
Seminal Ideas in Integral Methods
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1. Introduction

When we write papers we claim that we are the author, even sole author,
of the analysis we present. In this paper, I intend to show how farcical
this claim is; every step in our analysis is usually the end result of work
painstakingly done by our antecedents over the last 2 1/2 millennia. At
the end of the paper I will identify the mathematicians responsible for the
crucial steps in the analysis of a paper I wrote recently. The historical
material is largely taken from Kline [1].

Integral methods have their genesis in the work of Eudoxus (408-335
B.C.). By inscribing and circumscribing polygons, he obtained lower and
upper bounds of areas bounded by circles, and introduced the method of
exhaustion. The polymath Archimedes of Syracuse (287-212 B.C.) de-
veloped this method, applying it to volumes and areas, centres of gravity,
otation, pumps, astronomy, etc. He is justly placed among the three great
mathematicians of all time.

Skipping almost 2 millenia, we arrrive at the 17th Century explosion
of knowledge. After the forerunners Pierre Fermat (1601-1665), John
Wallis (1616-1703),Blaise Pascal (1623-1662) and Isaac Barrow (1630-
1677) came the luminaries Isaac Newton (1642-1727) and Gottfried
Leibniz (1646-1716). For two hundred years England and France were at
loggerheads over who, Newton or Leibniz, was the inventor of the di�eren-
tial and integral calculus as we know it. The answer is undoubtedly, both.
Both independently recognized that di�erentiation and integration were
inverses of each other. While the intuitive-practical Newton buttressed
the results he obtained from his calculus with the geometrical methods of
Archimedes, the more philosophical Leibniz obtained the various rules, e.g.,
for integration by parts, and considered maxima and minima. Newton's
greatness lay in his combining the calculus with his newly found Laws of
Motion and the Inverse Square Law of Gravitation.
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2. Fourier (?) Transforms

Joseph Fourier (1768{1830) Niels Abel (1802{1829)

There is a Fundamental Theorem of the History of Mathematics:

A's Theorem is due to. B, where B 6= A.

It has a Corollary:

The A; B Theorem is due to. C, where C 6= A; C 6= B.

A remarkable illustration of this `Theorem' is provided by the results
attributed to Joseph Fourier (1768-1830). Today Fourier's name is �rmly
attached to Fourier Series and the Fourier Integral. However, as early as
1729, 39 years before Fourier's birth, Leonhard Euler (1707-1783) had
used the series representation

f(x) =
1

2
a0 +

1X
n=1

(an cos nx+ bn sin nx)

for interpolation, and had obtained the formulae

an =
1

�

Z 2�

0

f(x) cos nx dx; bn =
1

�

Z 2�

0

f(x) sin nx dx;

albeit by complicated in�nite series arguments; he had used orthogonality
to obtain an; bn by 1777.

Fourier's essential contribution (1811) was his use of the trigonometric
series

T (x; t) =
1X
n=1

bn exp[�(n2�2=k2L2)t] sin(n�x=L)
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to solve the heat equation

@2T

@x2
= k2

@T

@t
; T (0; t) = 0 = T (L; t):

The initial condition T (x; 0) = f(x) gives

f(x) =
1X
n=1

bn sin(n�x=L)

with the inversion formula

bn =
2

L

Z L

0

f(x) sin(n�s=L)ds:

Fourier made a heuristic jump by supposing L!1; the series become
an integral; introducing a normalizing factor ( 2

�
)
1

2 we write

T (x; t) = (
2

�
)
1

2

Z
1

0

Q(q) exp(�k2q2t) sin qx dq;

which in today's notation we write as

T (x; t) = Fs[Q(q) exp(�k2q2t); q ! x];

we have the transform pair

f(x) = Fs[Q(q); q! x]; Q(q) = Fs[f(x); x! q];

showing that Fs (and similarly Fc) are their own inverses:

F�1x = Fs; F�1c = Fc:

The engineer cum mathematician Fourier valued results more than ri-
gour. This rigour was found only after attention was directed to the com-
plex plane, as we show in Section 3.
Neils Henrig Abel (1802-1829) is an outlier in the development of

integral methods. He found the time of descent T (y) of a particle falling
freely down a curve with equation s = f(�), as shown in Fig. 1, from
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P (x; y) to 0.

y

x0

(x, y)
P

s
(ξ, η)

Fig. 1. A particle falls from P (x; y) to 0 in time T (y).

