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Inverse vibration problems for finite-element models
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Abstract. The direct problem of free vibration analysis via finite-element formulation is well
known: the element mass and stiffness matrices are assembled to form the system mass and
stiffness matrices; the problem is reduced to standard eigenvalue form; the eigenvalues and
eigenvectors are found.

The paper discusses some inverse problems relating to finite-element formulations for simple
chain-like structures. How can the element mass and stiffness matrices be reconstructed from
the overall matrices? How can the overall mass and stiffness matrices be recontructed from
the overall dynamic stiffness matrix? How can we find a family of systems having the same
eigenvalues?

1. Introduction

The terminverse vibration problenis used to denote a class of problems in which it is
required to construct a vibrating system from specified vibratory behaviour. There are
various types of inverse vibration problems, depending on the type of system which is
being sought, the kind of vibratory behavioural data which is being matched, and the way
in which the problem is viewed, either as a mathematical one with exact, complete data, or
as an engineering one with inaccurate incomplete data.

Thus, among inverse vibration problems, there are the well studied and now classical
problems, relating to the unique reconstruction of a discrete, undamped in-line system of
masses and springs from eigenvalue or frequency response data. Gantmakher and Krein
(1950) were the first to study such problems; a review of subsequent research may be
found in Gladwell (1986a). Mathematically, this problem reduces to the reconstruction of
a symmetric tridiagonal matriA from its eigenvaluega;);, and the eigenvalueg;); of
its leading principal submatrid; Boley and Golub (1987) review the literature.

At the other end of the spectrum of inverse vibration problems are the engineering type
of problems usually calleéinite-element model updating problenfsr a review of which
see Mottershead and Friswell (1993) or Friswell and Mottershead (1995). The essence of
these problems is that there is a finite-element model of a vibrating system, its predictions
do not match some experimental behavioural data, and it is required to update the model to
improve the match between predictions and experimental data.

Reviews of research on other types of inverse vibration problems may be found in
Gladwell (1986b, 1996a), and of other inverse eigenvalue problems in Chu (1995).

This paper is concerned with what could be termed a semi-classical inverse eigenvalue
problem. It is classical in the sense that it will be assumed that the system is conservative,
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and that all its natural frequencies are known exactly. It is not truly classical, in that we do
not know what data are sufficient to reconstruct the system exactly. Certainly the natural
frequencies and some reference mass alone are insufficient. This means that the emphasis
of the paper lies in finding a family, perhaps the complete family, of systems of the given
type which match the given eigenvalue data.

The system that we study is the simplest, proper, finite-element model: a finite-element
model of an in-line system of elements having one degree of freedom at each end. Such a
system has stiffness and mass matri€éesnd M which are symmetric and tridiagonal. The
inverse problem consists in constructing #lementstiffness and mass matricds, and
Me, from the natural frequences of the system. The lack of uniqueness in this reconstruction
arises on three levels.

(a) GivenK andM, find K and Mg (section 2).

(b) If M = BBT, then the eigenvalue problegk — AM)u = 0 may be reduced to
(é —Ahx =0, whereG = B-KB~T. The second part of the inverson is therefore: given
G, find K andM (section 3).

(c) The matrixG is constructed from two tridiagonal matricksandM. The third part
of the inversion is therefore: giveé constructed fronK and M, find other matricess*
having the same eigenvaluesé&vhich may be constructed from other tridiagonal matrices
K*, M* by G* = B*~1K*B*~T (sections 4 and 5).

