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Abstract

A real matrix A ∈ Mn is TP (totally positive) if all its minors are nonnegative; NTP, if it
is non-singular and TP; STP, if it is strictly TP; O (oscillatory) if it is TP and a power Am is
STP. We consider the Toda flow of a symmetric matrix A(t), and show that if A(0) is one of
TP, NTP, STP or O, then A(t) is TP, NTP, STP or O, respectively. © 2002 Elsevier Science
Inc. All rights reserved.
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1. Total positivity

Total positivity properties play an important role in the characterisation of matri-
ces which appear in the vibration of mechanical systems, as described in [6] or [8].
We recall some definitions. A matrix A ∈ Mn is said to be

(i) TP (totally positive) if all its minors are non-negative.
(ii) NTP if it is non-singular and TP.

(iii) STP (strictly TP) if all its minors are strictly positive.
(iv) O (oscillatory) if it is TP and a power Am is STP, for 1 � m � n − 1.
(v) SO (sign-oscillatory) if the matrix Ã = TAT is O, where T = diag(+1,−1,

+1, . . . ,±1).
It is known that A is O iff it is NTP and the diagonals next to the principal diagonal

are strictly positive: ai,i+1 > 0, ai+1,i > 0, i = 1, 2, . . . , n − 1. Thus, a symmet-
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ric, positive definite, tridiagonal matrix is O (SO) if its codiagonal is strictly positive
(negative). It is known also that A is O (SO) iff A−1 is SO (O).

In a recent paper, Gladwell [9] proved that for symmetric (real) matrices, A ∈ Sn,
the properties NTP, STP and O are preserved under shifted QR transformation. The-
orem 2.1 of that paper may be rephrased as follows: suppose A ∈ Sn and A have one
of the properties TP, NTP, STP, O, SO; µ is not an eigenvalue of A; A − µI = QR

where Q is orthogonal and R is upper triangular with positive diagonal; A′ − µI =
RQ; then A′ is TP, NTP, STP, O, SO, respectively.

The proof of this result stems from a second fundamental relation between A and
A′:

RA = A′R, (1)

and the corresponding relation

RpAp = A′
pRp (2)

between the pth compound matrices, derived from the Cauchy–Binet theorem.
It is well known [1] that A ∈ Mn is STP iff all the minors taken from successive

rows and columns of A are strictly positive. This result is due to Fekete [5]. It is
shown in [7,9] that Eqs. (1) and (2) yield an important test for A to be STP if it is
known that A is NTP: A is STP iff the lower left and upper right corner minors of
A are strictly positive. Thus in the notation of Ando [1],

A[1, 2, . . . , p | n − p + 1, . . . n] > 0, p = 1, 2, . . . , n, (3)

A[n − p + 1, . . . , n | 1, 2, . . . , p] > 0, p = 1, 2, . . . , n. (4)

Of course if A ∈ Sn, the minors in (3) and (4) are identical.
Ando [1] shows that the STP matrices are dense in the set of TP matrices. Spe-

cifically, if A is TP, then C(k) = P(k){A + exp(−k)I }P(k) is STP, where

P(k) = (pij ), pij = exp[−k(i − j)2] (5)

and k = 1, 2, 3, . . . Clearly

C(k) = A + O(exp(−k)), (6)

so that A may be approximated arbitrarily closely in, say, the L1 or the Frobenius
norm, by the STP matrix C(k).

2. Toda flow

We consider the Toda flow

Ȧ = AS − SA = [A, S] (7)

for A ≡ A(t) ∈ Sn, where S = A+T − A+, and A+ is the upper triangle of A. We
will show that Toda flow preserves certain total positivity properties. Guided by the
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considerations in Section 1, we pay particular attention to the corner minors of A and
powers of A.

First we note that if B = Am, m = 1, 2, 3 . . . , then B satisfies the same equation
as A:

Ḃ = BS − SB, (8)

where S = A+T − A+. Since we must find how the minors of B behave, we need a
lemma on determinants:

Lemma 1. Suppose b1, b2, . . . , bp ∈ Vp are the columns of Bp ∈ Mp; C ∈ Mp,

di = Cbi, then

p∑
j=1

det(b1, . . . , bj−1, dj , bj+1, . . . , bp) = tr(C) detBp.

Proof. This follows immediately from the fact that if A ∈ Mp and Aij are the co-
factors of aij , then

p∑
i=1

aijAik = δjk det(A). �

Now we prove

Theorem 1. Suppose A(t)∈Sn satisfies (7), B = Am, cp = B[1, 2, . . . , p|n − p +
1, . . . , n], then cp(t) satisfies

ċp =

 n∑

j=n−p+1

ajj −
p∑

j=1

ajj


 cp, p = 1, 2, . . . , n. (9)

Proof. Denote the pth order corner matrix of A by Bp, and suppose its columns are
b1, b2, . . . , bp ∈ Vp. Thus

bj = [bn−p+1,j , bn−p+2,j , . . . , bn,j ]T.

Eq. (8) gives

ḃij = (aii − ajj )bij − 2
j−1∑
k=1

ajkbik + 2
n∑

k=i+1

aikbkj

so that

ḃj = −ajj bj − 2
j−1∑
k=1

ajkbk + Cbj , (10)
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where C ∈ Mp is given by

cik =
{
aii , i = k,

2aik, k = i + 1, . . . , n

for i, k = n − p + 1, . . . , n.
Now cp = det(b1, b2, . . . , bp), so that

ċp =
p∑

j=1

det(b1, b2, . . . , bj−1, ḃj , bj+1, . . . , bp). (11)

Consider the sums obtained by inserting each of the three terms in ḃj from (10)
into (11). The first gives

−
p∑

j=1

ajj cp.