Conservation of energy gives

F (y) =
p
2gT (y) =

Z y

0

f 0(�)d�

(y � �)
1

2

(1)

Abel inverted this integral equation:

f(�) =
1

�

Z �

0

F (�)d�

(� � y)
1

2

(2)

This constructs the curve from the descent time; we will return to this pair
of equations later.

3. Complex Integrals

Carl Friedrick Gauss (1777-1855) is the third of the great three: Archi-
medes, Newton and Gauss. It was he who �nally answered the question
What is a number? His proof of the fundamental theorem of algebra, and
his elucidation of the role of complex numbers was the culmination of a
generation of work due to Alexandre-Theophile Vandermonde (1735-
1796), Jean-Robert Argand (1768-1822) as well as Poisson and Cauchy.
The emergence of complex numbers led to the concepts of complex functions
and complex (contour) integrals. It is impossible to describe the tortuous
journey of discovery of such matters in these few pages; it occupied the
greatest minds of the 19th Century and was completed only with the work
of Karl Weierstrass (1815-1897) and Bernhard Riemann (1826-1866).

Cauchy showed that if w is a function of z = x+ iy, and

w(z) = u(x; y) + iv(x; y)

then the continuity of u; v and their derivatives leads to what we now call
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the Cauchy-Riemann equations

@u

@x
=

@v

@y
;

@u

@y
= �

@v

@x

showing that both u(x; y) and v(x; y) satisfy Laplace's equation

@2u

@x2
+
@2u

@y2
= 0 (3)

Starting from

w(z) = exp(iz) = exp(ix) exp(�y) = (cos x+ i sinx) exp(�y);

it is a simple step to obtain the solution

u(x; y) = Fc[exp(��y)F (�); � ! x]:

If u(x; y) satis�es the boundary condition u(x; 0) = f(x) then

Fc[F (�); � ! x] = f(x)

which has the solution

F (�) = Fc[f(x); x! �]:

It seems to have been Poisson who �rst studied complex integrals, and
Gauss and Cauchy who showed that if f(z) is holomorphic and c is a closed
path then, Z

c

f(z)dz = 0:

Cauchy may or may not be responsible for his residue theorem, that if

f(z) =
a

z � z0
+ holomorphic;

then
1

2�i

Z
c

f(z)dz = a;

for a path c around z0. Curiously, the concept of a complex integral led to
the evaluation of many real integrals, and to the proper de�nitions of log-
arithms of negative and complex numbers. Today many special functions
are de�ned as complex integrals.
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Fig. 2 When " = "0, the two shaded areas are equal.

In this short note we cannot discuss the evolution of the de�nition of
integral arising from the work of Riemann or Henri Lebesque (1875-
1941). Instead, for our particular concern, we note the de�nition of the
Cauchy Principal Value (PV) of a real function with a simple pole at the
origin. Figure 2 shows the graph of 1

x
. We have

Z b

�a

dx

x
= lim

";"0!0
f

Z
�"

�a

dx

x
+

Z b

"0

dx

x
g

= lim
";"0

!0
fln(

"

a
) + ln(

b

"0
)

= lim
";"0

!0
fln(

b

a
) + ln(

"

"0
)g:

The limit does not exist, but if "0 = ", then it does; we de�ne the
principal value of the integral as that limit, and then

P:V:

Z b

�a

dx

x
= ln(

b

a
):

The Principal Value comes into its own in the problem of �nding the limits
of the complex integral

F (z) =
1

2�i

Z
c

f(t)dt

t� z
(4)

as z approaches the contour C from S+ or S�, as shown in Figure 3. J.
Plemelj [2] �rst gave the equations

F+(t0) + F�(t0) =
1

�

Z
C

f(t)dt

t� t0
(5)
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F+(t0) � F�(t0) = f(t0): (6)

The integral in (6) must be interpreted as a P.V.

