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Abstract. The paper concerns an in-line system of masses (, )] connected to each other and to
the end supports by ideal massless springs (k;)'['“. Four ways are given for constructing a system
which is fsospectral to a given one: by using the interchange m; — k;_li L k= mn'_],- 41 for
a cantilever (k,+1 = 0); by using the indeierminacy associated with the reduction to standard
form; by using one or more shifted LLT factorizations and reversals; by using ong or more
shifted QR factorizations and reversals. [t is shown that one may pass from any system to any
isospectral system by a reduction to standard form, n — 1 QR factorizations and reversals, and
a reversed reduction to standard form.

1. Introduction

Two vibrating systems which have the same natural frequencies are said to be isospectral.
In a recent paper, Gladwell and Morassi (1995) showed how to construct families of rods,
in longitudinal or torsional vibration, which were isospectral. This paper takes up the same
problem for discrete mass—spring systems, of the type shown in figure 1. Such systems
may be considered to be actual systems made up of rigid masses and massless springs, or
they may be thought of as finite-difference or finite-element approximations of continuous
systems.

Figure 1. An in-line system of rigid masses and massless springs.

The natural frequencies (w,)? and principal modes (U®)? of the system shown in figure 1
are the solutions of the eigenvalue problem

{C= Mu=0 A= a? ey}
where
ki+k —ka 0 e 0
C= —kz kz -+ k3 —k3 N 0
—krz kn + kn-l-l
M = diag(mi, na, ..., m,). ) (2)
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‘We will sometimes write

C=Clki. ka, ... knyr).
‘We will assume that the chain of masses and springs is unbroken so that

kz,k3,...,kn My, Mo, vua, My

are all strictly positive. We will often have to consider three cases:
(S) supported; &y > 0, &y > 0
) cantilever; k) > 0, k21 =0
F free; by = 0, kpyy = 0.

If two systems specified by €y, My and C,, My possess identical eigenvalues, i.e. are
isospectral, we shall write

S(Cr, Mp) = s(Cy, M), . 3

There are two almost trivial ways of obtaining isospectral pairs of systems as follows. First,
since equation (1) is homogeneous of degree 1 in €, M, we have

s(cC, cM) = s(C, M) 4

for any positive constant ¢. We shall therefore normalize the problem by making
Y i m; =1, or perhaps by making m; = 1. Secondly, if we physically turn the system
around and renumber the masses and springs from the left, then we will not change the
eigenvalues. Renumbering is equivalent to premaltiplying and postmultiplying by

1
s- [ 1 } |
1
Thus equation (3) will hold if

C,=5SC;S M, = SM;S.

To obtain non-trivial pairs of isospectral systems, we reduce equation (1) to standard
form. We write

M=@G? Gu=x A=G"lcGg™ (5)
so that
(A—Ahx =0. ©

We note that A, like C, is a Jacobian matrix, i.e. a symmetric tri-diagonal matrix with
negative off-diagonal elements. First consider a cantilever system, Le. one with the right
hand free, so that &,.; = 0. Now the matrix C may be factorized as

C = EKET

where’

1 kn
Write K = F?, then
A=G'CG™! =G 'EFE"G! = (G 'EF)(FETG™) )

so that A is the product of two matrices G—EF and its transpose FETG~!. We need a
simple result which is fundamental to this paper, and which is proved in the appendix.
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Lemma I. The matrices A = HH' and A* = HTH have the same eigenvalues, except
perthaps for zero.

Let us apply this lemma to our problem. We start with the cantilever systemn
(C—AMu=0
where C = EKET. We form the standard system
A-ADx=0 Gu=2x
We factorize A as in (7) and reverse the factors to form
(A" =iy =0 ) @)
The new eigenvector Y is refated to X by
y=H"x=FE'G !'x = FE'u. )

Now we form a spring mass system which has the standard form (8); to do so, we must
reverse the reduction to standard form. We note that

G—Z = M-lv F'w2 = K.—[
‘A* = FE'G?EF = FE'M~'EF

so that, putting v = Fy = F2ETu = KE"u, we find
(ETM™'E —AK yv = 0. (10

This is the eigenvalue equation for a reversed cantilever. We may verify this by noting
that

SES=E" §2=|
thus

SE'M~'Ev =SE'S-SM™'S.SES - Sv =EK,ET - Sv
so that we write equation (10) as

(C; — AM3)Sv = 0 an
where

C, = EK,ET K, =SM™'s M, = SK™'s. (12}
This system relates to a cantilever with
i=1,2,...,n

[ !
ki=m, myp =k
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and
5(Cy, Mp) = 5(C, M).