2. Finite-element models

Gladwell and Ahmadian (1995) have shown that the generic forms of the element stiffness
and mass matrices for an element with two degrees of freedom, one at each end, are

K, = |: ke —ke:| M. = [mell me121|
_ke ke Me21 Me22

wheremeis, mezo > 0, me12 = mep1 = 0, me11mezs — m2;, > 0.
First consider the recovery of the element stiffnesses from the overall stiffness matrix.
The latter will have the generic form
ki+ko  —ko
—k ko + k
K= 2 e . 2.1)
B ' kn
_kn kn + kn+1

The stiffnessky(k,+1) will be zero if the left- (right-) hand end is free. We will assume
that at least one end of the system is supported, sokiHatpositive definite. The matrix
K may be uniquely written as the (finite element type of) superposition-pfl matrices

; i=23,...,n .
k1 —ki  k 0 O

For M, the reconstruction is not unique. Suppose tatas the form
C1 dl

d
M= | ® 2.2)
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where M is positive definite, and/y, d,...,d, > 0. We need to expressl as the
superposition of: element mass matrices
0 O d n dﬂ*
M1=|: ] Mzz[ez 1] M,1=|:e 1].
0 f]_ dq f2 dy1 fn
Thus,
e+ fi=c i=12,....,n—1 fn = cCn.

The complete solution is a constrained-{ 1)-parameter family. We choosg < c1, take
e2 = ¢ — f1, then £, so thate, f> > dlz, e3 = c3 — f», and so on untik,, which must be
chosen so that,c, > d? ;.

We may systematically construct a one-parameter family of solutions by employing the
Sturm polynomials for the matrik. These are

Po(x) =1 Pi(c) =c1—x Piy1(x) = (¢cip1 — x) Pi(x) — d?Pi_1(x)
i=12....,n—1. We takef; = x, thene, = ¢c; — x = P1(x), and we may choose
eir1= Pi(x)/P_1(x) i=12,....,n—1
fir1 = (d?/eir1) + x i=12..,n-2 fo = Cn.
If x is positive, but not larger than the first eigenvalue Mf then all the P;(x),
i=0,1,...,n—1, will be positive. Thus alk; and f; will be positive, and
|M,~+1|=e,~+1f,-+1—di2=e,-+1x>0 i=212...,n—2
while

IM, | = e, fu — d? | = (e Pu1(x) — d? 1 Py_2(x))/ Py_2(x)
= (Py(x) + X Py_1(x))/ Pi—2(x) > 0.

This answers question (a): givéhandM, find K. and Me.
Gordis (1996) has considered the problem of disassemKliagdM in a wider context.

3. ReconstructingK and M from G

The basic eigenvalue problem is
(K= AM)u = 0. (3.2)

We will have to pay considerable attention to the signs of the elements in various matrices.
If P = (p;;), then we use® to denote the matrix(—)'*/ p;;). The factorizatiorM = BB T
leads to the standard form

G-z =0
where

G=B"'KB T andz =BTu.
(We useG here because then, as we will show in sectio5yill have all positive terms.)
We now consider the problems of reconstructkdgand M from G. We can carry out this
reconstruction only ifG has the correct form, i.e. it is a product of three matriBes,
K andB~T. For this reason, we change the question. First, however, we deflaecdi

matrix as a symmetric, positive-definite, tridiagonal matrix with positive codiagonal. We
can thus state that, for our systekhandM are Jacobi matrices.
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We may now rephrase our problem. Given Jacobi maticemdM with
K=AAT M =BBT
whereA andB are lower bidiagonal matrices with positive diagonals and codiagonals, find
Jacobi matriceK* and M* with
K* =cCCT M* = DD'

such thatC and D are lower bidiagonal matrices with positive diagonals and codiagonals,
and

G=B!KB T=D!*DT. (3.2)
Equation (3.2) is equivalent to
G=B!'AATBT=D"'cc’D . (3.3)

The positive definite matriG has a unique Cholesky factorizati®= LLT, with positive
diagonal. Thus (3.3) holds if

BA=L=D"'C.

Straightforward algebra shows that this implies
Cii = via;; dii = v;b;; i=12,...,n (3.4)
Citli = Vi41Git1, dit1i = Vitabit1i i=23,....,n-1 (35

and

daiciy | c21 _ baann | an
duidy  dyp  bubzy b
Equation (3.6) may be reduced to

(3.6)

ayidz1 + brico1 = v2.f1
where
Sf1 = aubz1 + azbi.
This has the general positive solution
c21 = v2 f1SiN?0 /b1y d1 = vpf1C0S 0 /ar (3.7)

where 0< 0 < /2. _

This provides ann + 1)-parameter family of Jacobi matricés® and M* specified by
the n positive parameters; and the angl®.

