,c, and
d) Crank-Nicholson finite difference simulation with ∆x=∆y=1.0, and ∆t=0.1; (e,f, and g) Crank-
Nicholson finite element simulation with a representative mesh spacing of 1.77, and ∆t=0.177.
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Figure 4.2: The spatial distribution of numerical solution errors for the Cleary and Ungs analytic
solution with Cardinal transport schemes. Errors are evaluated as the difference between the
analytic and numerical solutions normalized by the source concentration (100 mg/L). As expected,
the upstream weighted and backwards method of characteristics techniques introduce numerical
dispersion (exhibited by the sinusoidal error distribution about the front of the plume.
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4.1.2 Benchmark Test 2: Hunt Solution

In addition to the constant concentration source simulated in the previous section, analytical solu-

tions developed by Hunt (Hunt 1978) are used to verify the accuracy of the Cardinal transport

model for a homogeneous, semi-infinite domain with unidirectional flow and a initial point source

located at the origin. Zero concentration gradient boundary conditions are applied at an infinite

distance from the point source. The solution is given as (Ségol 1994):

C(x, y, t) =
Mexp

[

− (x−vxt)2

4Dxxt − y2

4Dyyt

]

4πθt(DxxDyy)0.5
(4.2)

where M is the initial mass at the origin. The analytical scheme was simulated with vx=1.0,

vy=0.0, Dx=5, Dy=0.5, and an initial point source with a mass of 5 kg centered at x=0, y=50.

The Peclet and Courant numbers for the finite difference simulations are 0.2 and 0.5, respectively.

Peclet and Courant numbers for the finite element simulations (on a coarser mesh) are 0.66 and

0.152, respectively. The concentration contours for the solution at t=50 are shown in figure 4.3.

Table 4.2: Comparison of numerical and analytic solutions to Hunt point source benchmark problem

Algorithm spatial RMS error Maximum Conc. MB Error

weighting t=50 t=50 t=50

AN N/A 0.0 7.1169 0.000%

FD UW 0.0690 6.8149 0.001%

FD CW 0.0026 7.1273 0.000%

FD BMOC N/A 0.0624 6.8446 0.000%

FE UW 0.1116 6.6196 0.004%

FE CW 0.0438 7.0593 0.002%

FE BMOC N/A 0.0451 6.5388 -6.879%

FD=Finite difference; FE=Finite Element; UW=Upstream weighting; CW=Central weighting;
CN=Crank-Nicholson; BMOC=Backward method of characteristics; *Note: part of the errors in
the finite element method are due to the inability to match the geometry of the concentration

distribution near the point source at early time periods.
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(a) Analytic Solution

(c) Upstream Weighted Finite Difference (d) Finite Difference BMOC

(e) Central Weighted Finite Element (f) Upstream Weighted Finite Element (g) Finite Element BMOC

(b) Central Weighted Finite Difference

Figure 4.3: Comparison of concentration profiles for the Hunt point source analytic solution
(vx=1.0; vy=0.0; αl=5; αt=1.0) simulated using Cardinal transport algorithms. (a) analytic
solution; (b,c, and d) Crank-Nicholson finite difference simulation with ∆x=∆y=1.0, and ∆t=0.5;
(e,f, and g) Crank-Nicholson finite element simulation with a representative mesh spacing of 1.77,
and ∆t=0.5.
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4.1.3 Benchmark Test 3: MT3DMS Comparison

The numerical model MT3DMS (Zheng and Wang 1999) is a finite difference-based simulator for

three-dimensional contaminant transport. It has the capacity to solve vertically-averaged transport

systems that are more complex than analytic solutions, and is here used to demonstrate that the

methods used in Cardinal are (at least) equally effective for solving the advection dispersion

equation with a spatially variable velocity field, dispersion cross-terms, and non-uniform saturated

thickness. Since MT3DMS has been tested against a large set of analytic solutions, this test case

is considered a robust assessment of the Cardinal transport schemes and their ability to solve

problems in complex flow fields.

The configuration of the flow system for the transport test case is depicted in figure 4.4. The

1000 m by 1000 m system is defined by no-flow boundaries to the north and south, constant

head boundaries of 30 m to the west and 10 m to the east, a set of square inhomogeneities with

hydraulic conductivities of 0.01 m/d and 10 m/d, and a pumping well with a volumetric flow rate

of -5.0 m3/d (extraction) as shown in the figure. The background porosity is 0.3 and background

conductivity is 0.1 m/d. The flow and transport system are simulated for both confined and

unconfined flow. For the confined configuration, an aquifer thickness of 10 m is used. For the

unconfined configuration, the flow model calculates an average saturated thickness of 20m across

the domain, decreasing from west to east. The orthogonal geometry and property values for this test

case were chosen because they may be simulated equally effectively using finite difference methods

and the analytic element method. More complicated geometry, higher contrasts in conductivity, and

mixed confined/unconfined aquifer systems may be better simulated using AEM-based transport

simulators. However, the equivalence of the AEM-based and FD-based transport algorithms would

be obscured in such systems due to differences in the flow solution. For the analytic element

representation of the system, head-specified linesinks were used to represent the east and west

boundaries, “leaky wall” (doublet) elements were used to represent the no-flow boundaries, and

inhomogeneity (doublet) elements were used to represent the inhomogeneities. High order elements

(Janković and Barnes 1999a) with order=10 are used in all cases. For the finite difference simulation,

the flow system was defined on a 1020 m x 1020 m grid using Modflow, so that the no-flow and

head-specified boundary conditions are applied at the borders of the flow domain, and the two flow

solutions are conceptually equivalent. However, only the 1000 m by 1000 m interior of the grid is

used for transport.
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The transport simulations were performed using three different grid resolutions and multiple

transport algorithms (both Cardinal and MT3DMS) for four test configurations. The four test

configurations are distinguished by the use of confined or unconfined flow and two different ratios of

transverse to longitudinal dispersivity (αt/αl=0.3 and αt/αl=0.01). The longitudinal dispersivity

was held constant at 10 m. A rectangular source zone with a concentration of 100 mg/L was placed

upstream of the system center and transported over a time period of 63000 days (172.5 years). The

plume configuration from both MT3DMS and Cardinal solutions at t=63000 days are shown in

figures 4.5, 4.6, 4.7, and 4.8.
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10 m. The equipotential contours for the confined case are shown.



CHAPTER 4. NUMERICAL TESTING 125

Confined; alpha_l=10m; alpha_t=3m

50 x 50 
grid

100 x 100 
grid

200 x 200 
grid

Cardinal
Central Weighting FD (Implicit)

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

dt=50 d

MT3D
Upstream Weighting FD (Implicit)

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

dt=50 d

MT3D
Total Variation Diminishing (TVD)

dt=20 d

dt=80 d

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

Cardinal
Upstream Weighting FD (Implicit)

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

dt=50 d

MT3D
Central Weighing FD (Implicit)

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

50 x 50 
grid

100 x 100 
grid

200 x 200 
grid

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

dt=50 d

0 100 200 300 400 500 600 700 800 900 1000

300

400

500

600

700

800

Figure 4.5: MT3DMS Benchmark (confined; αt=0.3 m) at 63000 days
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Figure 4.6: MT3DMS Benchmark (confined; αt=0.01 m) at 63000 days
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Figure 4.7: MT3DMS Benchmark (unconfined; αt=0.3 m) at 63000 days
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Figure 4.8: MT3DMS Benchmark (unconfined; αt=0.01 m) at 63000 days
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Table 4.3: Comparison of mass balance errors for MT3DMS and Cardinal test cases. Cardinal

mass balance errors are calculated as described in section 3.2. The MT3DMS “alternative” mass
balance calculation (Zheng and Wang 1999) is reported.

MT3DMS Cardinal

grid resolution TVD CW UW CW UW

Confined; αt =3 m

50x50 -0.002% -0.001% -0.003% -0.009% -0.007%

100x100 0.002% 0.001% -0.003% -0.019% -0.018%

200x200 —–% —–% —–% —–% -0.012%

Confined; αt =0.1 m

50x50 -0.003% N/A -0.002% -0.004% -0.015%

100x100 0.000% -0.001% -0.001% 0.004% -0.005%

200x200 —–% —–% —–% -0.003% -0.008%

Unconfined; αt =3 m

50x50 0.000% 0.003% 0.001% -0.007% -0.007%

100x100 0.002% 0.003% 0.011% -0.004% -0.008%

200x200 —–% —–% 0.004% -0.005% -0.005%

Unconfined; αt =0.1 m

50x50 0.000% 0.003% 0.001% -0.004% -0.004%

100x100 -0.001% 0.003% 0.006% -0.001% -0.008%

200x200 -0.002% 0.004% 0.005% -0.001% -0.005%

TVD=Total Variation Diminishing; CW=Central weighting; UW=Upstream weighting;

As is apparent from figures 4.5 through 4.8, the solutions from the AEM-based finite difference

algorithm and MT3DMS are visually nearly identical Distinct differences are apparent between

the upstream and central weighting results of both MT3DMS and Cardinal. These differences

are due to the effect of numerical dispersion. All of these simulations have mass balance errors of

less than 0.019% (as shown in table 4.3), and therefore may be deemed equivalent from a mass

balance standpoint. This equivalence occurs because both simulations solve the divergence form of

the governing equation, which, if implemented correctly, conserves mass regardless of the quality

of the flow solution. However, as shown in figure 4.9, even at the highest resolution, there are still

differences in the spatial distribution of concentrations.

Figure 4.9 depicts the difference between the Cardinal and MT3DMS concentration profiles

at t=63000 days for the unconfined test case simulated using the same implicit central weighting

scheme on a 50 x 50 and 200 x 200 mesh with a time step of 50 days. The differences in concentration

range from -3.5 mg/L to 3 mg/L on the fine mesh and -4.0 to 3.5 on the coarse mesh, where the

maximum concentration at t=63000 d in both modeled systems is approximately 13.5 mg/L. These

differences are concentrated at the borders of the inhomogeneities in both simulations. The locations
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of these deviations correspond directly to clusters of finite difference cells with water balance errors

(i.e., flow into the cell is not equal to flow out of the cell). These errors (only in the Modflow

solution) ranged from 0.00 to 1.5% of the total flux in the cell for both simulations, with the finer

resolution model having fewer cells with significant mass balance errors. In contrast, the AEM-

based solution exhibited water balance errors on the order of 10−7% at both resolutions. It is

hypothesized, then, that the Cardinal finite difference solution is the more accurate of the two,

and the plots in figure 4.9 depicts errors in the MT3DMS transport solution that are derived from

improper solution of the groundwater flow equation. This improper solution is due to insufficient

default residual criterion (0.01) for the iterative solution method, solved using a preconditioned

conjugate gradient method.

To validate the above assessment, an additional “zeroth-order” test was run at the coarse grid

resolution. This test case is based upon similar tests run by Dawson et al. (2004) to identify com-

patibility between various flow and transport algorithms. The zeroth-order test case is designed to

evaluate the quality of a contaminant transport solution method. The concept is stated as follows:

given a system with uniform initial concentrations (C0) bounded on all sides by constant concentra-

tion boundaries C = C0 and no additional sources of solute or clean water, the concentration at all

times will be that of the initial conditions (i.e., C(x, y, t) = C(x, y, 0) for all t). Such a simulation

was run using both the MT3DMS central weighting implicit scheme and the Cardinal central

weighting implicit scheme for the unconfined test case defined earlier in this chapter. The simula-

tion was modified only by addition of constant concentration (Dirichlet) boundary conditions with

C=100 mg/L specified along the borders of the domain and uniform initial conditions of C=100

mg/L. The simulation was run on a 50 x 50 grid with αt=0.1. The concentration profile at t=63000

days for the MT3DMS solution is shown in figure 4.10. Concentrations range from 96.60 mg/L to

101.90 mg/L, with an average value of 100.07 mg/L and a standard deviation of 0.35 mg/L. The

same simulation performed using the Cardinal implementation was uniformly 100 mg/L, with a

standard deviation of 0.00. Notably, the same simulation using Cardinal with a non-robust flux

translation algorithm (one point Gauss quadrature for each cell face) was considerably worse than

the MT3DMS result, with concentrations ranging from 72 to 140 mg/L and a standard deviation

of 4.2 mg/L. These results highlight the importance of a precise water balance and therefore the

need for robust discretization of analytic element fluxes. The results also demonstrate the need

for alternative measures of error for Eulerian transport models, as the global mass balance error
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Figure 4.9: MT3DMS Benchmark comparison (unconfined; αt=0.01 m). The differences between
the Cardinal and MT3DMS solutions at t=63000 d on (a) a 50 x 50 grid and (b) a 200 x 200 grid
are plotted in space. The central-weighting implicit algorithm was used in all cases: the primary
distinction between the two transport solutions is the use of AEM-based fluxes. Mass balance errors
in the Modflow flow solution are the cause of the differences in the concentration profiles. These
errors diminish as the grid resolution is increased.

(often the only error measure calculated by finite difference models) does not reflect errors in the

distribution of mass.

The comparable results from both MT3DMS and Cardinal suggest that the finite difference

algorithm described in section 3.3 adequately incorporates the effects of variable saturated thickness,

non-uniform velocity, and dispersion cross terms in addition to being able to replicate the simple

analytic benchmark solutions. It was also shown that, because of the maintenance of the highly

accurate AEM water balance, the AEM-based transport solution is more accurate. Similar accuracy

may be obtained using finite difference methods by decreasing the error tolerance of the matrix
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solution method used to solve the FD flow problem. However, default parameters (used by most

modelers) can be insufficient for obtaining an accurate transport solution.
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Figure 4.10: Zero-order test results for MT3DMS unconfined test case. Since the system is bounded
with constant concentration (C=100 mg/L) boundaries and C(x, y, 0)=100 mg/L, the concentra-
tions should be uniformly 100 mg/L for all time. The simulated concentrations (shown at t=63000
d) are non-uniform. This is attributed to the inaccuracy of the flow solution, and the non-uniformity
is not exhibited in the AEM-based transport simulation.
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4.2 Including Continuous Gradation in Transport Parameters

The following section examines the accuracy and efficiency of using continuous parameters, includ-

ing the effective parameter method described in sections 3.4 and 3.5 and the effects of high precision

integration of continuous parameters in finite element and particle-based methods. First, the re-

sults of tests run to verify the accuracy of the effective velocity and discharge derivative functions

are presented. These tests show that the expressions derived for effective velocities yield correct

results. Following that, the effective parameter random walk method presented in section 3.5.4

is used to simulate contaminant transport in a mildly heterogeneous domain. This is followed by

tests designed to investigate the benefit of using continuous parameterization derived from AEM

flow solutions in (1) characteristics methods and (2) Eulerian finite element methods.

4.2.1 Verification of Analytic Effective Velocity Expressions

The derivations of the expressions for the element discharge derivatives (appendix C) and dispersion

derivatives (section 3.4 and appendix A) are lengthy. To verify their accuracy, the discharge deriva-

tives for each element type, the various two-dimensional dispersion derivatives, and the effective

velocities were evaluated both numerically and analytically, and their results were compared in a

single arbitrary model that included each of the element types included in appendix C. Derivatives

were evaluated numerically using the following approximation:

∂f

∂x
(x, y) =

f(x + ǫ, y) − f(x, y)

ǫ
∂f

∂y
(x, y) =

f(x, y + ǫ) − f(x, y)

ǫ

(4.3)

For the comparison, the spatial distance ǫ was held constant as 1e-10 meters for a 100 meter

by 100 meter model domain. The flow system is characterized by uniform flow from left to right

through a variety of elements (a river, polygonal, elliptical, and circular inhomogeneities of varying

hydraulic conductivity, an area-sink, and a well). Dispersivities of αl = 10 m αt=3 m were used.

Relative errors in the evaluation of the parameters were evaluated as the the maximum relative

difference between the analytic and numerical calculations evaluated at 160,000 points on an evenly

spaced 400 by 400 grid covering the model domain, and were consistently less than 1e-4, as shown

in table 4.4.