This pair was recently pointed out by Ram and Ethay (1994).
Now suppose that £; = 0 so that the spring-mass system in figure 1 is free; it will have
a4 zero eigenvalue corresponding to the rigid body mode .

ulT =11,1,...,1L ' (13)

We examine A*; it is A* = FETM~1EF. Since F has its first row and column zero, so will
A*, Thus A* has the form

. o o
eof2 4]

The lemma states that A* has the same eigenvalues as A, apart perhaps from zerc. Thus A*
must have all the n — 1 non-zero eigenvalues of A, i.e. all the eigenvalues of the original
system apart from the zero eigenvalue corresponding to the rigid-body mode. We note that
A* does have a zero eigenvalue, so that A and A* have, in fact, all the same eigenvalues;
but the eigenvector y of A* given by (9) corresponding to the rigid-body mode (13) is
identically zero because ETu®) has zero in all but the first place, and & = 0. We now
construct a supported system which has the standard matrix A*¥. By expanding the matrix
product for A* we see that A* may be written

AY=FCF
where

C' =Cm; L my,....mh F' = diag(fs, f3,..., fu)-
Thus on reversing the reduction to standard form we find

(€ =MW =0 v = KE™Tu

where K' = diag(ks, ..., kn), M = (K)~!, v' = K’ETu and E7 is obtained from ET by
deleting the first row. Thus we can state

s(C', M} =¢'(C, M)

where s means that the rigid-body mode is deleted.

In this section we have obtained a pair of isospectral cantilever systems, and a supported
system which is isospectral to a free system apart from the rigid body mode. In the next
section we will obtain further isospectral systems by considering the indeterminacy of the
reduction to standard form.
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2. The indeterminacy of the reduction to standard form

Given 2 system specified by matrices €, M = G2 there is a unique matrix
A=GlcG™

but, from a given positive semi-definite Jacobian matrix A, we may construct an infinity of
isospectral spring—mass systems, as we will now show.
The stiffness matrix C of (2) has the characterizing property

C{1,1,...,1} ={k,0,...,0, kpp1}.
We rewrite this equation in terms of A:
A{gl; 82y ey gn} = G_l{kls 01 e 0, kn+1}

= {gl_lkl? Oa ey 0’ g;lkn+1}-
Thus in order to find a spring—mass system we must take A and to find a positive solution
g ={g1, g2. ..., g} to the equation )
Ag={x,0,0,...,0,8} (14)

where« > 0, 8 = 0, @ + 8 > 0. Having found g we construct G = diag(gy, g2, .-, &)
and then the system is given by

C = GAG M=G%. (15)

To show that we can construct such a positive solution we establish:
Lemma2. IfAisa positive definite Jacobian matrix, then A~! > 0.

Note that we use A~ > 0 to mean that each element of the matrix A~! is positive. Similarly
if each element of a vector b is positive we say b > 0; if each element is positive or zero
and at least one is positive, then we write b > 0. The proof is given in the appendix.

To cover the case when A is positive semi-definite we use:

Lemma 3. If A is a positive semi-definite Jacobian matrix, then we may find X, unique
except for a positive factor such that

Ax=190 x>0

The proof is also given in the appendix.