Unless the parameters are chosen properhK* will not have the generic form (2.1)
of a stiffness matrix. Matrices of this form are characterized by the equation

K{1,1,...,1} = {k1,0, ..., 0, kni1}.

This states that forcels, andk,.; applied to the two ends of the system will displace all
the joints to the right by one unit.
The solution (3.4)—(3.7) gives

C:)/Co

whereCy is determined oncé has been chosen, apd= diag{y1, v2, ..., v.}. If K*isto
be a proper stiffness matrix, then

KL L, .., 1 =k, .. k) (3.8)
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SinceK* = CCT = yCoCly, we may write (3.7) as
yCoCoy{Ll 1, ..., 1} = {kf, ..., k'yq)

ie.
1 v2e o vad = Co'Cq (kS /71,0, ... 0. K1y /v (3.9)
The matrix Cgl is a lower triangular matrix with all positive terms, so theg' =
Cy'Cy" is a symmetric matrix with all positive terms. We writ§;® = P

{p1, P2, ..., pa}. Then the solution of (3.9) is

{vi. vz, oo Yat = (k1 /yvD)P1+ (ky 1/ V)P

This gives the family of possible solutions. First we fipd and y,, then the remainder
V2, ..., Yu_1, from (3.9). We have

ki k* k* k*
yi=~pu+—"py, Vo= 2Pt + 2 pun.
Y1 Vn Y1 n
e may takey; = 1, and choosé; arbitrarily provided tha < 1/p1u1, then
Wi tak 1, and choosé; arbitraril ded that O< &} < 1 th
Prn(L — p11kT) + ppip1aks . 1-kipn
yn - n+1 = Vn7~
Pn1 Pin

We have completed the reconstructionkofandM from G.

4. A simple isospectral set of systems

Equation (3.1) and (3.2) show that the basic eigenvalue problem is
B A-ATTB T i)z =0. (4.1)

It is a standard result of matrix algebra thatGfandH are square matrices of order
n, thenGH andHG have the same eigenvalues, apart perhaps from zero. Since equation
(4.1) has non-zero eigenvalues, we can create an isospectral system (one with the same
eigenvalues) by reversing the order of the factors in (4.1) to give the system

(ATBT.B'A - Ay =0 y = (B 'A) 7. (4.2)

This new matrix does not have the same fornGasow the bidiagonal factors are on the
outside, and the reciprocals are inside. We therefore seek lower bidiagonal m@tiaces
D with positive terms, such that

BlA=cD!
i.e. such that
AD = BC. (4.3)
If we can find suchC andD, then we can write (4.2) as
(D TC"cD - Ay =0
which we may rewrite as
(C'"C-D'D)w =0 v=D1§y=Clz =C B w.
Thus we may put

K*=C'C M* = D'D. (4.4)
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The matricesK* andM* will be Jacobi matrices.
We now examine equation (4.3). Each side is the product of lower bidiagonal matrices;
that on the left is

ai diy
ar1 a —dy1  dpp
asy asz —d3p ds3

Apn—-1 Qun —Up,n-1 dnn
Equation (4.3) thus yields separate sets of equations; tile set involves the elements in
theith columns ofD andC. Fori =1,2,...,n — 2, theith set is

ajid;; = bj;ci; Ai12i11di+1; = bit2,i+1Ci 11, (4.5)
ait1,dii — air1i41div1i = —bi1icii +biz1iv1cipLi. (4.6)
Fori = n — 1, the second of these equations is missing;ifef n, there is just the first
equation.
To solve these equations, we note thatifat n — 2, we can take one element in tith

pair of columns ofC and D arbitrarily, and determine the remaining three elements. We
write

Cii = Viaii dii = y;bi; y; >0 i=12...,n 4.7)
and find
Citli = ViTidi+2,i+1 dit1i = Vitibiv2iv1 i=12..,n-2 (4.8)
where

T = filfi+1 Ji = aiibiv1i + aiv1ibii. (4.9)