It is important to note that this single comparison is sufficient for demonstrating the quality
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of the closed-form solutions for discharge derivatives and dispersion derivatives. As long as the

elements possess non-zero coefficients, the dispersivities are non-zero, any arbitrary model con-

figuration and flow parameterization is adequate, as any derivation errors will be in evidence as

spatial trends in the error. It is for this reason that the specifics of the model configuration are not

discussed here. However, for completeness, the model configuration is shown in figure 4.11.

Figure 4.11: Configuration of test case used to verify the accuracy of closed-form expressions for
effective parameters and discharge derivatives

The small magnitude of these maximum errors, and the fact that there was no apparent spatial

trend in the errors suggests that the lengthy derivations presented in section 3.4 are accurate.
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Table 4.4: Comparison of numerical and analytic evaluations of Discharge derivative, dispersion
derivatives, and effective velocity. All polylinear, circular, and elliptical elements are high-order,
with at least 5 degrees of freedom

Parameter Maximum relative error

Gx (Linesink String) 3.4e-7

Gx (Area Sink) 2.1e-7

Gx (Doublet String) 9.8e-8

Gx (Well) 3.2e-7

Gx (Ellipse) 1.7e-7

Gx (Circle) 1.8e-8
∂Dxx

∂x 6.2e-6
∂Dxy

∂x 3.2e-5
∂Dyy

∂y 5.7e-6
∂Dyx

∂y 2.8e-5

v∗x 7.8e-5

v∗y 7.2e-5
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4.2.2 EPVA Random Walk Simulation

The random walk method, the only approach deemed appropriate for using the closed-form expres-

sions for effective parameters in section 3.4, was implemented in Cardinal as discussed in section

3.5.4. The revised random walk method uses continuous parameters and continuous representations

of parameter derivatives directly. The method solves the governing equation in a fully Lagrangian

fashion, without any form of parameter discretization: the only use of a grid or mesh is for volume-

averaging of mass to obtain graphical representation of the system concentrations. Advective and

dispersive transport are treated in a manner that is fully consistent with the continuous govern-

ing equation and the only sources of error are (1) tracking errors (due to insufficient integration

of the particle trajectories), (2) errors caused by the decoupling of advection and dispersion, and

(3) the local mass distribution error (due to an insufficient number of particles tracked to resolve

the plume). For the following examples it is assumed that the tracking error is negligible, as the

adaptive Runge-Kutta method of appendix F is used. Global mass balance is conserved exactly for

non-reactive systems modeled with random walk. With the EPVA approach, other errors due to

discretization of the velocity field or truncation of the parameter derivative terms in the governing

equations are removed.

To test the relative accuracy of the effective parameter random walk method, several simulations

were performed of inert solute transport through the heterogeneous domain of figure 4.12. Circular

inhomogeneities were used because they are uniquely represented by the analytic element method,

and the resultant flow field is wholly independent of any orthogonal or linear geometry, further

demonstrating the grid independence of this particular approach. An initial contaminant source

of 100 mg/L was transported through this domain for 2500 days using a variety of algorithm

formulations. The same model was simulated using (1) 4 different time steps (1, 5, 25, and 50

days) (the time step controls the error ascribed to the decoupling of advection and dispersion) (2) 4

different initial particle distributions (1152, 2304, 3456, or 4608 particles in the initial source zone)

(this controls the resolution of the plume and local mass balance errors), and (3) either the effective

parameter formulation or the traditional formulation (the traditional formulation uses a discrete

representation of influence of spatial variation in dispersion coefficients). The simulation time

step is independent of the tracking time step, which is calculated using the adaptive algorithm of

appendix F. For the traditional formulation, the “drift” term was calculated using finite differences

on an independent grid (with a spacing of 7 meters). A total of 32 simulations were run.
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Figure 4.12: Configuration of model used for EPVA random walk test. (a) Model aquifer properties
and initial condition geometry (b) Head contours and results of Eulerian finite difference simulation
at 2500 days (c)Head contours and results of EPVA random walk simulation (with 4608 particles)
at 2500 days

Because the random walk method uses a point-based rather than volume-averaged representa-

tion of mass (each particle represents a parcel of aqueous mass), it is more difficult to compare

multiple simulations of the random walk method than the comparable Eulerian models. Additional

complications arise due to the random component of the models. The global mass balance error, a

useful indicator of model quality with Eulerian methods, is zero if no sinks or sources are present,

and thus reveals no information about the quality of a particular simulation. Rather, random walk

methods are susceptible only to errors in the distribution of this mass (LaBolle et al. 1996). To

calculate the error in mass distribution, a solution for the plume distribution after 2500 days was

first obtained using a finely discretized 20480 cell (160x128) finite difference model. The FD model

satisfied both Courant and Peclet constraints (the model had a maximum Courant number of 0.9

and a maximum Peclet number of 1.6). Global mass balance error was less than 0.0005%, and

central weighing in space was used to avoid the numerical dispersion associated with upstream

weighting. The results, shown in figure 4.12b, are deemed to be an adequate representation of

the true solution, and are used as the “true” distribution of mass in the aquifer at the end of the

simulation.

An estimate of the mass distribution error of the random walk method was calculated at multiple

levels of resolution by using five different rectangular grids (5x4,10x8,20x16,40x32,80x64) covering
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the simulation domain. The point values of mass were summed over each cell volume to calculate

the net mass within each cell. The plume mass calculated with the finite difference model was

also distributed on the same 5 grids by integrating the concentrations over each low-resolution cell.

The resultant portioning of the system mass was treated as the “true” mass distribution on each

of the grids. This mass distribution error at a particular grid resolution was calculated as one half

the summation of the absolute errors in each cell, where the “true” mass in the cell was calculated

from the finite difference results. The error was normalized by the average mass in all grid cells at

that resolution. The mass distribution error, ǫNxM , a function of resolution of the NxM averaging

grid, may be expressed mathematically as:

ǫNxM =
1

2

N
∑

i=1

M
∑

j=1











NPij
∑

p=1
Mp

ij − MFD
ij











N
∑

i=1

M
∑

j=1
MFD

ij

(4.4)

Where Mp
ij is the mass of the pth particle (of NPij particles) in cell ij, MFD

ij is the total mass

of all (high-resolution) finite difference cells within cell ij, and N and M are the number of rows

and columns in the grid on which the mass is distributed. This error measure can vary from 0 to

1, and quantifies the proportion of mass that has been allocated to the wrong cell. The error is

smaller for the lower resolution calculations (i.e., all models will have mass distribution errors of

zero if only one cell was used). Likewise, larger errors are associated with higher resolution grids.

For example, if a single particle is tracked and its final location is offset from the actual location by

even one cell, 100% of the mass is in the “wrong” cell. This phenomena is more prone to occur as

the grid resolution is increased. While used here as an indicator of error in the distribution of mass,

the measure defined by equation 4.4 actually quantifies the degree of difference in the distribution

of mass between two simulation results (in this case the difference between inaccurate random

walk simulations and the “true” solution). If multiple calculation grids are used, this measure also

provides information about the spatial resolution of these differences in a succinct format.

Because of the complexity of the flow domain, it is computationally prohibitive to specify a

sufficient number of particles to resolve the concentration distribution at the same level of accuracy

as the finite difference method. As a rule of thumb, Tompson and Dougherty (1988) suggest about

20 particles per cell, or 20x80x64= 102,400 particles to appropriately match the distribution at the

finest grid resolution used for analysis. No such attempt was made. Rather, the following analysis
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attempts to examine the benefits of the effective parameter method without a wholly sufficient

number of particles.

(a) 5x4 Mass Distribution Errors
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(b) 20x16 Distribution Errors
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Figure 4.13: Mass distribution errors for the EPVA random walk test case. (a) Errors in the 32
simulations calculated on a coarse resolution (5x4) grid (b) Errors in the 32 simulations calculated
on a finer resolution (20x16) grid

Figure 4.13 shows the mass distribution error for each of the 32 simulations performed. As

expected, as more particles are added to the simulation, there is a general (though not uniform)

trend towards lower mass distribution errors. In addition, it appears that the effective parameter

method provides slightly better results in the majority of the simulations (87.5% of those simulations

using a time step less than 10 d). However, the time step used to split the operators of advection

and dispersion has the most significant influence upon the magnitude of the mass distribution

error. This error, dubbed “overshoot” error by Tompson and Dougherty (1988), results from the

random dispersive step being based only upon the local dispersion coefficients at the foot of the
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dispersive displacement vector. If the velocity field is non-uniform, a particle may abruptly move

a large distance from a high-dispersion zone to an area of low dispersion, even if the intermediate

area along this displacement vector is characterized by low velocities and correspondingly low

dispersion coefficients. If the time step is appropriately small, the early displacements would be

small enough for the particle to “become aware of” its low-dispersion environment. The impact

of this potential for overshoot error has been obscured in the past by recommendations (Prickett

et al. 1981; Kinzelbach 1988) to satisfy a grid Courant criteria when determining the time step for

random walk methods. However, this criteria was developed to minimize the deleterious effects of

a discrete velocity field and “avoid oscillations of particle density” (Kinzelbach 1986). The results

shown here demonstrate that such time step requirements are required for a less qualitative reason:

they minimize the errors associated with decoupling the advection and reaction operators. In

heterogenous domains, these errors have effects similar to that associated with classical numerical

dispersion, as shown in figure 4.14. Researchers (e.g., (Kinzelbach 1986)) have made the claim that

the random walk method is free of numerical dispersion. Such a conclusion is understandable, as the

source of numerical dispersion differs from that of other numerical methods for transport simulation.

With the random walk method, artificial dispersion is inversely proportional to the Peclet number

(in direct contrast to Eulerian methods) and entirely absent in homogeneous domains. However,

the effects of using larger time steps clearly mirrors that of traditional numerical dispersion, and is

here considered to be the same phenomenon (albeit caused by considerably different factors).

It is clear from the results shown in figure 4.13 that the errors associated with the random

walk method are only mildly influenced by the accuracy of the effective velocity (or “drift” term).

The effect of the discretization of the drift term appears to be minor as compared to the error

associated with the decoupling of the advection and dispersion operators. However, the impact of

using continuous effective velocities (implied by the variation in mass distribution error) appears

here to be of the same order of magnitude as the impact of the particle count. For most of

the simulations, the errors due to spatial discretization are obscured by the effects of temporal

discretization, the number of particles, and the random component of the results. The impact of

using closed-form solution for parameters is inconsistent, varying from model to model, and lacking

any consistent trend for models with few particles or large time steps. However, it appears as if

the advantage of using a continuous or discrete representation of the “drift” term is not significant

enough to warrant the additional computational expense of using the effective parameter method
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Figure 4.14: Numerical dispersion as exhibited in the random walk test case. (a) The results of the
random walk method at t=2500 days using a time step of 1 day (Cr¡0.25) (b) The results of the
random walk method at t=2500 days using a time step of 50 days (Cr¿10)

(discussed in section 3.4). The advantage of using a more accurate flow model (without velocity

interpolation) was not addressed with this test case. However, tests performed in section 4.2.4 are

used to quantify the effects of tracking error on EL methods, and the results may be extrapolated

to the fully Lagrangian random walk method (with or without the use of effective parameters).

Independent of the results from this particular (challenging) test case, the simple and mean-

ingful error measure developed here may be generally applicable for calculating the degree of mass

allocation error in a transport model (given a “true” high resolution model), or for comparing

the results from two different multidimensional transport problems. While there are analytical

techniques for estimating the degree of artificial dispersion in one-dimensional transport models

(e.g., as in Peaceman (1977)), the author is not aware of existing techniques for quantifying any

type of mass distribution error in multidimensional models. Since it seems quite desirable to have

quantifiable estimates of the degree of difference between two models, further research into this

measure are warranted.
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4.2.3 Finite Element Integral Evaluation

In section 3.6.4, three means of calculating the finite element material integral were presented, each

of which incorporate the variation of transport parameters (velocity and dispersion coefficient)

within an element in different ways. The first method (using element-averaged parameters) is the

standard implementation for conventional finite element simulators (e.g., that of Istok (1989)). This

is because element-averaged velocities are the conventional output from finite element flow solutions.

The second method (nodally-interpolated parameters) uses the velocities interpolated from nodal

values to calculate the material integral (as done for a similar PDE in Cooley (1992)). The third

method, numerical integration of continuous parameters, was introduced within this dissertation as

a means of directly incorporating the continuous inter-element variation in transport parameters,

and echoes similar work done by Santare and Lambros (2000). The continuous integration method

uses the velocities and other parameters evaluated at a set of representative points within the

element to calculate the material integral. Here, these three distinct methods are compared using

a single test configuration with variable discharge, saturated thickness, and dispersion coefficients

on a single (low-resolution) mesh. As demonstrated with this series of simulation runs, the choice

of how the finite element material integral is calculated (which has a relatively small impact upon

the overall computational cost of the simulation) has an important effect upon the accuracy and

stability of the AEM-based finite element transport solution.

The model layout, parameter values, initial conditions, and mesh used for the test simulation

are shown in figure 4.15. This particular model configuration was specified because the sharp

variation of hydraulic conductivity and influence of pumping wells impose high variability of the

velocity within the aquifer. Specification of a lower-resolution mesh (425 nodes; 908 elements)

introduces a significant degree of inter-element variation in the discharge vector, and therefore the

algorithm for discretizing the analytic element flow-derived parameters has a distinct influence upon

the properties of the solution. The use of a lower resolution mesh for a system with relatively high

velocity variation was by design: this combination will reveal any errors linked to inappropriate

incorporation of velocity information into the finite element system of equations.

Sixteen different simulations were run using different means of calculating the material integral.

These sixteen simulations fall into each of the three categories discussed in section 3.6.4. Eight of

the simulations used element-averaged parameters, one of them used linearly varying parameters,

and seven of them used continuous parameters. The sixteen simulations are notated as follows:
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h=15
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K=10 m/d

K=0.01 m/d

Initial source zone (500 mg/L)

Recharge 12 in/yr
K=1 m/d
n=0.3
Unconfined

Q=23 m3/d

Q=14 m3/d

Q=12 m3/d

Q=11 m3/d

(a)

(b)

(c)

Figure 4.15: Configuration of model used for finite element integration/discretization test. (a)
Zoomed out model geometry and aquifer properties. (b) Local model features, properties, and
initial conditions for transport model. (c) Transport mesh used and plume results at t=2500 days.

• TRAD -The simplest, “traditional” simulation uses a uniform velocity within each element,

calculated from the head at the three adjacent nodal points.

• AVG[#] -The average parameter value within the element was calculated using 1-,3-,4-,7-,9-,

or 13-point Gaussian integration. The material integral itself was evaluated analytically using

these element-averaged values ( Q
(e)
x , zQ

(e)
y , D

(e)
xx , h(e), etc.) substituted into equation 3.104.

• NODAL -The nodal simulation used linearly varying parameters based upon the nodal values

for discharge/velocity, saturated thickness, and dispersion coefficients. The material integral

itself was calculated analytically using equation 3.109. The integral was also calculated nu-

merically using linearly varying parameters to test the validity of the analytic formulation.

The two were found to give comparable results.

• C[#] -The full material residual was calculated using 1-,3-,4-,7-,9-, or 13-point Gaussian
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integration. The parameters were explicitly evaluated at Gauss points.