We now return to the construction of the isospectral systems. If A is non-singular we
may choose &, 8 in equation (14) to be arbitrary positive quantities. This is equivalent to
choosing arbitrary spring stiffness k1, &,41; for when we solve equation (14) we find

k= g1 Fny1 = gn .
Note that we may take one, but not both, of &, £ to be zero; we have a two-parameter family
of isospectral systems. If we demand that the reconstructed system to be a cantilever, so
that 8 = 0 = k41, then the solution s essentially unique; we can make it unique by taking
my=1lory . m=1 '
If A is singular, we solve
Ag=490

to find g > 0 and then construct C, M from (15); again the solution is essentially unique.
In the next section we discuss how we may construct Jacobian matrices isospectral to
a given one.
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3. A matrix version of the Darboux lemma

Let A be the Jacobian matrix

a b

A=| B0 @ b (16)

—Op-1 Gn

with b; > 0 and eigenvalues (A)] satisfying A1 < Az < -+ < A,. I g < Aq, then the
matrix A — pl will be positive definite, and so may be factorized in the form

A—pl=LLT (17)

The matrix L will be a lower-triangular bi-diagonal matrix with negative off-diagonal terms,
of the form

I
ha Im
L= s I3 . (18)

ln—l,n lrm
Let Py, Py, ..., P, be the Sturm sequence for A — pl defined by

Py=1 Pp)=ar—p Pia () = (@40 — W) P; (i) — B} Pia (1) (19}

for j=1,2,...,n — 1. A straightforward calculation shows that

P, 1/2 ) )
ljj:(P‘J1) J=1,...,n
-

P 72 -
IJ.,H,:_EJ.( }_) j=Tn—1. (20)
J

Now reverse the factors and form the Jacobian matrix A* given by
A*—ul=LTL. ' (21)

By lemma 1, the matrix LTL = A* — ul has the same eigenvalues as LLT = A — ul;
therefore A* has the same eigenvalues as A. If the eigenvector of A corresponding to A is
X, the eigenvector of A* comesponding to A is X* = LTx, for

(A* — Ax* = (LTL — (A — ))LTx = LT(LLT — (0 — i)D)x
=LT(A - ADx=0.

Equation (20) shows that the factorization will not be real if p lies in the range
A < @ < Ay, for then some of the P;(1) will be negative; the factorization will break
down completely if one of the Pi(), j = 1,2,...,n — 1 is zero. (If & > A,, we may
carry out the operations '

A—pl=—-LLT A* — ul=—LTL) (22)
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This situation is analogous to that found in Gladwell and Morassi (1995) for the continuous
case; the Sturm—Liouville potential §(x) found after one application of the Darboux lermma,
involved (the second derivative of) a logarithm of a function g(x} which could change
sign, or have zeros, in its domain of definition—see equation (22} in that paper. In the
continucus case we found that, if we wanted to construct an acceptable g(x), we had to
apply the Darboux lemma twice. We do the same here. Thus we factorize

A* — MI = LTL — L*L*T (23)
and then form A** from
A — ul = LTI, : (24)

But it is known that such a repeated use of LL factorization and factor reversal is
equivalent to one QR factorization and reversal. For the equation

LTL = L* L*T
implies .
Q=L =L =0a"

so that QQT = [ and Q is orthogonal. Thus, denoting by R the upper triangular, tri-diagonal
matrix

R=LTLT 25)
we may write

A—pl=LL" = (LL"HLTLH =0R (26)

A — pl =L = ITLDHLTLY = RQ. 27

The QR factorization does not suffer from the drawbacks of the LL" factorization which we
noted above; it can be carried out for all p, for example (Golub and Van Loan 1983, p 147)
by multiplying A — ul on the left by orthogenal Householder matrices which successively
delete the parts of successive columns which lie below the diagonal, and so finally giving
the factorization '

Q"(A - =R. 7 (28)

We note that A" is a symmetric tri-diagonal matrix with non-positive off diagonal
elements (b}, may be zero if 4 is an eigenvalue of A), which is isospectral to A, and that
if AX = AX, then

x* = QTx (29)
Is a normalized eigenvector of A**, for
(A= — Ahx™ = (RQ — (» — w)DQATx
= (R—(— w)@Hx
=QT@QR - (A — uhx =QTA - Ahx =0

Ty = xTQQ X = xTx = 1.