This is the general solution far< n — 2.
Fori =n — 1, we use (4.7) in (4.6) to give
anndn,n—l + bnncn.n—l = Vn—lfn—l
for which the general positive solution is
Cpn—1 = ynflfnfl Slnze/bnn dn,nfl == anlfnfl CO§ e/ann- (410)
This analysis provides am ¢+ 1)-parameter family of pairs of Jacobi matridés and M*,
such that the systed* andM* is isospectral t& andM. The solution (4.7)—(4.10) gives
C= éoV
whereCy depends only o, andy = diag(ys, ..., ¥»). Again, as in section 3y may be
chosen to mak&* = C'C = y"CJCoy have the generic form (2.1).

5. A wider isospectral family of systems

To obtain a larger family of systems which are isospectrdd andM, we use some recent
results on the preservation of signs in a matrix under shi@@dfactorization and reversal.
In this section we state, without proof, some results obtained in Gladwell (1996b). First,
however, we introduce some terminology.

If 1 < k < n, Q, Wil denote the set of strictly increasing sequenees=
{ag, ag, ..., o} taken from{d, 2, ..., n}.
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Let A e RV andw, B € Qr,. The minor ofA taken from rowsx and columnss is
denoted byA(a; ). Following Karlin (1968) we say tha is

(i) TP (totally positive) if all minors ofA are non-negative;

(i) NTP if A is non-singular and TP;

(iii) STP (strictly TP) if all minors are strictly positive;

(iv) O (oscillatory) if A is TP, andA™ is STP for some positive integer. It is known
thatA is O iff A is NTP anda; ;41 > 0,a;41;, >0fori =1,2,...,n — 1.

Note that the phrasall minors means all the minors of order 1, the elements of the
matrix, and all those of order, 3, ..., n are non-negative or positive, as the case may be.
These conditions are stricter than those for a positive definite (PD) matrig: PD if the
principal minors A(«; @) are positive. Clearly a symmetric STP matrix is PD; it can be
shown that a symmetric TP matrix is PD, but the converse of this statement is false.

We will sometimes use SY to denosgmmetric

Consider some examples. A Jacobi matrix, as we have defined it, is O. Itis NTP because
any non-zero minor is the product of principal minors, which are positive, and/or codiagonal
terms, which are positive. It is O because it is NTP and because, a;+1; > O.

One of the basic results about oscillatory matrices is £t O iff A~Lis O. This is
a direct consequence of the formula for the elements of the ad@oilas(—)"*-f* (minor
of A). This means thaf~1 is O iff A is O. In particular, therefore, the reciprockl;?, of
the stiffness matrix in (2.1) is O, becaukeis a Jacobi matrix.

The product of two NTP matrices is NTP, and the product of two O matrices is O.
Therefore, ifK and M are Jacobi matrices, then all the matridésM, MK~1, M~K,
andKM~1! are O. Let us show that the matr& = B~*KB~" is O. The lower bidiagonal
matrix B is obtained by factorizingd = BBT. SinceM is O, B has positive diagonal
and codiagonal, and so is NTP. Therefdge;! is NTP, and so is the product of the NTP
matricesB~1, K andB~T. Thus G is NTP. To prove that it is O, we must show that
giiv1(= giy1:) >0, fori =1,2,...,n — 1. Temporarily puB~—! = C, K = D then using
Einstein’s summation convention we may write

8iit1 = CijdjkCiy1k-

Every element in this product is non-negative, and in particular the elements;.;, and
ci+1i+1 are strictly positive. Thus

8ii+l 2 Ciidiiy1cit1iv1 > 0

andG satisfies the criterion for O. Actuallys is also apositivematrix; all its elements are
strictly positive. This follows becausg(= B~1) is a strictly positive lower triangle and™
is a strictly positive upper triangle;; = cixdicji SO that ifi > j theng;; > ¢;;d;jc;; > 0,
while if i < Js 8ij > Ci[d,‘iCj,' > 0.