The second gives zero because it is merely a combination of the first j − 1 col-
umns. The lemma gives the third as

n∑
j=n−p+1

ajj cp. �

We now prove

Theorem 2. Suppose A(0) ∈ Sn has any one of the properties TP, NTP, STP, O,

SO, then A(t) has the corresponding property for all t.

Proof. Theorem 1 shows that all the corner minors of A, and of B = Am, satisfy a
differential equation of the form

ẏ = g(t)y, (12)

where g(t), given by (9), is continuous and bounded by |g(t)| � tr(A(t)) = tr(A(0)).
Under these conditions, the solution of (12) is

y(t) = y(0) exp(G(t)),

where G(t) = ∫ t

0 g(t) dt . Thus y(t) retains its sign over (−∞,∞), i.e., y(t) has the
same sign as y(0). Now consider the various cases:
(a) A(0) is STP. By continuity there is an interval (a, b) around 0 in which A(t) is

STP. Suppose if possible that, as t increases from zero, one or more minors of
A first become zero at t = b. Then A(b) is merely NTP. But A(0) is STP, so
that cp(0) > 0, p = 1, 2, . . . , n and thus cp(b) > 0. But then A(b) is NTP
and has strictly positive corner minors: A(b) is STP. This contradiction implies
A(t) is STP for all t > 0; an exactly similar argument shows that A(t) is STP
for all t < 0. A(t) is STP for all t .
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(b) A(0) is TP. For every k = 1, 2, . . . , C(k, 0) = P(k){A(0) + exp(−k)I }P(k)

is STP. Under the Toda flow (7), C(k, t) remains STP. Now we apply standard
results on the variation of solutions of o.d.e.’s with respect to initial conditions
and parameters, e.g. [4, Theorem 4.1]. The Toda flow equation may be written

Ȧ = f (A).

The matrix f (A(t)) is bounded. In the Frobenius norm

||f (A(t))||2 � 2||A(t)||22 = 2||A(0)||22
so that

lim
k−→∞C(k, 0) = A(0)

implies

lim
k−→∞C(k, t) = A(t).

But C(k, t) is STP so that limk−→∞ C(k, t) is TP. Thus A(t) is TP.
(c) A(0) is NTP. A(0) is TP, so that A(t) is TP, det(A(t)) = det(A(0)) /= 0, so that

A(t) is NTP.
(d) A(0) is O. First A(0) is NTP, so that A(t) is NTP, and hence B(t) = Am(t) is

NTP, for all m = 1, 2, . . . Secondly, for some m, with 1 � m � n − 1, B(0) =
Am(0) is STP so that, by (a), B(t) is STP: A(t) is O.

(e) A(0) is SO; Ã(0) is O; Ã(t) is O; A(t) is SO. �

3. Concluding remarks

In this paper we have been concerned with signs, with patterns of signs which
are preserved under Toda flow. There is a large body of research connected with
matrix shapes, i.e., patterns of zero and non-zero terms, that are preserved under QR
transformation [2] or under a wide class of Toda-like flows [3]. The basic pattern
that is preserved, in both cases, is the staircase.

A sequence p = {p1, p2, . . . , pn} is said to be a staircase sequence if 1 � p1 �
p2 � · · · � pn � n and pi � i, i = 1, 2, . . . , n. A symmetric matrix is p-staircase
if aij = 0 for j > pi, i = 1, 2, . . . , n. For a strict band matrix with half-band width
r , pi = i + r . In that case p1 < p2 < · · · < pn−r .

The Toda flow (7) has the property that if A is a symmetric p-staircase matrix,
and aij lies outside the staircase, then ȧij = 0. Thus, terms initially outside the
staircase remain zero. It may easily be verified that if aij is on the tip of a stair of
the staircase i.e., j = pi and either i = 1 or pi > pi−1, then ȧij = (ajj − aii)aij ,
so that if aij (0) >,=, < 0 then aij (t) >,=, < 0, respectively. Other terms on the
boundary of the staircase may become zero or change their signs. If A(0) is a strict
band matrix with half-band width r , so that all the terms in the outermost diagonal
are non-zero, then since p1 < p2 < · · · < pn−r , all the terms on that diagonal retain
their signs.
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The definition of a staircase matrix does not state that aij /= 0 for i � j � pi ;
there may be zero terms, i.e., holes, in the staircase. For a general symmetric matrix
under Toda flow, even if A(0) is a p-staircase with no holes, then holes may appear
in the p-staircase for A(t).

What differences occur when A(0) has some TP property? Markham [10] effec-
tively showed that if A ∈ Sn is O, then A is a p-staircase with no holes: all the terms
inside and on the staircase are positive. It may be verified that this result still holds
even if A(0) is merely NTP. This means that if A(0) is NTP, so that A(0) is a p

-staircase with no holes, then A(t) will remain the same p-staircase pattern, and all
the terms inside and on the staircase will remain positive.

We have deliberately phrased the problem and the results in the simplest form;
undoubtedly they may be generalised in many ways, but we leave this to others.
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