(30}
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As a matter of interest we note that the elements of R, and of A** — ul, written as in
(16), but with double starred quantitics, may be expressed in terms of the polynomials F;
and a new set of polynomials Q; taking only positive values, given by

Oo=1 Qi) = Pf(u) + b?QH(M) i=L2,...,n (31)
Thus

. \2 P,
,J.J.:(%) F=L2n—l =t (32)
-

(PG + P Q1)

Fij+l = '—'bj .F}(Qj-le)liz ] =1,2,...,n—1 (33)
O 1/2 .
Vi j2 =bjbj.;.1 (—é—-) ] =1,2,...,n—2 (34)
i)
P10+ b2Piy Q% PPy
G —p= e MR J j=1,...,.n—1 a*—p=—"—"" (35
J PiQi10; * Qr
010\ 20,2\
B = b ,_L:‘Tlil i=12,...,n—=2 b"“"1~bn_1( 22) L (36)
Qj Qn—]_

We note that the expressions for rj ;41 and aJ‘,.“* — p are invalid when Py = 0, but that
the recurrence relations (19), (31) imply

Pi_10; + Pyt Qpo1 = Py (P + 82 0;1) + (@541 — )P — B2 Prq} Qe
= PP P+ (@1 — ) @51} )
PiyQF + 0} Praa Q5 = Pia(PE + B} Q1) + BH(ap1 — )Py — B Pia}0E
= PB{P_ Pj(P} +20670;.1) + bi(ap — ) Q2] 7
so that the offending P; may be cancelled from the respective numerators and denominators.

When u is an eloenvalue of A, say it = A, then equatlon (35), (36) show that g™ = A;,
byr; =0 so that A** has the form

oK An—l 0
A _[‘F lj]'

This is not an acceptable form for the A-matrix for the system (5), unless A; = 0, and we
have already considered this case in section 2. 'We shall henceforth assume that x4 is not an
eigenvalue of A. In that case we may use equation (30) to replace equation (29) by
Rx
X = —. : 37
=i

This has the advantage of expressing x;* as a multiple of x, alone; if we choose the signs
of xyx, x3* to be positive, then

Ll lrrm ] o)

. 38
B el 38
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4. The isospectral set

Let M(%y, Az, ..., Ay} denote the set of n x n Jacobian matrices with eigenvalues (A;)7. It
is well known (Parlett 1980, Gladwell 1986) that any matrix A in M may be constructed
uniquely from the ejgenvalues (A;)7 and the last components (x)? of its normalized
eigenvectors. The eigenvalues must be simple, ie. Ay < Ay < -+ < A,, and the x®
must be non-zero and satisfy 3, (x{?)? = 1. This means that each member of M may
be associated with a point in the (strictly) positive orthant of the unit n-sphere. (In more
precise terms, M is a smooth (» — I)-dimensional manifold diffeomorphic to the strictly
positive orthant of the unit #-sphere.) Several authors have discussed the isospectral flow
of the matrix A on M. This is linked with the theory of the Toda lattice and Lax pairs; a
clear exposition, with references, may be found in Nanda (1985).

We are concerned with finding mass spring systems specified by €, M that are isospectral
to one specified by an initial pair Co, M. One way to proceed is as follows:

(i) From Cy, Mgy construct Ay as in (3).

(i1) Find the eigenvalues of Ay call them A, Ag, ..., Aq.

(iii) Choose positive (x{?}" satisfying 3 [ (xP)* = L.

(iv) Construct the Jacobian matrix A with eigenvalues (A;)}, last components of
eigenvectors (x{")} using, say, the Lanczos algorithm (Golub and Boley (1977} or Gladwell
{1986)).

(v) Choose «, g = 0 with at least one positive if A; > 0, and with both zero of A} = 0.

{vi) Solve equation (14).

(vii} Construct C, M from equation (15). -

The shifted QR factorization and reversal described in section 3 provides an alternative
which can be used to 1eplace steps (ii}-(iv), as we now describe. If u is not an eigenvalue,

ie. psti;, j=1,2,...,n, then the transformation A — A*™ defines a nonlinear operator
¢ from M into M such that

g.A =A". (39)
We note that this operator is commutative, in that

GuGoA = G,G,A. (40)

This follows immediately from (38) which shows that the last coefficients of the normalized
eigenvectors of both matrices in (40) will be proportional to

x®
e — ) (i — Wl
Since they are proportional and the sum of the squares of each set of coefficients is unity,
the coefficient in the two sets must be equal, and (40) follows.