The theory regarding oscillatory matrices is based on two theorems: Perron’s theorem,
that apositivematrix (@;; > 0) has at least one real positive eigenvalue, which is larger than
the modulus of any other (possibly complex) eigenvalue; and the Binet Cauchy theorem
which states that iA = BC, andA,, B,,, C, are thepth compound matrices @&, B, and
C, respectively, theh, = B,C,. Remember that i\ is n x n, thenA,, is the matrix of
order N x N, where N = (}), constructed from thepth-order minors ofA, arranged in
lexical order.

A real squaresymmetriamatrix has real eigenvalues. The theorems of Perron and Binet
Cauchy yield the fundamental result, that eigenvalues of an oscillatory matrix (whether
symmetric or not) are real, distinct and positive. Thus when, as is so in ourkcase M
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are Jacobi matrices, the eigenvalues of (3.1) satisfy
O<li<Ap<- - <A,

This is a fundamental result: the finite-element model of an inline system givéf iby
(2.1) andM in (2.2) always has distinct eigenvalues.

We now come to the result proved in Gladwell (1996b)AlE R"*" and u is not an
eigenvalue ofA, there is a unique factorization

A—pul=QR (5.1
whereQ is orthogonal andR is upper triangular with positive diagonal. We can therefore
define an operatog,: A — A’ = A’(n) where

A’ — ul =RQ. (5.2)

The matrixA’ is a unique function oA andu. Equations (5.1) and (5.2) have two simple
consequences:

A'=ul+RQ = ul+Q'Q(RQ) = ul + QT(QR)Q
= ul+QT(A — uQ =Q'AQ (5.3)
A'R = uR + (RQ)R = uR + R(QR) = R(ul + (QR)) = RA. (5.9)

Equation (5.3) shows thaf and A’ are unitarily equivalent; they have the same
eigenvalues. It also shows that is symmetric iff A is symmetric, and thad’ is positive
definite iff A is positive definite.

Equation (5.4) shows that & is symmetric and banded, than has the same bandwidth
asA. In particular, ifA is symmetric tridiagonal, then so &'.

The theorem proved in Gladwell (1996b) refers tgyammetricmatrix A with one of
the three properties NTP, O, and STP; we label these generically as P. We have proved:

Theorem 1. A’ has property SYP iff has the corresponding property SYP.

In particular therefore, ifA is symmetric and oscillatory (SYO) and is not an
eigenvalue ofA, then A’ is symmetric and oscillatory. A special case of this is that if
A is a Jacobi matrix, angt is not an eigenvalues @, thenA’ is a Jacobi matrix.

We now examine the consequences of equation (5.4). St upper triangular,
equation (5.4) yields

j n
> g =D g (5.5)
k=1 k=i

In particular, ifi =n, j =1, then

g;,lrll = rnn&nl- (56)

Since the diagonal dR is positive, we deduce thgf, > 0(= 0) iff g,1 > 0(= 0). Taking
Jj =1in (3.5) we have

n
gglrll = Z Tik8k1
k=i
from which we deduce that i1, gi+1.1, - . ., g.1 are all zero, then so akgy, g/ 15+ &1
Taking j = 2 in (5.5) we have
n
g2+ gira2 = Z Tik8k2
k=i
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from which we deduce that g, g£+1’1, ..., 8, are zero ang;o, gi41.2, . .., &x2 Are Zero,
then so aregj,, g/,1,.---» &, These results concern the first two columnsAdf We
can clearly generalize them to the third and subsequent columns. Whgrsymmetric,
the results concerning the columns in the lower triangle @ind A’ will yield analogous
results for the rows in the upper triangles. We see that if the columms iof the lower
triangles have a non-increasing pattern of zeros, as in figure 1Athleais the same pattern.

Figure 1. The zero elements oA are contained in the rectangles on the lower left and the
upper right.

