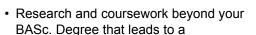


Graduate Studies Open House

Department of Civil & Environmental Engineering July 24, 2007

Schedule

<u>Time</u>	<u>Topic</u>	<u>Speaker</u>
11:30-11:45	Overview of Grad Studies	Prof. Craig
11:45-12:00	Perspectives from Grad Students	Phil Schmidt, Mason Marchildon, Flávio Cunto & Nick Lawler
12:00-12:30	Departmental Research Brief	Profs. Craig, Saccomanno, Soudki, & Rothenberg
12:30-1:00	Pizza and Pop Talk with grad students and profs	


What is Graduate Studies?

- · After graduation, you'll have options:
 - Starting a professional career in engineering or a related field
 - Living off the land

Or...

You might choose to go on to graduate school...

What is Graduate Studies?

- -Masters (MASc) or
- Doctoral Degree (Ph.D.)

Why would you want to do that?

- ...You actually enjoy the intellectual challenge of university
- ...You want to earn more money over the course of your lifetime
 - \$8000-\$12000/yr x 40 years = ~\$400,000+!
- ...You want a better job than what you can get with just a BASc (maybe even be a professor?)
- ...You are not quite sure that the consulting world is right for you (i.e., you don't want to wear a suit)
- ...You want to advance the state of engineering practice and work on cutting edge science
- · You've always wanted to be called "Doctor"

Why would you want to do that?

- It's a personal decision not everybody is suited for grad school
- · You have to be
 - Independent
 - Self-motivated
 - Intellectually curious
 - Have a brain this big

Waterlo

- Admission requirement:
 - An honours bachelor degree (>75%) in your last two years of study
- Degree Requirements
 - 4 graduate courses (that's it?)
 - A RESEARCH THESIS (oh.)

MASc Program

 ALL Masters students are provided with a minimum salary of \$16,500/year

Minimum funding \$5000/term
 Teaching Assistantship \$3407/term
 Tuition -\$2050/term

Living on Ramen Noodles

Waterlo

Waterlo

MASc Program

- Students with above an 80% in their last two years can get scholarships:
 - -NSERC \$27,300/year
 - -OGS \$25,000/year

Things to do if you are thinking about are thinking about

- URA -
 - Undergraduate Research Assistantship- 3 hrs/week
- Co-op
 - Contact a prof. you might like to work with
- "Fast-track" masters program
 - Not for the faint of heart
- Talk with your professors and TAs

THE WARD STUDENT FORMS
DENKELY PACKED COLONIES
IN WHAT ARE KNOWN AS
"STUDENT OFFICES" OR
"LABS", THOUGH COMMUNICATION WITHIN THE
SETTLEMENT 15 RARE
AND OFTEN CONSIDERED

Waterlo

Priceless

Why I Wanted to be a Graduate Student

- Initial interest in highway construction (4 years)
- Analytical/logical type of guy (Interest in research and problem solving)
- · M.Sc and Ph.D. = Advanced skills for problem solving
- Consulting Firms and Public Agencies require advanced degrees (relatively stable jobs)
- Strong desire to become a Professor (after the M.Sc)

Why I Wanted to be a Graduate Student

- Money (Why not?)
 - 202 UW Profs making more than 100k (94k average)
 - Consulting: couple of UW M.Sc friends ~ 60-80k
- Continuously learning and teaching (mentoring)
- No routine, flexibility
- Lots of traveling (conferences, meetings...)

Final Thought

"Being a Graduate Student is like building a solid foundation to support a rewarding life style"

Waterlo

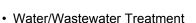
Waterlo

Departmental Research

OK. So I might like grad school.

What would I do for my Masters thesis?

Who would I work with?



Departmental Research

- Environmental/Water Resources
- Transportation
- Structures, Mechanics, and Construction
- · Geotechnical

Water/Environmental Area

- Water/Wastewater Treatment
- Surface Water Hydrology
- Contaminant Transport

Water/Wastewater Treatment

Professors:

Bill Anderson, Susan Andrews, Monica Emelko, Peter Huck (NSERC Chair), Wayne Parker, Sigrid Peldszus

- Improvements to water/wastewater treatment facilities
 - New or more efficient treatment technologies
 - Improved water supply systems
 - Alternative energy from biomass
- Investigation into aqueous chemical and biological processes
- Disinfection byproducts
- Emerging contaminants and pathogens

Water/Wastewater Treatment

Research Topics:

Waterlo

Waterlo

Waterlo

- · Riverbank filtration / constructed wetlands
- Pathogen and contaminant removal
- · Ultraviolet disinfection technologies
- Pharmaceuticals and endocrine disruptors
- Enhanced digestion of wastewater treatment sludges
- Modelling of wastewater treatment and sludge handling systems

Waterlo

Water/Wastewater Treatment

The Typical Treatment Grad Student:

- Will often have to don a white lab coat or steel-toed boots
- Interacts with treatment plant engineers and policy-makers
- Learns how to run sophisticated laboratory technology
- Runs on-site pilot studies of new treatment techniques
- Performs computer simulations of treatment plants and supply
- Designs and runs laboratory experiments on pathogens, drugs, and other contaminants
- Should get used to the smell of (1) chlorine or (2) "organic sludge"
- Gets a job working for (for example) federal, provincial, or municipal water authorities