Table 4.5: Simulations used in finite element material integration test

no. of representation

Name evaluation required eval. points (equation)

TRAD φ at nodes; k in elem. 3 average(3.104)

NODAL W , h at nodes 3 linear(3.109)

C1 W , h at Gauss pts 1 average(3.104)

C3 W , h at Gauss pts 3 continuous(3.112)

C4 W , h at Gauss pts 4 continuous(3.112)

C7 W , h at Gauss pts 7 continuous(3.112)

C9 W , h at Gauss pts 9 continuous(3.112)

C13 W , h at Gauss pts 13 continuous(3.112)

AVG1 W , h at Gauss pts 1 average(3.104)

AVG3 W , h at Gauss pts 3 average(3.104)

AVG4 W , h at Gauss pts 4 average(3.104)

AVG7 W , h at Gauss pts 7 average(3.104)

AVG9 W , h at Gauss pts 9 average(3.104)

AVG13 W , h at Gauss pts 13 average(3.104)

Each of these simulations, summarized in table 4.5, were run for 2500 days, at which point about

40 percent of the initial mass has been extracted by the pumping wells. No upstream weighting

was used and the temporal discretization was dependant upon the representative velocities obtained

from each of the 13 methods. Using these representative velocities, maximum Courant number of

one was used to avoid oscillations. The average and maximum Peclet number in the domain with

this mesh were roughly 1.0 and 1.9, respectively (the different methods of velocity discretization

produce different, but similar, Peclet numbers). The results, in terms of the estimated mass balance

of section 3.2, are shown in figure 4.16.

As apparent in figure 4.16, the choice of the material integral evaluation algorithm has a sig-

nificant effect upon the mass balance error for this simulation. This result has a few noteworthy

ramifications for the practice of using analytic element flow solutions as the basis for finite element

transport simulation.

First, it is apparent from the figure that the linearly varying parameter method for evaluating

the residual (NODAL) is unacceptable, with a mass balance error greater than 10 percent for this

particular simulation. The reason for this error is related to the poor approximation of the velocity

field with the nodal method near sinks and sources. The nodal method evaluates the discharge

function very close to singularities (e.g., wells) in the flow field, which are always located at nodes.
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Mass Balance Error at t=2500 days 

for Various Material Integral Evaluation Schemes 
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Figure 4.16: Mass balance errors for different means of discretizing continuous parameters in as-
sembly of the finite element residual expression at time t=2500 days.

The extremely high velocity/discharge at these nodes overestimates the representative velocity

within the element. For the convective form of the governing equation to be solved without mass

balance errors, the discretized velocity field must be divergence-free (i.e., ∇·Q=0), or in the case of

systems with recharge, correspond to the specified divergence (i.e., ∇ · Q=−N )(Gresho and Sani

1998). Because the analytic element flow solution is divergence-free by definition, any mass balance

error is due solely to the discretization process. Additional testing established that the linearly

varying parameter method performs well (on par with the lower order quadrature approaches) in

the case where singularities are small or nonexistent.

Second, the “traditional” means of calculating the average velocity in an element (TRAD) gives

the worst performance of any of the integration schemes other than the poorly-posed nodal method.

This indicates that exporting just the nodal heads from an AEM solution to a standard finite

element transport solver will produce erroneous results. This is analogous to the error associated

with using non-conservative flux discretization for the finite difference method, except here, where

the “convective” form of the ADRE is used, the errors in discretization of the AEM solution will

result in mass allocation and mass balance errors.

Lastly, it is apparent that for both element-averaged and continuous parameter techniques,

the accuracy of the solution is directly related to the order of the Gaussian integration proce-
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dure. This outcome mirrors similar results for finite elements that use higher-order basis functions

(Akin 1994). One-point Gauss integration consistently performs worse than higher-order methods,

and the 7-point Gauss integration procedure consistently performs the best (better than even the

higher-order 9 point and 13 point methods). The improved performance of high-order methods is

expected: higher order quadrature techniques are designed to evaluate the integral of more com-

plicated functions. However, the poorer performance of the 9- and 13-point methods is less clear.

The likely reason is the difficulty of integrating logarithmic functions using standard quadrature

methods on the triangle. Because the discharge and potential functions are not simple polynomials

of x and y, the convergence of the Gaussian quadrature formulae is not asymptotically convergent

as the number of gauss points is increased (Lyness and Cools 1994). For integration of functions

with logarithmic singularities, lower order quadrature may in fact produce better results. To bypass

this shortcoming, “expansion” methods designed for integration of singular functions (Lyness and

Cools 1994) should be used. Such an implementation in Cardinal is beyond the scope of this

dissertation.

A key result here is that there is only a minor difference between using element-averaged param-

eters and explicitly integrating the residual term in the material matrix, if the element-averaged

parameters are calculated using quadrature methods. This indicates that integrated average el-

ement velocities and saturated thicknesses may be exported on an element-by-element basis to

alternative finite element transport solvers with very little loss of accuracy. Additional tests using

4 and 7-point quadrature on the finite element simulation of the MT3DMS test case configuration

(from section 4.1.3) confirms these results.

4.2.4 Velocity Interpolation Effects in Characteristic Methods

It has been shown by Oliveira and Baptista (1998) and Ruan and McLaughlin (1999) that tracking

errors incurred during the forward and backtracking of characteristic paths in Eulerian-Lagrangian

Methods lead to global mass balance errors. A set of simulations is used here to (1) verify these

previous results using a non-discrete velocity representation and (2) demonstrate that use of analytic

velocity information can remove tracking-based error but Eulerian-lagrangian methods are still

subject to significant mass balance error due to interpolation of the concentration field. The

test also reveals that a finite difference-based Eulerian-Lagrangian transport simulator that uses

exported AEM-based velocity information will provide less accurate results than a fully integrated
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AEM-transport model such as Bluebird/Cardinal.

A series of simulations were performed using the same grid and model configuration as the

MT3DMS test of section 4.1.3. However, only the confined aquifer configuration was simulated,

and the backward method of characteristics (BMOC) with a time step of 150 days was used.

The wells in the original model were removed, because inaccuracies in the BMOC near sinks and

sources (Baptista 1987) obscure the effects of velocity interpolation on global and local mass balance

errors. The tests were run at multiple grid resolutions (200x200, 100x100, and 50x50). Tracking

was performed in one of two ways for each simulation: using the adaptive Runge-Kutta pathline

integration of appendix F (with the analytic flow field), and Pollock’s semi-analytic interpolation

method (Pollock 1988; Zheng and Bennett 2002). The implementation of Pollock’s method relied

upon discrete interfacial velocities calculated with the techniques of section 3.3.2. These discrete

velocities were calculated on the same grids as used for transport.

Note that the BMOC method is susceptible to a high degree of mass balance error in systems

with high spatial variation in the distribution of aqueous mass (Baptista 1987). This global mass

balance error does not increase gradually, as artificial loss and gain of mass can occur through

accumulation of tracking and interpolation errors. Therefore, the maximum mass balance error

over the duration of the simulation (rather than the final mass balance error) is used as an indicator

of the quality of the solution.

Figure 4.17 depicts the influence of using semi-analytic or analytic velocities as a source of in-

formation for particle tracking. The maximum mass balance error decreases as the grid resolution

increases for both Runge-Kutta and Pollock’s approaches. The use of discrete velocity informa-

tion consistently performed poorer than the use of continuous velocity information. This is the

consequence of using inaccurate characteristic paths, as previously found by Oliveira and Baptista

(1998). What is revealing about this set of tests is that the exportation of AEM fluxes to a MOC

transport simulator that only uses discrete flux information (e.g., MOC3D (Konikow et al. 1996) or

MT3DMS (Zheng and Wang 1999)) will cause unnecessary errors attributed solely to discretization

of the velocity field.

While using continuous rather than discrete velocities does improve the quality of the numerical

solution, this improvement removes only a percentage of the overall error in the model. This small

increase in accuracy comes at a significant computational cost (due to the Runge-Kutta evaluation),

which the author deems unsatisfactory for most modeling simulations. Any benefits realized by
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Figure 4.17: Maximum global mass balance errors for the backward method of characteristic test
case. Either analytic (adaptive Runge-Kutta) or semi-analytic (Pollock’s method) velocity infor-
mation was used to trace backward characteristic paths.

use of a lower grid resolution are offset by the computational cost of the highly accurate Runge-

Kutta method. It is expected that minor relaxation of the adaptive scheme can potentially reduce

the computational cost significantly without a corresponding loss of BMOC accuracy. Less strict

rules governing the adaptive time stepping, while implemented in Cardinal, were not tested.

Other intermediate alternatives, such as adaptive discretization for Pollock’s method, or constant

space step Runge-Kutta scheme, may prove the most beneficial tracking algorithms for use of

characteristic methods. Such optimization of these algorithms is left for future research.
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4.3 Discontinuous Conditions

The following section contains test results from models that incorporate the discontinuous condi-

tions of section 3.7. These conditions are required to handle the infinitely thin internal boundary

conditions in the analytic element method. This approach may prove advantageous for reducing the

required mesh resolution in complex models by circumventing the adjacency constraints of standard

finite element method.

4.3.1 Transport Across a Low Permeability Barrier

The following section demonstrates the successful implementation of the discontinuous mesh con-

ditions for transport across a fully penetrating low permeability barrier. As outlined in section

3.7, using this approximate technique reduces the computational cost of the transport model by

treating a barrier as an infinitely thin internal boundary condition. This internal condition does

not require over-discretization along the barrier boundary, thus significantly reducing the overall

number of degrees of freedom in the model.

The test case used to assess the quality of the multi-scale approximation consists of a low-

permeability barrier surrounding a plume on 3 sides, with unconfined uniform flow from west to

east. The model configuration is shown in figure 4.18a. The barrier was represented in the flow

model using either the high order “leaky wall” condition of Strack (Strack 1989) or a high order

inhomogeneity in conductivity. Parameters used in the simulation are shown in table 4.6.

Table 4.6: Parameters used in Low-conductivity barrier transport model

Flow Parameters

aquifer conductivity (k) 0.1 m/d

aquifer base elevation (B) 0 m

barrier conductivity (kw) 0.00001 m/d

avg. saturated thickness (kw) 10 m

hydraulic gradient -0.01 m/m

barrier thickness (tw) 20 cm

downgradient barrier velocity 6.66e-5 m2/d

Transport Parameters

longitudinal dispersivity (αl) 1 cm

transverse dispersivity (αt) 1 cm

diffusion coefficient (D∗) 2e-6 m2/d

initial source concentration 500 mg/L



CHAPTER 4. NUMERICAL TESTING 150

-30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

(a) 

-30 -20 -10 0 10 20 30 40

-20

-10

0

10

20

(b) 

-30 -20 -10 0 10 20 30 40

-20

-10

0

10

20

(c) 

-30 -20 -10 0 10 20 30 40

-20

-10

0

10

20

(d)

Figure 4.18: Test case setup and mesh configurations for low permeability barrier test case. (a)
Head and stream function contours for flow around and through the backward-”C”-shaped low
permeability barrier. The 500 mg/L initial source zone is shown with the dashed line. (b) Low-
resolution finite element mesh (c) Medium-resolution finite element mesh and (d) High-resolution
finite element mesh.

The barrier system was simulated using seven different algorithm/configuration combinations.

First, the model was simulated at two different mesh resolutions using the classical (continuous)

finite element method of section 3.6 (FECa, FECb) and the discontinuous method of section 3.7

(FEDa, FEDb). The continuous method ignores the gradient of concentration across the wall

whereas the discontinuous method explicitly models the sharp change in vertically-averaged con-

centration across the barrier. These four models all used the “leaky wall” element to represent

the barrier in the flow model. Used here as the “true” solution, a high-resolution continuous finite

element model (FECc) was used to model transport through the barrier. In this high-resolution

model, the barrier was modeled as a polygonal inhomogeneity in the flow model, and both the

saturated thickness and the vertically-averaged concentration are continuous across the barrier,

circumventing the need for a discontinuous condition. This high resolution model is assumed to

provide the most accurate solution, but at a considerable computational cost. The purpose of de-

veloping the discontinuous condition was to reduce this computation by modeling transport across
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the barrier in an approximate fashion, thus circumventing the need for fine discretization along the

barrier.

In addition to the 5 models considered above, the simulation was run twice using the finite

difference method on a high-resolution unevenly-spaced 275 x 200 (55000 cells) rectangular grid with

a grid spacing of 20 cm in the regions adjacent to and near the barrier. Since the FD discretization

constraints do not require any specific relationship between the barrier geometry and the grid, the

transport model could be run twice on the same mesh with both the leaky wall representation

(FDa) and the inhomogeneity representation (FDb) of the barrier. These two simulations were

used to distinguish the effects of the difference in the flow field from the effects of the discontinuous

finite element approximation.

The discretization, representational scheme, and computational costs of these seven models are

summarized in table 4.7. All simulations were run on a Dell Optiplex GX260 with a pentium 4

processor. Note that the high resolution finite element model was run at a sufficient resolution to

capture the concentration gradient across the barrier and is assumed to accurately model transport

across the barrier. However, it was significantly more computationally intensive than the low-

resolution finite element simulations, thus motivating the use of the discontinuous conditions.

Table 4.7: Low-conductivity barrier model configurations used to test the efficacy of the discontin-
uous mesh approximation.

Configuration Resolution DOF Barrier Representation Computational Time

FEDa Low 1734 Leaky wall 103 sec

FEDb Med 3100 Leaky wall 281 sec

FECa Low 1693 Leaky wall 102 sec

FECb Med 3026 Leaky Wall 268 sec

FECc High 6988 Inhomogeneity 3264 sec

FDa High 55000 Leaky wall 391 sec

FDb High 55000 Inhomogeneity 412 sec

DOF: Transport model degrees of freedom (no. of nodes or cells)

Before assessing the discontinuous and continuous representations of transport through the

barrier, it was desirable to first identify the effects of the two different flow discretizations used. In

both breakthrough curves and plume results, differences between finite difference models using the

different flow representation of the barrier were roughly less than 2% for the concentration value

at any point and time. This difference is negligible compared to the differences exhibited between

the discontinuous mesh and continuous mesh simulations. This demonstrates that the differences
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in results between the finite element simulations may be attributed solely to the discretization and

handling of the transport problem.
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Figure 4.19: Breakthrough curves for discontinuous transport across a low conductivity barrier.
The use of a finite element method with discontinuous mesh conditions produces solutions much
closer to the high resolution finite difference approach than the continuous (traditional) FE method.

Breakthrough curves along the center axis of the domain at distances of 10cm downgradient

are shown in figure 4.19. As can be seen from these curves, the approximate discontinuous model
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produces results closer to the the high resolution model. The classical low-resolution FE model

performs poorly in comparison, especially at the lowest resolution. The accuracy of both continuous

and discontinuous models improve with increased mesh resolution, with the discontinuous method

consistently closer to the high resolution FE solution. The discontinuous finite element method may

be deemed as an appropriate method for approximating this sharp internal model condition, one

which, while approximate, requires significantly fewer degrees of freedom than modeling the trans-

port across the boundary explicitly. It is also important to note that a more appropriate estimate of

the dispersive flux across the barrier will provide even better results. The dispersive/diffusive flux

is overestimated with the discontinuous approximation of equation 3.113, because of the assump-

tion of a linear concentration gradient across the barrier. A more rigorous analysis is needed to

develop robust discontinuous flux conditions consistent with the physics of the problem (e.g., a 1D

transport model solved across the discontinuity). However, the current approximation is deemed

adequate for preliminary testing of system designs, and significantly more appropriate than using

a conventional low resolution finite element model. More advanced means of determining the flux

term are beyond the scope of this dissertation.

The results of this test demonstrate that for a very challenging application, the AEM-based

discontinuous method can provide a decent approximation to the transport phenomenon at a re-

duced computational cost, and all that is required is the addition of a few more degrees of freedom

than the conventional FEM. However, the quality of the approximation depends upon the partic-

ulars of the implementation: a high-resolution conventional FEM will often be the better choice

for such difficult problems, but a a considerable computational cost. The technique presented here

is likely better suited for preliminary hypothesis testing, whereas for policy or design decisions, a

high resolution model could be used to obtain more rigorous estimates of breakthrough curves, etc.

4.3.2 Transport Around an Impermeable Wall

The extreme case of transport past an infinitely thin impermeable wall in the subsurface is a

challenging test of the ability of a numerical method to simulate the impact of sharp discontinuities

in the transport system. To investigate and compare the effectiveness of the finite element and

finite difference methods for handling this difficult condition, a simple test case was run. An initial

concentration source of 100 mg/L was specified upstream of an infinitely thin impermeable barrier

(modeled with the same “leaky wall” element as used above) in uniform flow of 1 m2/d. The
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system configuration and results of both the discontinuous finite element method and standard

finite difference method at a time of 600 days is shown in figure 4.20.