The preservation of these patterns of zeros was deduced from equation (5.4). We can
deduce analogous results concerning the preservation of pattern of zeros of the minors of
A andA’ by using the equation

AR, =R,A, (5.7)

which follows from applying the Binet Cauchy theorem to (5.4). SifGeis an upper
triangular matrix (of ordemV) with positive diagonal, equation (5.7) shows titat will
preserve any non-increasing pattern of zeros of the columns in the lower trianglg, of
and if A is symmetric, the corresponding pattern of zeros of the rows in the upper triangle.
In the analysis we have just described, we have used the syktioalenote a symmetric
matrix of ordern. Now we will apply these results to the symmetric ma@x which we
have shown is oscillatory (O). We revert to our former useAohs a lower bidiagonal
matrix with positive diagonal and codiagonal. We will show that if the oscillatory matrix
G is obtained as in (3.3), i.e.

G=B!aATBT

from the two Jacobi matrice§ = AAT andM = BBT, and if  is not an eigenvalue d5,
thenG’(u), which is oscillatory by theorem 1, can also be factorized in the form

G = é/—lA/A/TB/—T (58)

whereK’ = A’/AT andM’ = B'B'T are Jacobi matrices.

We need to establish two results: that can be factorized in such a way that and
B’ are lower bidiagonal; and th&’ and B’ both have positive diagonal and codiagonal.
We consider the results in that order.
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To establish the band forms, we consider hBwvas constructedG = B~'KB~T. We
write thisG = B~'KB~T or K = BGB'. This we can write a€ = GBT, K = BC. The
equationBC =K is

bikckj = k,'j. (59)

But K is tridiagonal, so thak;; =0, fori =1,2,...,n —2; j =i +2,..., n. The matrix
B is lower bidiagonal, so that (5.9) gives

bij—1ci—1j + biicij =0 i=12...,.n—-1,j=i+2,...,n. (5.10)
Thus
byic1; =0 j=34,....n
and hence
cij=0 i=12,....,.n—2,j=i+2,...,n.
Now considerC = GBT, which we write as
cij = ikbjk = &i,j-1bj j-1 + &ijbjj-
When combined with (5.9), this gives
Gijabija+8b; =0  i=12...n-2j=i4+2...,n

Sinceg;; = ()"’ g;; andG is symmetric, we may write these equations as

8i-11 8j1
8j-1,2 8j2 .
bj,j—l . :bjj . ] = 3, 4, (B (511)
8j—1,j-2 8j,j-2

We will show that these equations mean that the compound nm@grief 2 x 2 minors
of G has a pattern of zeros like that shown in figure 1. Starting from its left-hand end, the
last row of G, contains the terms
Gn—-1,n1,2,Gmn—-1,n;1,3),....Gm—1L,n;1L,n—-2),....
By taking j = n in (5.11), we see that all these minors are zero. The penultimate row of
G starts with the terms
Gn—-2,n;1,2,...,Gm—2,n;1,n—3).
We will show that these are all zero. To do so, we take the zero determinant
8n-21 8n-21 8n-2k
8n-11 8n-11 &n-1k
8n,1 gn,l gn,k
and expand it along its first column to give
gn—21G(n —1n; L k) — g, 11G(n—2,n; 1, k) + g,1G(n —2,n —1;1, k) = 0.

However, as we showed earlie§ is a positive matrix, so thag,—21, g,—1.1 and g, 1

are all positive. This means that if two of the minors in this equation are zero, then
so is the third. But ifk = 2,3,...,n — 3, then (5.11) withj = n — 1 shows that
Gn—2,n—1;1k) = 0, while (5.11) withj = n shows thatG(n — 1,n;1,k) = 0.
ThereforeG(n —2,n;1,k) =0,k=2,3,...,n — 3.
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The row of G, third from the bottom, starts with the termd8n — 2, n — 1; 1, k); these
again are zero fok = 2, 3, ..., n—3. Proceeding in this way we find thét(, j; 1, k) =0
for3<i < j,k=2,...,i — 1. This provides a non-increasing pattern of zeros for the
columns ofG, in the lower triangle, and this will thus be transmitted to the corresponding
compound matrixG, of G'.