Surface Water Hydrology

Professors:

Bill Annable, Don Burn, Bob McKillop, Ric Soulis, Bryan Tolson

Research Focus:

- · Improved hydrological forecasting and modelling
 - Extreme events, climate change, wetlands, and nutrient transport
 - Addressing problems of uncertainty and scale
- · River restoration and rehabilitation
- Optimization with environmental models

Surface Water Hydrology

Research Topics:

- Coupling atmospheric, surface, and groundwater models
- · Upscaling of hydrological processes
- River restoration and rehabilitation
- Including uncertainty in environmental models
- Characterizing extreme hydrologic events
- Surface water-groundwater interaction

Surface Water Hydrology

The Typical Hydro Grad Student:

- Wades through bogs and fens in waist-high galoshes
- Applies statistical methods to complicated hydrologic data sets
- Is obliged to learn FORTRAN
- Runs thousands of simulations on the Waterloo Parallel computer system. SharcNet
- Gains an excellent intuition into hydrological processes like interflow, runoff, and sublimation
- Sifts through millions of data points looking for just one pattern on which to base their thesis.
- May get to fly out to Yellowknife and enjoy the local bear population
- Gets a job working at (for example) Environment Canada or BC Hydro

Waterlo

Contaminant Transport

Professors:

James Craig, Jon Sykes, and Neil Thomson

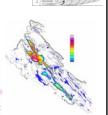
Research Focus:

- Computer simulation and analysis of polluted environmental systems
 - Fate and transport of contaminants, groundwater flow
- Development of modelling tools for practitioners
- Data analysis, assimilation, and acquisition
- GIS, site evaluation, large-scale data synthesis
- · Novel remediation methods

Contaminant Transport

Research Topics:

Waterlo


Waterlo

Waterlo

- · Impact of climate change on groundwater
- Subsurface measurement techniques
- Nuclear waste disposal
- Source water protection
- Contaminated site clean-up
- Watershed management

Waterlo

Contaminant Transport

The Typical CT Grad Student:

- Develops new software/models (programming)
- Learns state-of-the art modelling and analysis techniques (GIS, DBMS, Finite Element, etc.)
- Has spent at least 3 days looking for a single bug in the code
- Applies models to complicated systems with extensive data (and data uncertainty)
- Loves to solve puzzles
- Designs and operates field and column experiments
- Becomes an expert in on-site measurement devices
- Gets a job as (for example) a modelling consultant

Waterloo

Waterlo

Transportation Systems Research Area University of Waterloo

July 26, 2007

Transport Faculty

Dr. Lee Fu:

Public Transport Logistics

• ITS

Dr. Jeff Casello:

- Transport Planning
- Travel Forecasting
- Public Transit

Dr. Bruce Hellinga: Traffic Modelling

- Traffic Operations
- Intelligent Transport
- Systems

Dr. Susan Tighe:

Sample Research

- At-grade highway rail crossings
- Microscopic traffic safety models

- Life-cycle costing
- Infrastructure management
- Rehabilitation

Sample Research (cont'd)

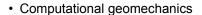
- · Traffic Control
 - Traffic signal control
 - Transit operations
 - Winter road maintenance
- · Transportation Planning
 - Ridership forecasting for new transit services
 - Paratransit scheduling and analysis

Funding Agencies

- · Public Sector:
 - Federal (e.g. Transport Canada, CFI, US)
 - Provincial (e.g. MTO)
 - Municipal (e.g. City of Toronto, Region of Waterloo)
- Private Sector:
 - Transportation consulting firms
- Construction firms/suppliers
- · Professional Associations
 - Transportation Association of CanadaITS Canada

Waterlo

Waterlo


More Information

TRANSPORTATION SYSTEMS RESEARCH GROUP
UNIVERSITY OF WATERLOO
HIME I News Desarth (Center | People | Course | Ged Studies | III Chapter | Links

www.civil.uwaterloo.ca/transportation

Geotechnical Area

Nondestructive evaluation of infrastructure

Geotechnical Area

Mark Knight, Leo Rothenberg, Giovanni Cascante

Research focus:

Design methods for trenchless technologies applications Prediction of soil behaviour using computer simulations Assessment of civil infrastructure using waves

Geotechnical Area

Research topics

- Impact of trenchless and open-cut pipeline installation on pavement deterioration
- Rehabilitation of and asset management of buried infrastructure
- Numerical simulations of granular materials
- Stability of offshore structures, rock salt, potash, and solution mining
- Nondestructive evaluation of concrete pipes, wooden poles, asphalt and concrete (laboratory and numerical tests)
- Measurement of dynamic properties of materials (resonant column)

Waterlo

Waterloo

Geotechnical Area

The Typical Geotechnical Grad Student:

- •Interacts with geotechnical consultants
- •Learns how to run sophisticated laboratory equipment and numerical simulations
- •Develops computer codes
- •Performs field tests even in the winter!
- •Works for the petroleum, mining, and construction industries and government agencies