(a) (b) (c)

Figure 4.20: Results of finite difference and finite element simulations of transport around an
impermeable wall. (a) Model configuration, flow net, and initial source zone (b) Plume after 600
days as modeled with the finite difference method on a 50x50 grid (c) Plume after 600 days as
modeled with the discontinuous finite element method.

As apparent from figure 4.20, the finite element method does not allow any solute mass to

cross the impermeable barrier, and the concentration is appropriately discontinuous across the

boundary. However, the finite difference method has no means of appropriately handling the

discontinuous conditions unless the discontinuity is aligned with a cell face. While mass balance,

Peclet, and Courant constraints were met for both methods, discretization error still occurs in

the finite difference method, because fluxes are averaged over the cell perimiter, and thus cannot

simulate a no flow condition across the cell. This simple illustrative test case was not analyzed

in a quantitative fashion. Rather, it qualitatively demonstrates (1) the benefits of the geometric

flexibility of the finite element method, (2) the consistency of the discontinuous condition, and (3)

the potential errors that may arise when discretizing discontinuous AEM flow solutions using finite

difference methods.
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4.4 Field Scale Reactive Transport Through a PRB

One of the most promising applications of AEM-based transport models is to problems charac-

terized by both regional-scale flow features and highly localized chemical reactions. The design

of subsurface remediation systems is one such application. In particular, the permeable reactive

barrier (PRB) is an example of a system where both factors are important. PRBs are engineered

trenches placed in the path of a groundwater plume, filled with reactive material that sorbs or

transforms the contaminants in situ. One type of PRB, made of natural zeolite, has been tested at

both laboratory and pilot scales (Lee et al. 1998; Moore et al. 2000) for remediation of radioactive

Strontium-90 (Sr90). The dominant reaction phenomena within the barrier is competitive ion ex-

change. These barriers function by providing a porous media surface that has a strong selectivity

for Sr90.

The performance of a PRB depends both the flow regime, which may be influenced by re-

gional features, and the biochemistry within the PRB. To date, the design of PRBs has been

approached using a decoupled approach in which the barrier is modeled using a simplified batch

or one-dimensional model, and the field-scale flow and contaminant behavior outside the barrier

is idealized as a boundary condition (e.g., Gavaskar et al. (1998), EPA (2000), Rabideau et al.

(2001)). A separate flow model is often used to evaluate hydraulic capture, but the potential cou-

pling between flow and PRB reactions is ignored. There are several reasons why a “whole system”

model that simultaneously considers both flow and transport would be desirable: (1) the poten-

tially nonuniform flow regime inside the barrier could be more accurately represented, avoiding the

need to select a “representative” velocity for use in a separate model, (2) the temporal and spatially

nonuniform nature of the influent contaminant plume could be captured, and (3) a single integrated

model for performance assessment would be much simpler to use, visualize, and communicate to

stakeholders.

The previous test cases in this dissertation simulated non-reactive transport of a single solute.

The following series of reactive test cases, implemented using the finite element method of section

3.6, were developed to simulate field-scale transport through a zeolite PRB. The purposes of these

tests were to demonstrate the ability of Cardinal to effectively simulate complex multi-solute

reactive transport using a conventional non-iterative split-operator approach and adaptive spatial

enabling of reactions. As discussed below, future work will be required to identify the most efficient
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configuration for PRB applications, and to assess the potential for computational artifacts. To the

author’s knowledge, the test case represents the first effort to simultaneously model a chemically

complex PRB within a field-scale flow regime. The results of the following tests are not particular

to the use of the analytic element method. Rather, the following computationally challenging

simulations motivate the need to further reduce grid and mesh constraints on reactive transport

models.

The PRB test case is based loosely on the chemistry of the zeolite treatment wall installed at

the West Valley Demonstration site in Western New York. As discussed by Rabideau et al. (2004),

performance assessment for this project was conducted using a one-dimensional model based on an

idealized flow field and PRB influent concentrations. The PRB was designed to remove Sr90 from

groundwater by cation exchange. The complexity of the application arises from the fact naturally

occurring cations compete for exchange sites on the zeolite, and that eventually the capacity to

remove Sr is exhausted and the media must be replaced. The model proposed by Rabideau et al.

(2004) considers 6 aqueous and 6 sorbed species including natural and radioactive Sr. The modeled

behavior of the system can be considered in two stages: (1) an initial period, in which the zeolite

equilibrates with the mix of dominant cations in the groundwater, which is expressed as an “ion

exchange front” that occurs in the breakthrough curve after approximately 50 pore volumes, and

(3) an extended period of “active” PRB life in which the most preferred solute (Sr) continues to

displace other cations and is essentially absent from the effluent, and (3) a “breakthrough” period,

in which the equilibrium with the strongly sorbing Sr is reached and the PRB effluent approaches

the pre-barrier conditions for all solutes. Because of the long time required to reach breakthrough

(thousands of pore volumes), the test case focuses the initial period in which the first ion exchange

front appears.

The configuration of the test case is shown in figure 4.21. A conventional “funnel-and-gate”

barrier configuration was used. The 56 meter long impermeable walls (modeled as “leaky wall”

analytic elements) channel groundwater through the 2m thick barrier (modeled as a polygonal inho-

mogeneity in conductivity). The regional uniform flow was specified as 1 m2/d, with a background

hydraulic conductivity of 10 m/d and a barrier conductivity of 12 m/d. The 20 m wide barrier has

a porosity, θ, of 0.6 (twice that of the background). The 10 µg/L initial source zone of radioactive

strontium 90 was placed 50 m upgradient of the PRB, so that the influx of strontium to the wall

would be a gradual pulse of increased Sr90 concentration. The unconfined aquifer has an average
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Figure 4.21: Permeable reactive barrier test case configuration. (a) System geometry, head, and
stream function contours for flow perpendicular to barrier. (b) Head and stream function contours
for angular flow (10 degrees from x-axis) (c, d, and e) Local mesh geometry near funnel gate mouth
for mesh 2 (1000 nodes), mesh 4 (3496 nodes), and mesh 7 (3473 nodes), respectively. (f) Top half
of system mesh geometry for mesh 7.

saturated thickness of 7 meters, resulting in an average flow velocity of 0.5 m/day in the aquifer,

but a flow velocity of roughly 1 m/day through the barrier. Three simulations were run using

three different mesh resolutions (shown in figure 4.21c-e). To reduce the computational cost, the

cation exchange reaction calculations were only applied at nodes within the PRB, as discussed in

section 3.8. It is important to note that the barrier component of the funnel-and-gate system, while

difficult to model using a grid-based finite different approach, are easily accommodated using the

“leaky wall” line element, an appealing feature of the AEM-based approach
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The chemical and hydraulic parameters for the test case are shown in table 4.8. The majority

of the reaction parameters were obtained from Rabideau et al. (2004), and the background/initial

concentrations of the aqueous cations were set to be within the range of reasonable field values

reported by several investigators (e.g., Carlyle et al. (2004)).

Table 4.8: Cation Exchange Test Case Chemical Parameters

Qcx ρb µa θ

[meq/g] [kg/L] [meq/L] [-]

Aquifer N/A 1.86 N/A 0.3

Zeolite 1.143a 0.82a 3.504a 0.6

Zeolite Barrier

Ion Background Cc Mol. Wt. Initial S Kx/Na

[mg/L] [g/mol] [mg/kg] [-];[mmol/L]†

Na+ 68b 23 6000a N/A

K+ 3.5b 39 25000a 28a

Mg2+ 15b 24 120a 300a†

Ca2+ 100b 40 4600a 350a†

Sr2+ 0.2b 87.6 87.6a 4800a†

Sr90
2+ 0.00b 90 0.0a 4800a†

Sr90
2+(source) 0.01b 90 0.0a 4800a†

a - Obtained from Rabideau et al. (2004)
b - Set at reasonable field values
c - Background concentrations were used for initial concentrations and influx conditions on
upgradient system boundaries
† - Divalent selectivity coefficients have native units of mmol/L; Monovalent selectivity coefficients
have no units.

Figure 4.22 shows 18 different breakthrough curves for the six different cations simulated in the

perpendicular flow test case. These concentration profiles were calculated on three different finite

element meshes at a point just downstream of the zeolite barrier, in the center of the funnel and

gate system. These results are similar in behavior to those of the 1-dimensional PRB simulations

reported by Rabideau et al. (2004), and exhibit the same essential features (i.e., the crossover

of Na and Ca concentrations and the relative concentrations of the cations before and after the

development of the ion exchange front). This result suggests that the cation exchange reaction

formulation (in appendix G) was implemented properly. Additional comparisons with the 1D

transport software Mouser (Rabideau 2003) (not reported here) were used to confirm the accuracy

of the reaction module as implemented in Cardinal. The purpose of this test case is not to

verify previous modeling results or compare the model to field data, but rather to investigate the

advantages and disadvantages of simulating complex reactive barrier systems using 2D site models.
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Figure 4.22: Cation breakthrough curves as simulated using multiple mesh resolutions. The (2), (4), and (7)
designations refer to the resolution of the finite element mesh used for simulation.
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The primary difference between the simulation of Rabideau et al. (2004) and those presented

here is that transport upgradient of the barrier was explicitly simulated, rather than specified

as a forcing function to a 1-dimensional model. That is, instead of specifying the strontium 90

influx concentrations as constant, the influx conditions to the wall are a function of field scale

transport phenomena. The modeled strontium 90 arrives at the wall as a near-Gaussian pulse

of contaminant. This distinction accounts for most of the differences in the behavior of the Sr90

breakthrough curves between the 1D models simulated by Rabideau et. al and those depicted here.

Additional differences are ascribed to the lack of simulating decay of Sr90 in this test case. Also, the

time period of simulation (in terms of pore volumes flushed through the barrier) was significantly

shorter because the computational cost of modeling a 20- or 30-year design period were prohibitive.

The 3.3 year simulations shown here (using a maximum mesh Courant number of 0.1) ran from

7 hours (the 1000 node mesh) to 76 hours (the 3473 node mesh) on a 1Ghz Pentium 3 processor.

Most of this computational cost is due to the simulation of the reaction at many nodes within the

barrier (all mesh configurations have relatively dense spacing within the barrier).

As apparent from the figure, the 2D mesh resolution has a minor effect upon the breakthrough

curves for the non-radioactive cations, which enter the barrier at a constant concentration equal

to the ambient concentration. However, the three breakthrough curves for strontium-90 exhibit

more pronounced differences. Since the breakthrough curves just upgradient of the barrier (not

shown) exhibit roughly the same degree of difference, it appears that the distinction is primarily a

function of the accuracy of the transport simulation upgradient of the PRB. While this result may

be particular to the test case shown here, it suggests that a more appealing option for simulating

reactive barrier systems is to decouple the problem into a (2D or 3D) single species field scale

simulation and one or more (1D) barrier/column scale reactive transport simulations. This has been

the standard approach in the literature (Gavaskar et al. 1998; Rabideau et al. 2001). However, the

appropriateness of this approach has never been tested against a complete 2D transport model.

The primary result from the test case is that it demonstrates the ability of the AEM-based

modeling approach to simulate chemically complex reactive transport. This result is not surprising

because the underlying operator splitting methodology has been successfully demonstrated in many

published applications. However, the successful implementation for this test case (and others not

reported here) lays the groundwork for future expansion to other scenarios of interest. While it

is expected that the AEM-based approach will be especially appealing for particular applications
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involving large domains and complex chemistry (e.g., regional scale carbon and nutrient cycling),

detailed evaluation will be the subject of future work.

Despite the successful PRB simulations, it is clear that additional work is needed to improve

the computational performance for these challenging applications. The choice of a sorbing barrier

was perhaps the most difficult of candidate applications because of the need to model the full

breakthrough curve of the sorbing solute, which would require a simulation period of decades and

would be infeasible for the current model configuration. A more promising application would be the

popular iron-based PRB in which “steady-state” conditions (with respect to multi-solute decay and

production) are reached relatively quickly. The proposed AEM-based approach could potentially

expand the range of performance assessment of these systems to include a more accurate consider-

ation of flow field and influent concentration variability. The details of these implementations will

be the subject of future work.



Chapter 5

Discussion

The following chapter summarizes the methods and results contained within this dissertation, and

discusses the key conclusions of this research.

5.1 Linking AEM and Transport

The primary contribution of this dissertation is the detailed development of approaches and al-

gorithms that enable the use of AEM flow solutions by contaminant transport simulators. A

significant byproduct of this work is the implementation of these algorithms within the robust

AEM-based software tool, Cardinal. The new techniques introduced here have been used to link

AEM flow solutions to a variety of Eulerian, Lagrangian, and Eulerian-Lagrangian solute transport

algorithms, including the finite element method, finite difference method, backwards method of

characteristics, and random walk. The implementation of this AEM-based approach to transport

modeling illuminates a few important points about the possibilities, advantages, and pitfalls of the

AEM/transport model merger.

First, it has been demonstrated that finite difference and finite element flow solutions are not

a necessary prerequisite for finite difference or finite element transport simulations. Any shallow

aquifer system can be simulated using AEM (as opposed to discrete methods) and used as a basis

for 2D reactive transport simulation without loss of model quality. Carefully selected test cases

(as described in section 4.1) have demonstrated that transport models using analytic element or

finite difference flow solutions can produce results that are, for all practical purposes, equivalent.

The benchmark tests furthermore demonstrate that AEM-based algorithms can replicate basic

162
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analytic solutions to simple transport problems, but are plagued by the same numerical issues as

conventional transport simulation methods (i.e., numerical dispersion and oscillation).

Second, for many realistic cases, the use of an analytic element flow solution can improve the

overall quality of a transport model, without increasing the resolution of the corresponding grid

or mesh. This is due to the highly accurate water balance and velocity representation inherent in

AEM flow solutions. Methods for preserving the near-perfect water balance during the translation

of analytic flow solutions to a discrete (finite difference or finite element) equivalent were developed

in sections 3.3.2 and 3.6.3. This water balance is often more precise than that obtained from

discrete flow models, and can have a significant impact upon the quality of a transport simulation,

as demonstrated with the zeroth-order test case of section 4.1.3. The results of this test case

highlighted the danger of using a conservative formulation of the ADRE that can conceal errors

associated with an inexact water balance and underlined the need for the intelligent discretization

techniques developed in section 3.3.2. The exact water balance of AEM is expected to prove useful

for modeling transport in systems difficult to simulate accurately with finite difference flow methods

(e.g., systems with very high contrasts in hydraulic conductivity).

In addition to the benefits apparent in using AEM for Eulerian simulation of contaminant

transport, particle-based methods (e.g., MOC and the random walk method) can be improved by

using the continuous representation of velocities and other parameters. The EPVA random walk

method, tested in section 4.2.2, was not demonstrably improved by the use of closed-form solutions

for the “drift” term, even though the effective parameter formulation had the appealing property

of being entirely grid-independent. The characteristic-based Eulerian-Lagrangian methods fared

better. The results from the simple backward method of characteristics tests (section 4.2.4) suggest

that the use of continuous velocity information will provide greater accuracy to any EL method

without additional discretization. Unfortunately, while the continuous approach provides additional

accuracy, existing high-precision tracking algorithms are often computationally inhibitive, and need

to be optimized for speed. It is expected that alternative discretization schemes for the velocity

field and/or use of a less stringent adaptive Runge-Kutta method could reduce this cost to an

acceptable level. Such optimizations of the tracking procedure are reserved for future work, and

are discussed briefly below in section 5.8.