‘We now show that we may pass from any matrix A in M to any other matrix B in M
in {(r — 1) applications of G,, i.e. we can find 1, gg, ..., pts—1 such that

G Gus - - - G/ A = B. : ' (413

In order to show this it is sufficient to show that we can pass from one set of last components
x{ to any other set y¥ in n—1 G, operations. But equation (38) shows that this is equivalent
to choosing w4y, 2, ..., ta—1 such that

n=1 . T
x@ o y®.

n

=1 !A'l - JU'I
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This is equivalent to choosing the polynomial

n=1
PR =EK[[—u) A>0 (42)
Jj=1
such that
|P(A)| = x® /5P i=1,2,...,n , (43)

If we choose the u; so that A;y < p; < A, then
P() = (1" 1P ()]
so that
Py = (=1 xB/y0. (44)

But there is a unique such polynomial P(A) of degree n — 1 taking values of opposite signs
at n points A;, and it will have n — 1 roots u; satisfying A;_| < ¢; < A;. In particular we
note that if

G.A=A" (45)
then we can find g1, U2, ..., ts—y such that
GuGu -+ -G, A=A _ (46)

and so find the inverse g;’A**. We note also that we can pass from A back to Ainn — 1
steps.

5. Conclusions

We have described four ways in which we can form mass-spring systems isospectral to a
given one:

(i) by the interchange m; — k., ki = mL 4+ for a cantilever system;

(i) by using the indeterminacy associated with the reduction to standard form;

(iii) by using one or more LLT transformations and reversals given by (8), (21) when
i < Ay, and by (22) if p > A, and;

(iv) by using one or more QR transformations and reversals.

We have shown that we can pass from any Jacobian matrix A to any other isospectral
Jacobian matrix B by means of n — 1 G, operations. This implies that, starting from any
system Cg, Mg, we can perform a reduction to standard form, » — 1 G, operations and a
reversal of the reduction to standard form to reach any isospectral system C, M.
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Appendix

Lemma 1. The matrices A = HH" and A* = HTH have the same eigenvalues, except
perhaps for zero.

Proof. Suppose A 5 0 is an eigenvalue of A. Then AX = AX for some X # 0. Thus
HH'x = ix so that y = H™x # 0. But HH™x = Ax implies HT(HH™X) = HTH(H ) =
AHTx, i.e. A*y = Ay. Since ¥ # 0, A is an eigenvalue of A*. Thus non-zero eigenvalues
of A are eigenvalues of A* and, by reversing the argument, we may equally show that
non-zero eigenvalues of A* are eigenvalues of A. O

Lemma 2. i A is a positive definite Jacobian matrix, then A~! > 0.

Proof. 'We use induction. The result is true for » = 1. Suppose it is true for n — 1. Thus
we may write

— An—l —b -1 __ H h
o i B @

where b > 0. Since A;! is positive definite, #,, > 0. The result holds for A,_;, ie.

A;ll > 0. Now
A._, -b H h| [ 1| ~—0
-bT  a,, hT h,,| | =0T 1

so that
A, H-bh"=1  A,_h—bh,=0
and thus ’
h=Abh, >0 H=A'bh'+A >0
so that A7 > 0 as required. (Note that A;'; > 0, b > @ implies A~ b > 0.) 0

Lemma 3. 1If A is a positive semi-definite Jacobian matrix, then we may find X, unique
except for a positive factor such that
Ax=10 x>0

Proof. First we note that the eigenvalues of a Jacobian matrix are simple, so that A
can have only one zero eigenvalue and corresponding eigenvector. Write A = A, as in
(47). Since A, is positive semi-definite, A,_; must be positive definite. (Two successive
members of the Sturm sequence of principal numbers of A, evaluated for A = 0 cannot be
simultaneously zero.) Therefore, by lemma 2, A;ﬁl > 0.

52 -l

A,,X = [ '—‘bT
A_1Z,_1 —bx, =0 — b, +apx, =0.

Ayn

s0 that

Choose x, > 0, then
Xp—1 = A;:_ll bx,, >0

as required. O
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