The matrixG/, like G, is a positive matrix. To see this, we note tlggt > 0, and hence,
by (5.7),g,; > 0. All the 2x 2 minors of G’ are non-negative, becau? is oscillatory;
therefore,

G'(i.n: 1) = 818y — ii8nm = 0.
However, G’ is positive definite so thag;, > 0 and henceg/,¢,. > gi/;g,, > 0, so that
gi1 > 0, i.e. the first column and last row @&’ are positive. Now

G'(i,n; J,i) = gl{jg;”' - g,{igi,j =0
so thatg;; g,; > g;8,; > 0 andg;; > 0.
To constructB’ and K’ we must retrace the steps from (5.9) to (5.11) with the new
matrix G'.

6. Conclusions

In the preceding sections, we have shown how we can construct families of isospectral
systems(K, M), from one system. The widest family is that discussed in section 5. From
one pair we construct the oscillatory matand from that we may construct an infinity
of other oscillatory matrice§&’ by repeated shifts, with different shiffs. From the new
G’ we construct pair&’ andM’. It is still an open gquestion whether, starting from one pair
of (K, M) with eigenvaluega;)] with 0 < A1 < --- < A,, we may construct the complete
family of pairs.

This paper is an extension of Gladwell (1995). There we considered a spring mass
system for whichK has the form (2.1), but is diagonal, i.eM = diag(my, mo, ..., m,).
For such a systen® = M~Y2KM~Y/2 is a Jacobimatrix. In that paper we proved that,
from any Jacobi matribG, we could proceed by — 1 shifts ug, ..., u,—1, to any other
isospectral Jacobi matrig*, and we gave an explicit procedure for finding the appropriate
shifts. We have not yet been able to generalize this result to two arbitrary isospectral
oscillatory matricesG = B-!KB~T, G* = B*~1K*B*~T constructed from pairs of Jacobi
matricesk = AAT, M = BBT, K* = A*A*T, M* = B*B*.

In this paper we have shown how to construct a family of systems which are isospectral
to a given system. However, it still remains an open question of how to constmaegtair
of Jacobi matrice andM such that (3.1) has given eigenvalues o, . . ., A, satisfying
0< A1 <Az <--- <X, As an attempt to answer this question we present the following
result.

Take K and M to be almost diagonal. It; = a;, where O< a1 < az < -+ < a,,
ki = —e, m;; = 1, m;;_1 = &, then, for smalle, the eigenvalues o, M) will be given
by

A = a; + 0(?).

We may extend this result to find a p&randM with eigenvalues which difer fror;
by terms of ordee*. We take

kii = A mi = 1 — dpe? Mpy = 1+ d, &2

mi,'=l i=2,...,l’l—l —kiy,‘_lzb,‘fi:m,‘_,‘_l i=2,...,l’l.
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We can easily show that if we choose
dv b2 b3 by da,
A+2a02 A=t Az—hrz A= he1 (442

then the eigenvalues d¢ and M are A; + o(¢*); ¢ must be kept small compared to the
minimum spacing between eigenvalues. This result is unsatisfactory for the following
reason. If we factorizél = BBT, then the elements d ! will decrease likes”, where

r is proportional to the distance away from the diagonal. Thus, even th@Guighactually

a positive matrix, it will be practically banded, and so therefore will any o@ederived

from G by shifted QR.

We must not takéoth K andM to be almost diagonal. We may taketo be nearly
diagonal, andV not, and formG = B-1KB-T. Alternatively, we may takeM to be
almost diagonal, an& = AAT not, and form the oscillatory matrild = A~IMA~T with
eigenvaluesﬁi‘l. This is a problem for further analytical or numerical research.

In this paper we assumed that the oscillatory ma@ixvas formed from reducing the
generalized eigenvalue problem (3.1) to standard symmetric form. We assumed that the
vibrating system was rod-like, so that bathand M were tridiagonal. If the system is
beam-like, then bothiK and M will be pentadiagonal and, provided that they are formed
from splines, as in Gladwell (1991 andM will still be oscillatory so that the matri
obtained after reduction to stardard symmetric form will also be oscillatory. This means
that the conclusions we have drawn for the rod problem may be generalized to the beam
problem.

Practical examples of isospectral finite-element rods and beams will be considered in a
subsequent paper.
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