Intelligent use of analytic element flow solutions has been shown to improve the quality of con-

taminant transport simulation algorithms without increasing the number of degrees of freedom in
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the model. However, this use requires a corresponding increase in complexity of the transport al-

gorithms. For example, the finite difference method, generally considered to be the simplest of the

contaminant transport algorithms, requires unique closed-form integration schemes for translation

of analytic element fluxes. Similarly, the finite element method requires higher-order numerical

integration methods to properly use AEM velocity and flux information and requires sophisticated

unstructured mesh generation algorithms to accommodate AEM geometry. While the use of con-

tinuous parameters is appealing, it can introduce significant complexity to the model that, in turn,

can introduce additional computational costs that somewhat offset the benefit of using AEM. It is

expected that a compromise between discrete and continuous representation will be most beneficial,

using more accurate continuous information while intelligently averaging quantities to obtain the

speed of discrete parameterization. One potential compromise (for particle tracking) is discussed

later in section 5.5.

Importantly, the process of developing AEM-based simulation algorithms provided information

about what not to do when developing transport simulation algorithms that utilize AEM. Some

of these results are obvious (such as the limitations of the Dupuit-Forcheimer assumption), some

significantly less so (such as the impediment to solving the EPVA transport formulation using

finite element techniques discussed in section 3.5.1). A brief summary of some important “lessons

learned” is provided here as a reference for future work:

• Care is needed in handling singularities. In finite element methods, for example, the triangles

used for integration must be slightly inset from the element boundaries to avoid evaluating

singular parameters. Likewise, in the finite difference method, care must be taken to ensure

that grid cell boundaries do not intersect point singularities (wells or the ends of linesinks).

• It is important to understand the effects of discretization across discontinuities in velocity

and/or saturated thickness. Multiple techniques were developed in this dissertation (i.e., mesh

generation and discontinuous mesh conditions) to avoid the effects of improper discretization.

However, for finite difference methods, the results of models with discontinuous parameters

must be approached with caution, as many models may provide results that are inconsistent

with the (insufficiently resolved) physics of the problem, as shown in section 4.3.2. Simulating

the same system using multiple grid orientations and resolutions is recommend to test the

sensitivity of the problem to discretization.
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• It is important to interpret the results from vertically-averaged simulations in the context of

the assumptions required to use this 2-dimensional approximation. Specifically, variation in

the vertical distributions of mass can influence the degree of both longitudinal and transverse

spreading of a plume.

Significantly, the existence of a coupled AEM flow and vertically-averaged transport simulator

has enabled the development of transport models that can use existing AEM flow solutions. This

will directly benefit practitioners who have invested time in existing AEM-based modeling projects.

It also expands the general applicability of the analytic element method, which may now be used

as the basis of water quality investigations.

5.2 Reducing the Size of the Transport Problem

The “size” of the transport problem is defined here as the total number of degrees of freedom

calculated during the course of the model ([no. of species/components] x [no. of nodes/cells] x [no.

of time steps]). This size is often increased by requiring the use of a single grid or mesh designed to

model both flow and transport. It was hypothesized that the use of the grid-free analytic element

method would reduce the size of any given transport model by (1) affording more flexibility in the

discretization process and (2) improving the accuracy of the flow-based transport parameters. Both

of these advances were expected to reduce the total number of required nodes or cell in a transport

model.

Demonstrating that AEM may be used as a basis for solute transport was the first step to-

wards reducing the size of the transport problem. Use of AEM allows the transport system to be

discretized without having to accommodate the grid or mesh structure of a discrete flow model.

The flow-based requirements of grid or mesh design when using an analytic element flow solution

are minor in comparison: the finite difference grid has no specific requirements and finite element

meshes only require consistency along parameter discontinuities (as shown in section 3.6.2). Of

course, relevant Peclet, Courant, and adjacency constraints must still be satisfied, but the mesh is

essentially independent of the artifacts of flow discretization.

As an example of the benefits of the AEM-based approach, consider the case of transport near

a well. Discrete flow models require high resolution near the well because the pumping well induces

high pressure gradients. Transport models, on the other hand, benefit from coarser discretization
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near the well. The Courant constraint, which determines the simulation time step size, suggests

that, to optimize the speed of simulation the grid resolution should be coarser near zones of higher

velocity. This is in direct opposition to the needs of the flow model. This distinction is illustrated

in figure 5.1, which shows two finite difference grids and two finite element meshes, each designed

to either improve the flow model accuracy (b and d) or maximize the speed of the transport

calculation (by reducing the number of nodes and increasing the time step of the simulation)(a

and c). This incongruence of flow and transport grids, irrelevant in systems modeled with AEM, is

amplified when the well is in a low-conductivity zone, and the pumping induced hydraulic gradient

is even larger. For AEM-based simulations, only the discretization for the transport model must

be considered.

(a) (b)

(c) (d)

Figure 5.1: Optimal system grid discretization for flow models and for transport models. Finite
element mesh (a) and finite difference grid (c) were designed to minimize the required time step
size for the model (consequently reducing the number of nodes). Finite element mesh (b) and finite
difference grid (d) were designed to accurately model the hydraulic gradient near the well.

Removing the influence of the flow grid on the transport discretization process is a significant

contribution. However, perhaps the clearest example of the added flexibility afforded by AEM flow

solutions is the significant reduction in the required number of nodes needed to resolve transport
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behavior near relatively small or thin hydrogeologic features. The new discontinuous mesh approach

of section 3.7, dependant upon the precision and resolution of high-order AEM flow solutions,

provided a means of reducing the number of nodes in the system while still providing an adequate

(though approximate) solution for solute transport across infinitely thin features.

In addition to this reduction in constraints on grid design, the added accuracy of AEM flow

solutions often increases the quality of the transport simulation without adding additional nodes

or cells. Thus, for the same level of model error, fewer degrees of freedom are required. This

was demonstrated most dramatically with the backwards method of characteristics test of section

4.2.4, but is also apparent from the results of the finite element residual integration test of section

4.2.3. While appealing in theory, the EPVA approach (developed to further reduce discretization

error of models) has not yet been coupled to a transport solution method that can fully exploit its

advantages. However, it is hoped that later integration with meshless methods or more sophisticated

finite element methods may prove successful.

Even with the flexibility in mesh or grid design afforded by the use of AEM flow solutions,

the Peclet, Courant, and adjacency constraints imposed by Eulerian methods remain the dominant

factor constraining the size of the transport model. The less prohibitive Peclet constraints of

Eulerian-Lagrangian methods are appealing, allowing use of coarser discretization and larger time

steps. However, the inability of these methods to preserve the global or local mass balance is

a drawback. This is especially true with reactive transport, which can be highly sensitive to

minor errors in concentration. For similar reasons, fully Lagrangian methods (subject to local

conservation problems) are also not appealing for reactive transport simulation in complex flow

domains. These methods can be prohibitively expensive when the small time steps required for

reactive transport modeling is combined with the large number of particles required to resolve the

plume distribution. Use of the analytic element method does not appear to significantly relieve

either of these limitations, despite the removal of the tracking errors (Oliveira and Baptista 1998;

Ruan and McLaughlin 1999) associated with conventional flow solutions.

The ideal AEM-based reactive transport model would be limited by Courant constraints only,

which, in contrast to the Peclet and adjacency constraints, is a limit imposed by the physics of

the problem as well as the mathematics. This method would additionally maintain global and

local mass balance and incur a minimal degree of numerical dispersion. The only existing method

that appears to meet this criteria is the Eulerian-Lagrangian localized adjoint method (ELLAM)
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of Celia et al. (1990), which is primarily limited by Courant constraints and adjacency constraints.

It is possible that a 2D multigrid ELLAM implementation, integrated with the precise tracking,

exact water balance, and flexibility in grid design of AEM, would prove to be the most beneficial

approach for reducing the size of the transport problem. These developments will be the subject

of future work.

While not related to the use of AEM, the simple techniques for enabling or disabling reaction

calculations presented in section 3.8 can also reduce the size of the transport model considerably.

This benefit comes not from reducing the number of degrees of freedom in the model, but rather

by removing unnecessary calculations from the simulation process.

5.3 Using Continuous Parameters

One of the key goals of this research was to identify, develop, and analyze options for using con-

tinuous AEM-based parameters as an input to different transport models. Depending upon the

particular numerical method used for transport simulation, the use of continuous parameteriza-

tion requires intelligent discretization, pathline integration, volume integration, and/or volume-

averaging schemes. Each transport simulation method can use continuous parameters in different

ways, as summarized in this section.

5.3.1 Finite Difference Methods

Finite difference methods are probably the most limited with regards to their ability to incorporate

continuous parameters. The method relies upon a discrete representation of both independent

and dependent parameters, with parameters such as saturated thickness and velocity represented

by either (1) volume/area-averaged quantities (e.g., concentrations, saturated thicknesses) or (2)

transect/line-averaged quantites (e.g., fluxes). While the methods for calculating cell-integrated

fluxes described in section 3.3.2 are robust, some interesting artifacts of discretization are still

present.

The finite difference discretization process may introduce errors if the velocity is discontinuous

within a cell, rather than along a cell boundary. Because of the carefully selected geometry of the

test cases in this dissertation, this type of error was only apparent with the impermeable wall test

case of section 4.3.2. In that particular case, the discontinuity resulted in non-local propagation of
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error (non-physical flux of solute through the impermeable boundary). In the MT3DMS test case

of section 4.1.3, cell faces were aligned with discontinuities, and no error was present. Additional

testing found that the magnitude of this discretization error depends upon the particulars of the

system, and most reasonable systems exhibit local errors only. One such model is illustrated in

figure 5.2. A non-representative concentration may be obtained at the center in the highlighted cell

in the figure because the mass flux into the cell (in fact limited to the small bottom right corner of

the cell) is averaged over the entire cell perimeter. Such errors are mostly local in nature, with a few

notable exceptions (e.g., near a thin impermeable feature or a single cell has multiple intersecting

discontinuities).

Figure 5.2: A plume modeled using the finite difference method is shown advancing through a highly
conductive polygonal inhomogeneity in hydraulic conductivity. The inset depicts the face-averaged
fluxes in the highlighted cell, which cannot accurately depict the actual local distribution of flux
(higher within the inhomogeneity than outside it). This causes local errors in the concentration
distribution.

Though more restricted in their ability to handle certain types of continuous (or sharply dis-

continuous) parameters, the finite difference method is generally the most robust of the methods

implemented in Cardinal, due to the use of the divergence form of the governing equation. How-

ever, this robustness (in terms of mass balance), can obscure local errors near features that are of

smaller scale than the grid cells.
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5.3.2 Finite Element Methods

The revised Eulerian finite element method developed here incorporates the effects of continuous

parameters quite well. The generic formulation of the finite element system of equations is ex-

pressed in terms of integrals of continuous functions over the domain. Whereas conventional FE

methods (e.g., Istok (1989)) use a piecewise continuous representation of velocity and other pa-

rameters, use of AEM flow solutions allows the method to be implemented without deviating from

the original continuous formulation of the finite element residual. Only the dependent variable of

concentration needs to be discretized. However, it is also apparent (from the results of section 4.2.3)

that the errors associated with transforming an AEM solution into finite-element-averaged values

are negligible if higher order integration schemes are used to calculate the element velocities. This

allows discretized AEM solutions to be exported to alternative finite element software products

(e.g., FEFlow (Diersch 1998b)) with little loss of accuracy.

In addition to accommodating smoothly continuous parameters, the finite element method is

able to handle sharp discontinuities in the parameter field if finite element sides are aligned with

analytic element boundaries. Unlike with FD methods, when finite element methods are used, the

only parameter discretization error accrues from the use of the basis function gradient to calculate

the influence of parameter (e.g., velocity) derivatives. The information contained in the spatially

continuous parameters is fully preserved.

Additional improvements to the AEM-based finite element method are needed to handle two

special artifacts of a continuous AEM representation. First, the integration of singular functions

(such as the velocity near a pumping well) using Gaussian quadrature is error-prone. Special

quadrature schemes for singular functions on a triangle are available (Akin 1994; Lyness and Cools

1994) and are expected to better maintain mass balance in systems with wells. In addition, to

adequately handle the geometry of circular, elliptical, and curvilinear analytic elements, elements

with higher-order shape functions are desirable. Various isoparametric 6-node and superparameteric

3-node triangular elements are available to meet this need (Akin 1994). While both revisions will

improve the quality of the FEM solutions, preliminary testing indicates that the existing approach

is adequate for a wide range of model configurations. These extensions will be considered for future

work.

As expected, the flexibility of the finite element method in its ability to conform to the irregular

geometry of AEM flow models is a distinct advantage over finite difference methods, and makes
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the FE method more appealing for handling general continuous parameterization.

5.3.3 Lagrangian/Eulerian-Lagrangian Methods

It was initially hypothesized that particle-tracking-based Lagrangian and Eulerian-Lagrangian

methods would most effectively benefit from a continuous flow solution. With an AEM-based

velocity field, particle paths and characteristic paths may be tracked to a high degree of preci-

sion (using the adaptive Runge-Kutta method of appendix F). The accuracy of this algorithm is

such that tracking errors may be considered negligible. Tracking errors are a significant source of

mass balance error in EL methods and mass allocation error in Lagrangian methods (Oliveira and

Baptista 1998).

The BMOC test case of section 4.2.4 demonstrated that mass balance error was significantly

reduced by the use of continuous parameterization. However, the remaining global and local mass

balance errors associated with characteristic methods (independent of the flow solution) are still

deemed unsatisfactory for transport in heterogeneous domains. Therefore, while EL methods are

improved by the use of AEM flow solutions, AEM-based Eulerian methods are still preferred, if

Peclet constraints are not inhibitive.

The fully Lagrangian random walk technique also benefits from continuous representation of

the velocity field. As with the BMOC, tracking error due to velocity discretization is removed. The

EPVA random walk technique, hoped to remove further spatial discretization error, was not found

to be a marked improvement over the standard random walk technique. However, the EPVA test

case of section 4.2.2 demonstrates that it is possible to simulate contaminant transport without the

use of any grid or mesh.

5.3.4 Implications for Other Methods

There are many approaches for simulating reactive transport that were not implemented or tested

for this dissertation. However, the development and testing of the new AEM-based methods pro-

vide some insight into the applicability of using continuous parameters for other methods, including

streamline methods, flux-limiting schemes, ELLAMs, the finite volume method, and meshless meth-

ods.

Though not discussed here, a preliminary version of the deterministic streamline method (Thiele

1994; Batycky 1997; Crane and Blunt 1999) was implemented in Cardinal and found to benefit
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from continuous parameterization in a similar way as Lagrangian methods (the streamline geometry

is highly accurate). With the streamline method, the one-dimensional advection-dispersion equation

is solved along a collection of streamlines using analytic or Eulerian techniques. The solution is often

mapped to a 2-dimensional grid for visualization. These 1D solutions will benefit from continuous

parameterization in a similar manner as the 2D finite element and finite difference method. It

was found that the development of an flexible and rigorous streamline method algorithm required

a large amount of bookkeeping. However, there are many potential benefits of such a merger

(e.g., ease of parallelization and reduced grid constraints) and future work will extend the existing

implementation.

Flux-limiting schemes such as the Total Variation Diminishing (TVD) scheme (Leonard 1988)

are an alternative to traditional Eulerian-Lagrangian schemes for circumventing the Peclet con-

straints of Eulerian methods. Unlike EL methods, they are mass-conservative. However, they have

their own time step requirements, which are generally more prohibitive that standard Courant

constraints for Eulerian methods. Their implementation within an AEM-based finite difference

transport simulator is relatively straightforward, and would have to be based upon the water-

balance-preserving discrete flux calculations of section 3.3.2.

The Eulerian-Lagrangian localized adjoint method (ELLAM) uses a grid-based representation

of dispersion and a Lagrangian representation of advection. Therefore, both the flux discretization

methods of section 3.3.2 and the Runge-Kutta approach for tracking particles will benefit an AEM-

based ELLAM.

The finite volume method may be considered a simple subset of finite element methods (Gresho

and Sani 1998) with the appealing properties meeting both the global and local mass balance. It

would be expected to benefit in a similar manner to the graded finite element method developed

here.

Meshless methods for solving PDEs (Belytschko et al. 1996; Šarler 2002) are a relatively new

subject of research and have not received much attention in the contaminant transport literature.