C

S -S+

Fig. 3 z approaches C from S+ or S�.

The problem of �nding a function �(z) which is holomorphic in the plane
cut along an arc or contour L, and which has a speci�ed linear relationship

��+(t) + ��(t) = f(t); t"L;

between its boundary values on either side of L, is attributed variously to
Riemann orDavid Hilbert (1862-1943); its solution was due largely to the
work of N.I. Muskhelishvili [3]. In the simple case in which L = (�1; 1),
we have

� �+(t) + ��(t) = f(t); t"L;

�+(t)� ��(t) = 0; t"L0:

Muskhelishvili introduced the function

X(z) = (z � 1)�
1

2
+i�(z + 1)�

1

2
�i�;

which has branch points �1, and which satis�es

� X+(t) +X�(t) = 0 t"L;

X+(t) �X�(t) = 0 t"L0;

where � = exp(2��), to obtain the equation


+(t) �
�(t) =

�
f(t)=(�X+(t)) on L,
0; on L0,

for the quotient 
(z) = �(z)=X(z). Now the Plemelj formula (6) gives


(z) =
1

2�i�

Z
L

f(t)dt

X+(t)(t� z)
+ Pn(z);
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where Pn(z) is a polynomial.

4. Return to Transforms

Wilhelm Bessel (1784{1846) David Hilbert (1862{1943)

While Cauchy had studied the 2D Laplace's equation (3), the mathematical
astronomer Wilhelm Bessel (1784-1846) studied the 3D version

@2u

@x2
+
@2u

@y2
+
@2u

@z2
= 0:

The equation is separable in cylindrical polar coordinates (r; �; z) and has
solution

u(r; �; z) = Hn

8<
:
cosn�

exp(��z)f(�); � ! r
sinn�

9=
; ;

where

Hnff(�); � ! rg =

Z
1

0

�f(�)Jn(�r)d�;

and Jn(�r) is a solution of

r2R00 + r R0 + (�2r2 � n2)R = 0:

For integer values of n, Jn(x) is related to sines and cosines through

Jn(x) =
1

2�

Z 2�

0

cos(nu� sinu)du;
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but, more importantly, the Hankel transform Hn named for Hermann
Hankel (1839-1873), is its own inverse: H�1n = Hn.

We now have Fourier cosine, Fourier sine and Hankel transforms. How
are they related?

First consider Fc and Fs. Suppose

Fs[F (�); x] = f(x)H(a � x); x � 0;

where H(x) is the Heaviside function

H(x) =

�
1; x � 0,
0; x < 0.

Extend f(x) to (�a; 0) as an odd function, then

Fc[F (�); x] =
1

�

Z a

�a

f(t)dt

t� x
= h[f(t); x]: (7)

The transform h is called the Hilbert transform; it involves the real version
of (4). Similarly, if

Fc[G(�); x] = g(x)H(a� x); x � 0;

and g(x) is extended to (�a; 0) as an even function, then

Fs[G(�); x] = �h[g(t); x]: (8)

To �nd out how the Fourier and Hankel transforms are related we must
return to Abel! We de�ne two variants of (1):

A1[f(t); x] = (
2

�
)
1

2

Z x

0

(x2 � t2)�
1

2 f(t)dt;

A2[f(t); x] = (
2

�
)
1

2

Z
1

0

(t2 � x2)�
1

2 f(t)dt:

As in (1), (2), the inverses of A1;A2, which are examples of fractional
integration operators (Sneddon [4]), involve derivatives of A1;A2:

A�11 [f(x); t] = DtA1[xf(x); t];

A�12 [f(x); t] = �DtA2[xf(x); t];

where Dt = d=dt. Now we have the remarkable results linking Fc;Fs to
the lowest Hankel transform H0:

H0[�
�1Fc[f(t); �]; x] = A1[f(t); x]; (9)

H0[�
�1Fs[f(t); �]; x] = A2[f(t); x]: (10)
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Other relations, for H0;H1;H2, may be found in Tables 5.7.1 and 5.7.2 of
Gladwell [5]. In operator notation, each of (9), (10), has the form ab = c;
this immediately give 5 other relations:

a = cb�1; b = a�1c; c�1 = b�1a�1; a�1 = bc�1; b�1 = c�1a

We have linked Fourier, Bessel (Hankel), Hilbert and Abel!
In the 20th Century this analysis was placed on a secure foundation by