The accuracy, stability, and conservation properties of the method when applied to advection-

dispersion problems remain open research questions. However, the lack of any grid or mesh is

appealing, and it is hoped that the method may later be integrated with AEM to obtain entirely

grid-free solutions to the effective parameter advection-dispersion equation. It is not clear to what

degree these methods can incorporate continuous variation in parameters.



CHAPTER 5. DISCUSSION 173

5.4 Multi-scale Transport Modeling

The adjacency constraints of finite element and finite difference methods are rarely confronted

as a source of computational inefficiency. They are viewed as a necessary artifact of a discrete

representation. However, these constraints increase the cost of multi-scale models by requiring fine

discretization not only along small-scale features but also away from such features. One of the most

appealing ways to enable the development of multi-scale models is to circumvent these adjacency

constraints. The discontinuous mesh method of section 3.7, enabled by the use of an AEM flow

solution, was shown to be able to do so (albeit in an approximate fashion) in section 4.3. The use

of AEM allows small-scale features in the transport model to be modeled as infinitely thin internal

boundary conditions. In the case of the low-permeability barrier condition, this reduces adjacency

requirements, encouraging the development of multi-scale transport models. Similar approaches

may later be developed to model solute transport in 2-dimensional fracture networks.

5.5 Computational Considerations

The methods and algorithms for solute transport simulation developed within this dissertation

may be considered significantly more complicated than those used in standard finite difference or

finite element models. Most of this complexity is due to the need to account for the continuous

representation of flow parameters. Because the analytic element does not produce results in a

discrete format, the solutions (i.e., velocities, saturated thicknesses, etc.) must be either translated

to a discrete format or used directly. This processing requires computation unique to the use

of AEM. This is in addition to the computational costs of a standard reactive transport model,

which are determined by the resolution and sophistication of the transport model (the number of

particles, cells, elements, time steps, species, and/or reactions). The relative magnitude of this

AEM-based computational overhead depends upon whether Eulerian, Lagrangian, or Eulerian-

Lagrangian techniques are used for simulation.

With Eulerian methods, most of the additional sophistication is associated with the discretiza-

tion of the analytic element flow solution to an equivalent finite difference or finite element repre-

sentation. For finite difference methods, the complexity lies in the calculation of integrated fluxes

across cell boundaries and within the cell. For finite element methods, the complexity is associated

with the integration of the continuous residual integrals. In both cases, the computational over-
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head associated with using AEM solutions only influences the cost of formulating the coefficient

matrices. Because only steady-state flow solutions are considered here, the system of equations

needs to be constructed once. Once the system of equations is assembled, the computational cost

of AEM-based Eulerian methods is equivalent to that of standard discrete approaches. Facilitated

by the use of operator-splitting, revisions to the system of equations (required for multi-species

transport or adaptive time stepping) are incorporated “on-the-fly” in Cardinal. The influence of

flow parameters does not have to be recalculated every time a change to the system of equations is

made. While the overhead in the construction of the system of equations can be significant (on the

order of minutes for high resolution models with hundreds of flow features), the additional com-

putation is negligible for most simulations. This cost is easily leveraged by the ability to develop

models with fewer degrees of freedom than required using conventional discrete flow solutions.

Lagrangian and Eulerian-Lagrangian methods, where high-resolution particle tracking is de-

sirable, are significantly more burdened by the overhead of using analytic element flow solutions.

There are multiple means of implementing particle-based methods that use AEM flow solutions.

One is to use the high-resolution approach of chapter 3.5.4, which tracks particle paths using the

adaptive Runge-Kutta method of appendix F. This approach is (by far) the most accurate, as

particle trajectories may be tracked to an arbitrary degree of precision, essentially removing the

tracking errors discussed by Oliveira and Baptista (1998). However, with the large number of parti-

cles required in complex domains, this tracking algorithm can be prohibitive for reactive transport,

because the computational cost of hydrodynamic (advective and dispersive) simulation becomes

larger than that required for reactive simulation.

There are two means of avoiding the computational cost of tracking: precalculation and opti-

mization. For the backwards method of characteristics, where particles are repeatedly backtracked

from the nodes of the domain to compute the advective change in concentration, the “foot” of the

characteristic path may be saved, and tracking calculations need only be performed once at the

beginning of the simulation. However, with this approach, adaptive time stepping of the trans-

port simulation is no longer an option (without recalculating characteristic paths). Additionally,

this precalculation option is specific to the BMOC, and is not applicable to other Lagrangian or

Eulerian-Lagrangian methods (e.g., the random walk or standard MOC) where the particle loca-

tions are changing during the course of the simulation. An appealing (and method-independent)

alternative is to use a surrogate grid or mesh (independent of the simulation grid or mesh) on which
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discrete velocities (or effective velocities) may be calculated and stored. The saved velocities may be

interpolated using semi-analytic methods (e.g., Pollock (1988)), just like with traditional discrete

simulators, to obtain approximate particle or characteristic paths. The overhead cost of building

the velocity grid is incurred before the transport simulation, and would enable particle-based meth-

ods to be used without the prohibitive cost of Runge-Kutta pathline integration. Tracking errors

are once again introduced when the velocities are interpolated. However, unlike the grid used in

the BMOC test case of section 4.2.4, the grid used to store velocities can be wholly independent of

the transport simulation mesh, and a quad-tree representation may be used to maximize accuracy

while minimizing both the memory requirements and preprocessing cost. This approach may also

be advantageous for other Lagrangian techniques, such as the random walk method.

The computational cost of including reactions in AEM-based transport models is on par with

that of discrete methods. Importantly, this is facilitated by the use of operator-splitting. If the

globally implicit method were used (i.e., transport and reaction were solved simultaneously), the

system of equations would have to be reconstructed for each time step, and the cost of using AEM

for any of the methods above would be prohibitive. For similar reasons, this reconstruction cost

may also be prohibitive for the later development of transport simulation algorithms based upon

transient AEM flow models.

5.6 Software Developments

5.6.1 Products

The backbone of this dissertation is the object-oriented flow and transport libraries, Bluebird and

Cardinal, which contain all of the methods and algorithms developed here. To extend the impact

of the research and these software products, both libraries (in the form of a single executable)

have been released into the public domain (available at http://groundwater.buffalo.edu). The code

has been successfully linked to the optimization/parameter estimation software Ostrich (Matott

2003). It has also been integrated into a user interface, Visual Bluebird(Craig and Matott 2004),

as briefly discussed below.
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5.6.2 Object Orientation

The development of the Bluebird and Cardinal libraries using object-oriented methods proved,

on more than one occasion, to facilitate rapid development of algorithms, addition of new features,

and revision to existing features. For example, Pollock’s method was coded and linked to the

backwards method of characteristics in less than two hours, and elliptical analytic elements were

added in a similar time frame. While the benefits of object-orientation are difficult to quantify,

the author sees no alternative for the type of complex algorithm development undertaken for this

dissertation, which generated more than 30,000 lines of code.

5.6.3 User Interface

The development and solutions of the test cases within this dissertation were facilitated by the

parallel development of Cardinal and Visual Cardinal (a module of Visual Bluebird). This

interface is a significant byproduct of this work, and facilitates the use of the tools developed within

this dissertation. A screenshot of Visual Cardinal is shown in figure 5.6.3.
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Figure 5.3: Visual Cardinal Screenshot
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5.7 Conclusions

The investigations within this dissertation have examined the advantages, disadvantages and chal-

lenges of using AEM flow solutions as a basis for contaminant transport simulation. After the

preceding analysis of AEM-based transport simulation, the following summary conclusions are of-

fered:

• In most cases, finite element transport simulators should be used for modeling complex re-

active systems with the analytic element method. While the computation of hydrodynamic

transport is more cumbersome (per degree of freedom) than with finite difference methods,

the smaller number of nodes directly reduces the cost of reaction calculation. In addition,

the finite element method can consistently fit the geometry of analytic element flow models

and account for sharp discontinuities in velocity or saturated thickness. However, the existing

finite element implementation, based upon the convective form of the ADRE, may be less

robust (in terms of mass balance) than the finite difference method. This limitation may

later be circumvented by solving the divergence form of the vertically-averaged advection-

dispersion equation. Also, revisions are required to more robustly account for the effects of

singularities and curvilinear features.

• The development of accurate and fast adaptive tracking algorithms for AEM are a high pri-

ority for the development of more computationally efficient AEM-based Eulerian-Lagrangian

methods for transport simulation. Until this development occurs, it is recommended that the

faster (and mass-conservative) Eulerian methods are used.

• The robust calculation of intercellular fluxes for finite difference transport simulation (section

3.3.2) is required for successful results, yet requires very little computation (typically only a

little more than one evaluation of the complex potential per cell). Alternative discretization

approaches (e.g., low-order numerical flux integration) should be avoided.

• For 2-dimensional transport simulation in systems that exhibit mixed confined/unconfined

behavior and are appropriately approximated as shallow (Dupuit-Forcheimer) flow, use of

the analytic element method has a distinct advantage. Because AEM can model mixed con-

fined/unconfined systems and conventional 2-dimensional finite difference and finite element

methods cannot (they solve the governing equations in terms of head, rather than potential),
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AEM-based flow solutions are the only option.

• For systems defined by high contrasts in hydraulic conductivity, the use of the analytic element

method offers particular advantages. This is because finite difference methods and finite

element methods are susceptible to water balance errors, which can affect the quality of the

transport solution. Additionally, the analytic element method is able to simulate flow through

systems where hydraulic conductivity varies by orders of magnitude.

• The current state of practice for modeling PRBs is to treat the barrier as a 1D system,

with the averaged flow and influent concentrations treated as idealized boundary conditions.

The methods implemented in this work allow the inclusion of a PRB in a 2-dimensional

model, in a manner in which complex regional flow patterns and complex PRB chemistry

can be simultaneously incorporated. Although this approach was successfully demonstrated

for a difficult test problem, the resulting computational demand is significant, and without

further computational improvements, the applications where this approach is appealing may

be limited.

The results of the preceding research have demonstrated that the use of the analytic element

method as basis for transport simulations is not only possible, but often beneficial, and for some

particular applications (such as simulating transport through low conductivity barriers), advanta-

geous. In most cases, the choice of whether AEM or discrete flow solutions should be used will

continue to be dictated by the needs of the particular application. However, the option to model

contaminant transport using existing (and future) AEM flow models is now available.

5.8 Future Work

The methods and results presented within this dissertation provided an essential framework for

effective coupling of AEM and transport simulators. It is expected that these new and revised

methods, all incorporated within a single software code, can all be optimized for improved compu-

tational performance and accuracy. In addition, the tools developed here can be used as a basis for

future methods development. Future research should address the following:

Methods
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• The 3D implementation of the algorithms in this dissertation is likely the most important

“next step” in the integration of AEM and contaminant transport simulators, as the vertically-

averaged assumption is only valid in a subset of cases. Much of the analysis contained within

this dissertation easily extends to three-dimensional transport in 2-dimensional shallow flow

systems, and it is likely that the pseudo-3-dimensional discharge approximation of (Strack

1984) will adequately approximate the vertical component of advection in many cases.

• The computational efficiency of the adaptive Runge-Kutta tracking algorithm (used by all

particle-based methods in this dissertation) must be significantly improved. Multiple options

are available, including the use of complex Taylor series expansions to speed up the evaluation

of the velocity term, the use of intelligently discretized quad-tree velocity fields that may be

used for Pollock’s method (independent of transport system discretization), and/or a more

optimized adaptive tracking algorithm that is less computationally expensive.

• Discontinuous finite element methods for the simulation of transport through fractures (repre-

sented as line dipoles in the analytic element method) may be an appealing means of modeling

fracture transport. Additionally, more sophisticated discontinuous flux conditions (i.e., highly

resolved 1-dimensional transport across a barrier) may be desirable.

• One of the more appealing features of the merger of AEM and Eulerian methods is the

removal of the constraints associated with the flow grid or mesh. It is desirable to develop

automated mesh generation algorithms that develop a mesh based completely upon the Peclet

and Courant constraints identified from the AEM flow solution. Ideally, a finite element mesh

could be created such that the mesh spacing is maximized everywhere without exceeding the

Peclet constraint, thus maximizing the time step determined by courant limitations. Such a

mesh generation algorithm would allow users to fully utilize the benefits associated with a

continuous AEM flow solution.

• The effects of using operator-splitting to decouple hydrodynamic transport and sorption

should be investigated, particularly for finite element methods, which are susceptible to mass

balance errors due to the nature of this type of reaction.

• The majority of the transport simulation approaches within this dissertation have used ap-

proximate numerical solution techniques. However, it is desirable to combine the accuracy
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of analytic flow solutions to the accuracy and simplicity of analytic transport solutions. Co-

ordinate mapping approaches may be later developed to map existing analytic solutions for

the transport of contaminants in uniform flow (e.g., those catalogued by Ségol (1994)) to the

more complicated flow geometries obtained from AEM.

• While the standard finite element method was shown to be unable to solve the EPVA formula-

tion of the ADRE (section 3.5.1), alternative weak forms may be possible which do not suffer

from the limitations of the standard FEM. The mathematics behind such a development are

complicated, and were deemed to be beyond the scope of this dissertation. However, future

developments may include a more sophisticated finite element method which can utilize the

closed-form solutions of section 3.4.

• The currently limited implementation of the deterministic streamline method in Cardinal

needs to be extended and assessed. The parallel nature of the algorithm and the reliance

upon accurate calculation of streamlines bodes well for integration with AEM. One appeal-

ing application of the streamline method is the simulation of sorbing contaminant in highly

heterogenous systems. Such tests could help to develop insight into the the effects of hetero-

geneity in sorption parameters. Three-dimensional flow solutions, such as those used in the

work done by Fiori et al. (2003), could be used in conjunction with 1D analytic solutions for

reactive transport along streamlines.

Software

• It is desirable to develop a more complete reaction library that could be used to model a

variety of pollutants at the field and local scales. This reaction library would enable the use

of Cardinal to test research hypotheses about new contaminant transport issues, rather

than just to be used as a testbed for algorithm development. Reaction modules are under

development for simulation of nitrate transport and parent-daughter decay. Others will likely

follow.

• Further development of the user interface for Cardinal and Bluebird, Visual Bluebird,

is planned for the fall of 2004. The software and interface will be released as public domain

software to extend the impact of the work performed here.
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Applications

• It is expected that the ability of AEM to model flow phenomenon at regional scales may sup-

port the development of regional scale transport models. Regional scale models of non-point

source pollution are a likely byproduct of the developments encompassed by this dissertation

• The proposed AEM-based approach could potentially expand the range of performance as-

sessment of iron-based PRB systems to include a more accurate consideration of flow field and

influent concentration variability. Iron barriers are not constrained by the long time scales

required to model the zeolite barrier in section 4.4. The recent development of elliptical an-

alytic elements (Suribhatla et al. 2004) and their proposed applications to PRBs (Rabideau

et al, submitted) enhances the potential value of the AEM-based approach.
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Summary

A suite of vertically-averaged contaminant transport simulation methods that use AEM flow so-

lutions have been successfully developed and implemented in the object-oriented software library

Cardinal. These revised Eulerian, Lagrangian and Eulerian-Lagrangian methods facilitate the

development of solute transport models that are (1) less restricted by conventional discretization

constraints and (2) often more accurate than models based upon discrete flow solutions. The re-

duction in grid- and mesh-based constraints can reduce the overall computational cost of complex

reactive transport models by allowing such models to be spatially discretized solely with consid-

eration of the transport problem in mind. The improved accuracy of the methods allow for some

systems to be modeled with fewer degrees of freedom.

The methods developed to enable the merger of AEM and transport simulation include:

• Techniques for translating AEM solutions so that they may be exported to standard finite

difference and finite element simulators

• Techniques for directly using continuous AEM flow solutions to improve the accuracy of the

Eulerian finite element method, characteristic methods, and the random walk method

• A new “discontinuous mesh” finite element technique that allows for discontinuities in vertically-

averaged concentrations to be simulated without excessive discretization

• Closed-form solutions for continuous AEM-based “effective” parameters for use by modified

transport solution techniques

• Simple-to-implement adaptive enabling of reactions

183
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The above methods and algorithms have been verified against analytic and numerical solutions

and compared to alternative approaches that use discrete parameterization. It was found that

the majority of the methods benefited from continuous representation, and that the use of AEM

can facilitate the development of computationally efficient multi-scale reactive transport models.

These improvements may later be extended to transport methods that utilize pseudo-3-dimensional,

3-dimensional, and transient analytic element models.



Appendix A

Parameter Derivatives

For the following derivation of spatial derivatives of transport parameters, only x-direction calcula-

tions are shown. It is assumed that the functional forms of the porosity, base, and layer thickness

spatial distributions are known and once differentiable.

A.1 Saturated Thickness Spatial Derivatives

The saturated thickness, h, can be defined as:

h = ζ (φ − B) + (1 − ζ)H (A.1)

where ζ is equal to 1 if unconfined (B < φ < B +H), zero otherwise. For the unconfined condition,

application of Darcy’s law gives

∂h−1

∂x
= − 1

h2

∂h

∂x
=

1

h3

Qx

k
+

B′
x

h2
(A.2)

For confined conditions, the saturated thickness is known a priori, and

∂h−1

∂x
= − 1

h2

∂h

∂x
= −H ′

x

h2
(A.3)

These may be incorporated into a single term, Υx [L−1], which represents the relative influence of

changes in saturated thickness and porosity.

Υx = h
∂h−1

∂x
+ θ

∂θ−1

∂x
=

ζ

h2

Qx

k
− (1 − ζ)

H ′
x

h
+

B′
x

h
− θ′x

θ
(A.4)
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Υy = h
∂h−1

∂y
+ θ

∂θ−1

∂y
=

ζ

h2

Qy

k
− (1 − ζ)

H ′
y

h
+

B′
y

h
−

θ′y
θ

(A.5)

A.2 Velocity Spatial Derivatives

The derivative of the x-component of velocity is given as

∂vx

∂x
=

∂

∂x

(

Qx

hθ

)

(A.6)

This may be expanded by applying the chain rule as follows,

∂vx

∂x
=

1

hθ

∂Qx

∂x
+

Qx

θ

∂h−1

∂x
+

Qx

h

∂θ−1

∂x
(A.7)

And may be expressed as a function of the discharge derivative and other known continuous pa-

rameters,

∂vx

∂x
= vx

(ℜ(Gx)

Qx
+ Υx

)

(A.8)

∂vy

∂x
= vy

(

−ℑ(Gx)

Qy
+ Υx

)

(A.9)

∂vx

∂y
= vx

(ℜ(Gy)

Qx
+ Υy

)

(A.10)

∂vy

∂y
= vy

(

−ℑ(Gy)

Qy
+ Υy

)

(A.11)

A.3 Velocity Magnitude Spatial Derivatives

The magnitude of velocity is given as follows:

|v| =
√

v2
x + v2

y (A.12)

Rewriting,

|v| =

(

Q2
x

h2θ2
+

Q2
y

h2θ2

)

1
2

=
|W |
hθ

(A.13)

Taking the derivative and applying the chain rule,

∂|v|
∂x

=
1

hθ

∂|W |
∂x

+
|W |
θ

∂h−1

∂x
+

|W |
h

∂θ−1

∂x
(A.14)
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Simplifying the second two derivative terms,

∂|v|
∂x

=
1

hθ

∂|W |
∂x

+ |v|Υx (A.15)

The only term in this expansion that is not an explicit function of location is ∂|W |/∂x, in the first

term. The term may be written out as follows:

∂|W |
∂x

=
1

|W |

(

Qx
∂Qx

∂x
+ Qy

∂Qy

∂x

)

(A.16)

Which may be obtained from the discharge derivative function, Gx,

∂|W |
∂x

=
Qxℜ(Gx) − Qyℑ(Gx)

|W | =
ℜ(WGx)

|W | (A.17)

where W is the complex conjugate of W . Substituting into (A.15),

∂|v|
∂x

= |v|
(ℜ(WGx)

|W |2 + Υx

)

(A.18)

and, through a similar process,

∂|v|
∂y

= |v|
(ℜ(WGy)

|W |2 + Υy

)

(A.19)

In the relationship for dispersion coefficients, the derivatives of |v|−1 is more important. These may

be written as:

∂|v|−1

∂x
= − 1

|v|

(ℜ(WGx)

|W |2 + Υx

)

(A.20)

∂|v|−1

∂y
= − 1

|v|

(ℜ(WGy)

|W |2 + Υy

)

(A.21)



Appendix B

Pseudo-3D Parameter Derivatives

B.1 Vertical Velocity Component

For pseudo-three-dimensional flow in Dupuit-Forcheimer models, a vertical component of the ve-

locity vector may be estimated as (from (Strack 1989)):

vz =
1

θ

[ |Q|
h2

∂h

∂s
z′ − B − N

h
z′ + (N+

b − N−
b )

]

(B.1)

Where z′ is the vertical coordinate measured from the aquifer base (the superscript is used

to differentiate it from the complex coordinate, z), ζ is equal to one for unconfined flow, zero

otherwise, and N is the net vertical leakage (N = N+
t − N−

t + N+
b − N−

b ). The coordinate s is

along a streamline, with |Q| being the magnitude of the discharge in the flow direction and ∂h/∂s

being the saturated thickness gradient in the direction of flow. Expanding out |Q| and ∂h/∂s for

the most general case (with sloping base and thickness (where h is defined as in equation A.1),

vz =
1

θ













ζ
|W |
h2

(

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

− 2
∂φ

∂x
B′

x − 2
∂φ

∂y
B′

y + (B′
xB′

y)
2

)

1
2

z′+

(1 − ζ)
|W |
h2

|H ′|z′ − N

h
z′ + (N+

b − N−
b )













(B.2)

This expression may be rewritten as

vz =
1

θ



ζ
|W |
h2

( |W |2
k2h2

+ 2
Qx

kh
B′

x + 2
Qy

kh
B′

y + (B′
xB′

y)
2

)

1
2

z′ + (1 − ζ)
|W |
h2

|H ′|z′ − N

h
z′ + (N+

b − N−
b )





(B.3)

188



APPENDIX B. PSEUDO-3D PARAMETER DERIVATIVES 189

To simplify the following analysis, it will be assumed that the base elevation, B, and aquifer

thickness, H, are piecewise constant, giving:

vz =
1

θ

[

ζ
|W |2
kh3

z′ − N

h
z′ + Nb

]

(B.4)

Where the total vertical flux into the aquifer from the bottom N+
b −N−

b has been expressed as

Nb.

B.2 Vertical Velocity Spatial Derivatives

∂vz

∂x
=

∂

∂x

[

ζ
|W |2
kh3θ

z′ − N

hθ
z′ +

Nb

θ

]

(B.5)

For the multi-quadric area sink (the means of simulating recharge in this dissertation), the spatial

distribution of leakage and recharge have the functional form of a multi-quadric radial basis function,

i.e.,

N(z) = Nave +

NAS
∑

n

an(z − zn) (B.6)

Where NAS is the number of radial basis points zn, and Nave is the average leakage/recharge in the

area-sink. The spatial gradients of this leakage (identical functions are available for representing

Nb as well) may be expressed as

∂N

∂x
=

NAS
∑

n

an
x − xn

|z − zn|
(B.7)

∂N

∂y
=

NAS
∑

n

an
y − yn

|z − zn|
(B.8)

Since these expressions are known as a closed-form function of space, we may write the following

expression for the gradient of vertical velocity in the x-direction:

∂vz

∂x
= ζ

|W |2
kh2

[

2
ℜ(W̄Gx)

|W |3 + 3Υx + 2
θ′x
θ

]

z′

hθ
−
(

NΥx +
∂N

∂x

)

z′

hθ
+

1

θ

(

∂Nb

∂x
− Nb

θ
θ′x

)

(B.9)

For the spatial gradient in the y-direction,

∂vz

∂y
= ζ

|W |2
kh2

[

2
ℜ(W̄Gy)

|W |3 + 3Υy + 2
θ′y
θ

]

z′

hθ
−
(

NΥy +
∂N

∂y

)

z′

hθ
+

1

θ

(

∂Nb

∂y
− Nb

θ
θ′y

)

(B.10)
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For the spatial derivative in the z-direction,

∂vz

∂z′
=

∂

∂z′

[

ζ
|W |2
kh3θ

z′ − N

hθ
z′ +

Nb

θ

]

(B.11)

∂vz

∂z′
= ζ

|W |2
kh3θ

(

1 − θ′z
θ

)

− N

hθ
− Nb

θ′z
θ

(B.12)

Notice that, in aquifers without vertical variation in porosity, the velocity varies linearly with

respect to z (∂vz/∂z′ is not a function of z′).

B.3 Velocity Magnitude Spatial Derivatives

Once a third component of the velocity is defined as being non-zero, the magnitude of the veloc-

ity vector should technically be redefined, therefore requiring a revised definition of the spatial

derivatives of velocity magnitude (i.e., one different from that derived in equations A.12 to A.21).

However, for most groundwater flow systems (especially those where the Dupuit-Forcheimer as-

sumption is valid), the vertical velocity is significantly smaller than the horizontal velocities (i.e.,

vz << vx and vz << vy). Therefore, it is realistic to assume that

|v|3D =
√

v2
x + v2

y + v2
z ≈ |v|2D =

√

v2
x + v2

y (B.13)

For the same reason, the spatial derivative of the velocity magnitude will be assumed to be zero:

∂|v|
∂z

=
∂|v|−1

∂z
= 0 (B.14)

This assumption allows the velocity derivatives and magnitude derivatives to be used for transport

in domains with pseudo-3D flow.



Appendix C

Element Discharge Derivatives

C.1 A Well

The discharge function from a well is:

W = Qx − iQy = − Q

2π

1

z − zw
(C.1)

where zw is the location of the well. The discharge derivative is obtained as:

Gx = −iGy =
∂W

∂z
=

Q

2π

1

(z − zw)2
(C.2)

C.2 Laurent Series

The formula for a Laurent series (used in far field expansions and circular elements) is:

W = Qx − iQy = − 1

R

N
∑

n=1

nanZ−n−1 (C.3)

where Z = (z − zc)/R, zc is the center of the circle and R is the radius. The derivative with

respect to z is :

Gx = −iGy =
∂W

∂z
=

1

R2

N
∑

n=2

n(n − 1)anZ−n−2 (C.4)
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C.3 Taylor Series

The formula for a Taylor series (used in circular elements) is:

W = Qx − iQy = − 1

R

N
∑

n=1

nanZn−1 (C.5)

where Z = (z − zc)/R, zc is the center of the circle and R is the radius. The derivative with

respect to z is :

Gx = −iGy =
∂W

∂z
=

1

R2

N
∑

n=2

n(n − 1)anZn−2 (C.6)

C.4 A High-order Doublet

The discharge function for a high-order doublet (as in Janković, 1997) is:

W (Z) =
−2

z2 − z1

1

2πi



























N
∑

n=0

anTn(Z)
2

(Z − 1)(Z + 1)
+

N−1
∑

n=0

dnTn(Z)ln
Z − 1

Z + 1
+

N−2
∑

n=0

enTn(Z)



























(C.7)

where an are the N element jump coefficients, identified during solution of the flow model.

dn =































0 for n>N-1

dn+2 + 2(n + 1)an+1 for n=N-1,N-2,N-3...1

d2/2 + a1 for n=0

(C.8)

and

en =































0 for n>N-2

en+2 + 2(n + 1)bn+1 for n=N-1,N-2,N-3...1

e2/2 + b1 for n=0

(C.9)

where
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b = Ba (C.10)

and

Bnm =































2
m for n=0 and m odd

4
m−n for 0<n<m and n+m odd

0 otherwise

(C.11)

It is important to note that the recursive relationship in (C.8) may be written in matrix form

as Da = d, where the elements of the N x N matrix D may be expressed as

Dnm =































2m if m > n and m − n is odd and n 6= 0

m if m − n is odd and n = 0

0 otherwise

(C.12)

The derivative of the function W (Z) with respect to z is

Gx(Z) =
2

(z2 − z1)2
1

πi

















N
∑

n=0

















an
4Z

(Z − 1)2(Z + 1)2
+

dn
2

(Z − 1)(Z + 1)
+

gnln
Z − 1

Z + 1
+ hn

















Tn(Z)

















(C.13)

where d = Da, g = DDa and h = DDBa. The formulae for Gx due to a dipole or linesink are

similarly derived.

C.5 Elliptical Element

The expression for the discharge function an elliptical element is given by:

W (τ) =



















e−iθ

d sinh τ

N
∑

n=1
nan (e−nτ − enτ ) for η <= η0

e−iθ

d sinh τ

N
∑

n=1
nbne−nτ for η > η0

(C.14)

Where τ = η + iϕ are local element coordinates, as defined by Suribhatla et al. (2004). This
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expression may be differentiated with respect to z to obtain the discharge derivative, Gx:

Gx(τ) =











































−e−i2θ

(d sinh τ)2















N
∑

n=1

nan (coth τ + η) e−nτ

+
N
∑

n=1

nan (η − coth τ) enτ















for η <= η0

−e−i2θ

(d sinh τ)2

[

N
∑

n=1
nbn (coth τ − n) e−nτ

]

for η > η0

(C.15)



Appendix D

Triangular Finite Elements

D.1 Local Coordinate System

The local coordinate system for triangular elements is often expressed in terms of barycentric

coordinates.

The local triangular element coordinates ξi, ξj , and ξk are given by the following transformation

and shown in figure D.1:

ξi =
Ai

A(e)
(D.1)

or, equivalently, in a more compact (and complex) form,

ξi =
ℑ ((z − zk)(zk − zj))

ℑ ((zi − zk)(zk − zj))
(D.2)

where zi, zj , and zk are the nodal coordinates in complex form. Note that at z = zi, the local

coordinate ξi evaluates to 1. At z = zj and z = zk, ξi evaluates to zero. For standard linear basis

(shape) functions, we may easily write our basis functions in terms of local coordinates:

N
(e)
i = ξi (D.3)

The derivatives of this basis function are given by the following relationships:

∂Ni

∂x
=

yj − yk

2A(e)

∂Nj

∂x
=

yk − yi

2A(e)

∂Nk

∂x
=

yi − yj

2A(e)

∂Ni

∂y
=

xj − xk

2A(e)

∂Nj

∂y
=

xk − xi

2A(e)

∂Nk

∂y
=

xi − xj

2A(e)

(D.4)
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ni ( i=1)

nj ( j=1)

nk ( k=1)

Ak

Aj

Ai

vk

vi

vj

Figure D.1: Local coordinate system for linear triangle elements. The coordinate ξi is measured as
the ratio of the inner triangle Ai to the total area with the maximum value of 1 at node i and zero
along side i

Also useful are expressions for the integral of these basis functions and their derivatives over the

element (from Segerlind (1976)):

∫

A(e)

Nα
i Nβ

j Nγ
k dA =

α!β!γ!

(α + β + γ + 2)!
2A(e) (D.5)

∫

A(e)

∂Ni

∂x

∂Nj

∂x

∂Nk

∂x
dA =

bibjbk

8A(e)2
∫

A(e)

∂Ni

∂x

∂Nj

∂x

∂Nk

∂y
dA =

bibjck

8A(e)2
∫

A(e)

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y
dA =

cicjck

8A(e)2
∫

A(e)

∂Ni

∂y

∂Nj

∂y

∂Nk

∂x
dA =

cicjbk

8A(e)2

(D.6)

And

∫

A(e)

NiNj
∂Nk

∂x
dA =

bk (1 + δij)

24
∫

A(e)

NiNj
∂Nk

∂y
dA =

ck (1 + δij)

24

(D.7)
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where bi = 2A(e) ∂Ni

∂x and ci = 2A(e) ∂Ni

∂y and

δij =















1 if i=j

0 otherwise

(D.8)

The element Jacobian matrix represents the transformation from global to local element coor-

dinates. The Jacobian matrix for a triangular finite element is given by:

[J ] =







(xj − xi) (xk − xi)

(yj − yi) (yk − yi)






(D.9)

The inverse Jacobian matrix is given by:

[

J−1
]

=
1

|J |







(xj − xi) −(xk − xi)

−(yj − yi) (yk − yi)






(D.10)

where |J | is the determinant of the Jacobian.