Edward Titchmarsh (1899-1963). His student Ida Busbridge provided
a crucial solution to dual integral equations. Ian Sneddon (1919-) simpli-
�ed and extended the analysis of Titchmarsh and Busbridge, and applied
it to potential problems in elasticity, thermodynames, etc. in his inuen-
tial Fourier Transforms [6] and his little red book [4]. The compilation of
tables of integral transforms owes much to the work of Harry Bateman
(1882-1946) and Arthur Erdelyi (1908-1977).

5. A case study

We studied the problem of a penny-shaped rigid inclusion bonded to the
interface between dissimilar isotropic half-spaces, as an example of the use
of integral methods [7].

The problem is shown schematically in Figure 3. The force P pulls the
inclusion up by an amount h; we need the force/displacement ratio P=h.

d

2 a

Fig. 4 The inclusion is pulled by a force P .

The reduction of the equations of elasticity to a single vector equation

grad div D+ (1� 2�)52D = 0

for the elastic displacement vector D, is usually attributed to Claude
Navier (1785-1836). The general solution

2�D = 4(1� �)q�5[(r � q) + �];

in terms of two harmonic potentials, q and �, is due to P.F. Papkovich
(1932) and H. Neuber (1934).



Seminal Ideas in Integral Methods 11

The problem is axisymmetric; in cylindrical polar coordinates r; �; z, all
quantities are independent of �. We write [f ] � f(r; z = 0+)�f(r; z = 0�);
in the usual notation, the boundary conditions on z = 0 are

[u] = 0 = [w];

u = 0; w = d; r < a; [�rz] = 0 = [�zz]; r > a:

The Hankel transform solution of Laplace's equation leads to the integral
equations

H1[�
�1(b1L+ b2M ); r] = 0; r < a;

H0[�
�1(b2L+ b1M ); r] = 2�1d; r < a;

H1[L; r] = 0; r > a;

H0[M ; r] = 0; r > a:

where b1; b2 are combinations of elastic constants. We now use Abel trans-
forms to change the Hankel transforms to Fourier transforms; using the
inverses of (9) and (10) and similar results for H1, we �nd

Fsfb1L + b2M ; xg = 0; 0 � x < a; (11)

Fcfb2L + b1M ; xg = c; 0 � x < a; (12)

FsfL; xg = 0 = FcfM ; xga; x > a: (13)

We introduce FsfL; xg = �(x); FcfM ; xg = �(x); 0 � x < a and
extend �(x) as odd, and �(x) as even, to �a < x � 0. Then, as in (7), (8),

FcfL; xg = h[�(t); x]; FsfM ; xg = �h[�(t); x]

where h is the Hilbert transform. Now equations (11) and (12) yield

b1�(x) � b2h[�(t); x] = 0; b2h[�(t); x] + b1�(x) = c; jxj < a:

Put �(x) + i�(x) = f(x) and combine the equations:

b1f(x) +
b2
i�

Z a

�a

f(t)dt

t� x
= c jxj < a:

Now, following Cauchy, as in (4), and using the Plemelj formulae (5),
(6) we obtain the Riemann Hilbert problem

k F+(x)� f�(x) = c0; jxj < a; F+(x)� F�(x) = 0; jxj > a

where k = (b1 + b2)=(b1 � b2), and c0 is a multiple of c. Muskhelishvili's
technique gives

F (z) = c00f1�X(z)g
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where X(z) = (z�a)i�(z+a)�i�; exp(��) = k. Now the Plemelj formulae
yield

f(x) = F+(x) � F�(x) = c00f(a� x)=(a+ x)gi� jxj < a

and the real and imaginary parts of f(x) yield �(x) and �(x). Finally we
�nd the force/displacement relation P=(2�1h) = 4��=b2.

6. Conclusions

Never imagine that you can claim sole authorship of a paper; most of our
analysis is obtained by combining the work of others.
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