D.2 Upstream Weighting

The upstream weighting functions, w
(e)
i , for reducing numerical oscillation of the solution are given

by Yeh (2000) as:

w
(e)
i = ξi − 3α̂kξiξj + 3α̂jξkξi (D.11)

The weights α̂i, α̂j , and α̂k in Eq. D.11 are obtained based upon the velocity tangential to the

element sides:

α̂i =































−1 if vi
t < 0

0 if vi
t = 0

1 if vi
t > 0

(D.12)

Equation D.11 reduces to the standard unweighed linear basis function, N
(e)
i when the all weights

are set to zero.
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D.3 Streamline Upwind Petrov-Galerkin

As an alternative to classic upstream weighting, the streamline upwind Petrov-Galerkin (SUPG)

formulation may also be used to weight the upstream nodal concentrations for solution of the

advection term of the advection dispersion equation. The element nodal SUPG weighing functions

are related to the basis functions by the following relationship (Brooks and Hughes 1982):

w
(e)
i = N

(e)
i + τ̂ (e)

(

v(e)
x

∂N
(e)
i

∂x
+ v(e)

y

∂N
(e)
i

∂y

)

(D.13)

Where the element “stabilization parameter”, τ̂ (e), is given as

τ̂ (e) = α̂
L(e)

2|v(e)| (D.14)

The upwind weighting parameter α̂ can range between zero and one, and the element effective

length, L(e), is often calculated as the square root of the element area.

D.4 Numerical Integration

Any function may be numerically integrated over a unit triangular element using the following

approximation:
1
∫

0

1−ξj
∫

0

f(ξi, ξj , ξk)dξidξj =
M
∑

i=k

ωkfk (D.15)

where fi is the value of the function evaluated at integration point i and Wi is the Gaussian

Weighting coefficient for that integration point, and M is the number of integration points. Table

D.1 shows the locations and weights of the integration points for some lower-order triangular

quadrature schemes.
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Table D.1: Quadrature points and weights for triangular elements (Adapted from Huyakorn and
Pinder (1983))

order (M) Figure Error Points Coordinates Weights

(ξi, ξj , ξk) ωi

Linear (1)

a

b

c

a

c
b

a

e

g

d

c
f

b a

O(h2) a
(

1
3 , 1

3 , 1
3

)

1

Quadratic (3)

a

b

c

a

c
b

a

e

g

d

c
f

b a

O(h3)

a

b

c

(

1
2 , 1

2 , 0
)

(

0, 1
2 , 1

2

)

(

1
2 , 0, 1

2

)

1
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(β1, α1, β1)
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(α2, β2, β2)

(β2, α2, β2)

(β2, β2, α2)

0.225

0.13239415

0.13239415

0.13239415

0.12593918

0.12593918

0.12593918

where α1 = 0.05961587, β1 = 0.47014206, α2 = 0.79742699, and β2 = 0.10128651.



Appendix E

Mass Balance Calculations

E.1 Finite Difference Mass Balance

The central-weighted finite difference method for contaminant transport enforces local mass balance

within each grid cell, provided the mass balance of water is met. For this reason, it is relatively

simple to calculate the mass gained and lost to the system through cell boundaries and through

sink/source terms. Many of the same integrated terms used for assembly of the global system of

equations (derived in section 3.3.2) are used in Cardinal for identification of global mass balance.

E.1.1 Total System Mass

The total mass in the finite difference model at a time n may be calculated as

Mn =
NC
∑

∆xi∆yjhi,j

(

θi,jC
n
ij + (ρb)iS

n
ij

)

(E.1)

where NC is the number of finite difference cells and Sn
ij is the cell-averaged sorbed concentration

of the particular species.

E.1.2 Advection through system boundaries

∆Mn
bound = ∆tn

NCB
∑

Cn
ij

4
∑

k=1

∫

Sk

Q−
η dSk (E.2)
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where NCB is the number of cells adjacent to the border, Q−
η is the normal integrated discharge

along any side Sk (of length ∆xi or ∆yi) adjacent to the border, and Cij is the concentration of

the cell.

E.1.3 Source Terms

∆Mn
source =∆tn

NC+
∑

Q+
s(i,j)c

+
s(i,j) + ∆tn

NC
∑

q+
s(i,j)∆xi∆yj+

∆tn
NC
∑

N+
t(i,j)c

+
t(i,j)∆xi∆yj + ∆tn

NC
∑

N+
b(i,j)c

+
b(i,j)∆xi∆yj

(E.3)

where NC+ is the number of wet source cells, Q+
s(i,j) is the influx of contaminated water to cell

(i, j) with concentration c+
s(i,j), q+

s(i,j) [M/T ] is the cell-averaged “dry” specified mass flux per unit

area in cell (i, j), NC is the number of finite difference cells, and N+
t and N+

b are the vertical

influxes with concentrations of c+
t and c+

b , respectively. It is important to note that, to maintain

mass balance at strong “wet” sources, upstream weighting may not be used at the cell interfaces

adjacent to the source.

E.1.4 Sink Terms

∆Mn
sink = −∆tn





NC−
∑

(

Q−
s(i,j) + N+

t(i,j)∆xi∆yj + N+
b(i,j)∆xi∆yj

)

Cn
ij



 (E.4)

where NC− is the number of wet sink cells, Q−
s(i,j) is the outflux of water from cell (i, j), NC is the

number of finite difference cells, and N+
r and N+

l are the leakage outfluxes through the top and

bottom of the layer.

E.1.5 Dirichlet Source/Sink Fluxes

The amount of added mass from dirichlet sources may be identified via a mass balance of each

dirichlet cell. The mass added to the domain may be calculated as follows, where NCd is the

number of dirichlet cells, Cn
d(i,j) is the specified concentration at time n, and the index i counts

through the four cell sides:
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∆Mn
dir =∆t

NCd
∑

[

h(i,j)θ(i,j)∆xi∆yj(C
n+1
d(i,j) − Cn

d(i,j))
]

+

∆t

NCd
∑

4
∑

i=1

[

∂

∂η

(

−QηC + hθDη
∂Cn

∂η

)]

n+∆t/2

(E.5)

The term in the square brackets is evaluated using the same finite difference approximations

described in section 3.3.1.

E.2 Finite Element Mass Balance

E.2.1 Total System Mass

The total mass in the system at time n is given by:

Mn =
NE
∑

e=0

∫

A(e)

[

hθ
3
∑

i=1

N
(e)
i Cn

i + hρb

3
∑

i=1

N
(e)
i Sn

i

]

dA (E.6)

E.2.2 Boundary Loss

Boundary losses may be estimated using knowledge of the advective flux along outflow boundaries

(dispersive flux is zero along such boundaries).

∆Mn
bound =

∫

Γ

QηCdS if Qη > 0 (E.7)

E.2.3 Source Terms

∆Mn
source = ∆tn

NS+
∑

k=0

Q+
k C+

s +∆tn
NE
∑

e=0

∫

A(e)

q+
s dA+∆tn

NE
∑

e=0

∫

A(e)

N+
r C+

r dA+∆tn
NE
∑

e=0

∫

A(e)

N+
l C+

l dA (E.8)

E.2.4 Sinks and Sources

Evaluation of sink and source fluxes in the finite element method is straightforward. For a “natural”

sink or source associated with a node, Q+
i or Q−

i (identification of these nodal fluxes is shown in

section 3.3.2), and specified flux sources q+
i , the net gain or loss of mass over a time step is given



APPENDIX E. MASS BALANCE CALCULATIONS 203

by:

∂M

∂t source
=

N
∑

n=1

Q+
i Cs

i −
N
∑

n=1

Q−
i Ci +

N
∑

n=1

q+
i (E.9)

The influence of recharge and leakage is included here within the Q+
i and Q−

i terms.

E.2.5 Dirichlet Source/Sink Fluxes

Unlike with finite difference methods, the approach for identifying the mass added to meet Dirichlet

conditions at a finite element node is not clear. However, an a posteriori estimate of the mass added

due to a Dirichlet source over a given time step is available. No mention of the following approach

was found in the finite element literature, though it is expected that a similar technique must be

used in standard finite element transport simulators.

In implicit finite element and finite difference approaches, Dirichlet boundary conditions are met

by modifying the global system of equations ([A]{C} = {B}) by modifying the row and column of

the left hand equation matrix ([A]) associated with the Dirichlet node j and modifying all terms

of the right hand vector {B}. The original system of N equations is given by:

N
∑

i=1

AijCj = Bj (j = 1...N) (E.10)

The modified system of equations [A]′{C} = {B}′ may be expressed as follows (Akin 1994), where

D is the set of all Dirichlet node indices and C∗
j is the specified (Dirichlet) concentration at node

j:

NN
∑

i=1
i∋D

AijCj = Bj −
NN
∑

k=1
k∈D

AjkC
∗
k (j = 1...NN ; j ∋ D)

Cj = C∗
j (j = 1...NN ; j ∈ D)

(E.11)

Recalling that our finite element system of equations is such that external fluxes are applied on

the right hand side, we may try to rewrite the revised system of equations, [A]′{C} = {B}′ as

equivalent to the original system of equation with only additional flux terms Fj appended to the

right hand side, i.e., [A]{C} = {B} + {F}.

Each modified equation associated with a non-Dirichlet node j may be re-expressed as follows,

by adding the difference between the left hand side of E.10 and the left hand side of E.11a to both
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sides of E.10:

NN
∑

i=1

AijCj = Bj +









NN
∑

k=1
k∈D

AkjCj −
NN
∑

k=1
k∈D

AjkC
∗
k









(j = 1...NN ; j ∋ D) (E.12)

where the term in square brackets is the flux added to node j from all Dirichlet sources.

Each modified equation associated with a Dirichlet node k may be re-expressed similarly. This

is done by adding the difference between the left hand side of E.10 and the left hand side of E.11b

to both sides of E.10, then doing the same for the right hand side:

NN
∑

i=1

AijCj = Bj +

[

NN
∑

i=1

AijCj + C∗
j − Cj − Bj

]

(j = 1...NN ; j ∈ D) (E.13)

where, once again, the flux added to node j is given by the term in square brackets. To compute

the mass added to the system from Dirichlet sources over a time step, these terms may be summed:

∆Mn
dir = ∆tn

NN
∑

j=1
j∋D









NN
∑

k=1
k∈D

(AkjCj − AjkC
∗
k)









+ ∆tn
NN
∑

j=1
j∈D

[

NN
∑

i=1

AijCj + C∗
j − Cj − Bj

]

(E.14)

Multiple tests were run to test the preceding approach, and it was found that using the average

concentration over the time step was sufficient for accuracy. As the time step decreased, this a

posteriori estimate of mass gain improved.

E.3 Characteristic Methods Mass Balance

It has been pointed out in the literature (e.g., Celia et al. (1990)) that characteristic methods

do not have a robust means of calculating mass flux from sinks, sources, and boundaries. In the

implementation of Cardinal, the appropriate Eulerian mass balance calculations are applied (as

presented above) as an approximation of the distribution of mass influx and outflux.



Appendix F

Adaptive Particle Tracking

The adaptive particle tracking procedure used within this dissertation is based upon a nearly

identical approach developed for the AEM flow code Split (Janković 2003). The algorithm uses

a basic 4th order Runge-Kutta scheme for integrating the pathline of a particle over a single time

step. This time step is adaptive, depending upon the local variation in the velocity (or effective

velocity) vector. The adaptive algorithm has been used for tracking in highly heterogeneous domains

(Janković et al. 2003) and verified against stream function solutions, exhibiting negligible error,

even after thousands of time steps.

A particle, initially located at zp, is advected over a single time step, ∆t, to a new position z∗p

using the local velocity information at four points:

z∗p = zp + vt∆t (F.1)

Where

v1 =v(zp)

v2 =v(zp + 1
2v1∆t)

v3 =v(zp + 1
2v2∆t)

v4 =v(zp + v3∆t)

vt =
v1 + 2v2 + 2v3 + v4

6

(F.2)

The time step is determined based upon the values of these four intermediate velocities (calcu-

lated directly from the AEM flow solution). First, the relative change in velocity, ∆v, is estimated
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as:

∆v =
||v1 − v2|| + ||v1 − v3|| + ||v1 − v4||

6|vt|
(F.3)

Where the || · || operator denotes a vector norm defined as the sum of the absolute values of the

vector components. Based upon this relative change, the time step is either (1) kept for the next

movement (2) increased mildly for the next movement (3) decreased mildly for the next movement or

(4) decreased dramatically and the current move is recalculated using equation F.1 with the smaller

timestep. The criterion used for determining which option is chosen is presented in equation F.4.

∆tnew =















































1
2 ∆t if ∆v > 0.03

4
5 ∆t if 0.03≥ ∆v > 0.02

∆t if 0.02≥ ∆v > 0.01

6
5 ∆t if 0.01≥ ∆v

(F.4)



Appendix G

Cation Exchange Formulation

One of the reactions included in the Cardinal library (used for the test case of section 4.4) is

competitive cation exchange. The implementation is formulated in the same manner that was

done in Bandilla (2001) and Rabideau et al. (2004). It is assumed that the anion concentration

is known, and the cation exchange capacity, Qcx, is specified. For any set of competing cations

with a monovalent reference species (Na+ in the test case), the conditions for equilibrium with the

porous media may be expressed as a set of Ncat equations, where Ncat is the number of cations

in the system. The set of equations is comprised of Ncat-1 equilibrium equations and a Ncat+1

mass balance equations. For a monovalent cation and monovalent reference species, an equilibrium

relationship may be written for each non-reference specie:

γmCi −
γmCrefSi

SrefKi/ref
= 0 i=1 to Ncat; vi=1; i 6= ref (G.1)

Where Cref and Ci are the aqueous concentrations of the reference species and the ith cation, respec-

tively. Sref and Si are the analogous sorbed (exchanged) concentrations, Ki/ref is the ith selectivity

coefficient with regard to the reference species (based upon the Gaines-Thomas convention), and

γm is the monovalent activity coefficient, defined below.

For a divalent cation and monovalent reference species, a similar equilibrium relationship may

be written:

γdCi − 2Qcx

γ2
mC2

refSi

S2
refKi/ref

= 0 i=1 to Ncat; vi=2; i 6= ref (G.2)

Where γd is the divalent activity coefficient. For each cation component, a mass balance expression
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(that conserves the total mass of the component) may be written:

Ci + Si
ρb

θ
− Ti = 0 i=1 to Ncat (G.3)

Where ρb [ML−3]is the bulk dry density of the soil. Lastly, a final mass balance relationship may

be written specifying that, at all times, the cation exchange capacity is met, and all sites on the

porous media surface are populated with cations:

NC
∑

j=1

vjSj − Qcx = 0 (G.4)

Where vj is the valence of the jth species. The monovalent and divalent activity coefficients, γm

and γd are given from the Davies equation:

γm = 10
−

1
2

( √
µ

1+
√

µ
−0.2µ

)

(G.5)

γd = 10
−2
( √

µ

1+
√

µ
−0.2µ

)

(G.6)

Where the ionic strength, µ [mol/L] is given as

µ =
NC
∑

i=1

1
2v2

i Ci + µa (G.7)

Where µa is the (assumed known) anionic component of the ionic strength.

The preceding nonlinear system of equations is solved using the Newton method, as described

by Bandilla (2001). However, the development of the analytic entries of the Jacobian matrix used

to solve this system of equations iteratively has been expanded in Cardinal for the more general

case of any number of monovalent and divalent cations with a monovalent reference species.



Appendix H

Contents of Digital Appendix

• Source code headers for Bluebird

• Source code headers for Cardinal

• Bluebird Developer Manual
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