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Inverse vibration problems for finite-element models
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Abstract. The direct problem of free vibration analysis via finite-element formulation is well
known: the element mass and stiffness matrices are assembled to form the system mass and
stiffness matrices; the problem is reduced to standard eigenvalue form; the eigenvalues and
eigenvectors are found.

The paper discusses some inverse problems relating to finite-element formulations for simple
chain-like structures. How can the element mass and stiffness matrices be reconstructed from
the overall matrices? How can the overall mass and stiffness matrices be recontructed from
the overall dynamic stiffness matrix? How can we find a family of systems having the same
eigenvalues?

1. Introduction

The term inverse vibration problemis used to denote a class of problems in which it is
required to construct a vibrating system from specified vibratory behaviour. There are
various types of inverse vibration problems, depending on the type of system which is
being sought, the kind of vibratory behavioural data which is being matched, and the way
in which the problem is viewed, either as a mathematical one with exact, complete data, or
as an engineering one with inaccurate incomplete data.

Thus, among inverse vibration problems, there are the well studied and now classical
problems, relating to the unique reconstruction of a discrete, undamped in-line system of
masses and springs from eigenvalue or frequency response data. Gantmakher and Krein
(1950) were the first to study such problems; a review of subsequent research may be
found in Gladwell (1986a). Mathematically, this problem reduces to the reconstruction of
a symmetric tridiagonal matrixA from its eigenvalues(λi)n1, and the eigenvalues(µi)n1 of
its leading principal submatrixAL; Boley and Golub (1987) review the literature.

At the other end of the spectrum of inverse vibration problems are the engineering type
of problems usually calledfinite-element model updating problems, for a review of which
see Mottershead and Friswell (1993) or Friswell and Mottershead (1995). The essence of
these problems is that there is a finite-element model of a vibrating system, its predictions
do not match some experimental behavioural data, and it is required to update the model to
improve the match between predictions and experimental data.

Reviews of research on other types of inverse vibration problems may be found in
Gladwell (1986b, 1996a), and of other inverse eigenvalue problems in Chu (1995).

This paper is concerned with what could be termed a semi-classical inverse eigenvalue
problem. It is classical in the sense that it will be assumed that the system is conservative,
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and that all its natural frequencies are known exactly. It is not truly classical, in that we do
not know what data are sufficient to reconstruct the system exactly. Certainly the natural
frequencies and some reference mass alone are insufficient. This means that the emphasis
of the paper lies in finding a family, perhaps the complete family, of systems of the given
type which match the given eigenvalue data.

The system that we study is the simplest, proper, finite-element model: a finite-element
model of an in-line system of elements having one degree of freedom at each end. Such a
system has stiffness and mass matricesK andM which are symmetric and tridiagonal. The
inverse problem consists in constructing theelementstiffness and mass matrices,Ke and
Me, from the natural frequences of the system. The lack of uniqueness in this reconstruction
arises on three levels.

(a) GivenK andM, find Ke andMe (section 2).
(b) If M = BB T, then the eigenvalue problem(K − λM)u = 0 may be reduced to

(G̃− λI)x̃ = 0, whereG̃ = B−1KB−T. The second part of the inverson is therefore: given
G̃, find K andM (section 3).

(c) The matrixG̃ is constructed from two tridiagonal matricesK andM. The third part
of the inversion is therefore: giveñG constructed fromK and M, find other matrices̃G∗

having the same eigenvalues asG̃ which may be constructed from other tridiagonal matrices
K∗, M∗ by G̃∗ = B∗−1K∗B∗−T (sections 4 and 5).

2. Finite-element models

Gladwell and Ahmadian (1995) have shown that the generic forms of the element stiffness
and mass matrices for an element with two degrees of freedom, one at each end, are

Ke =
[
ke −ke

−ke ke

]
Me =

[
me11 me12

me21 me22

]
whereme11, me22> 0, me12= me21> 0, me11me22−m2

e12> 0.
First consider the recovery of the element stiffnesses from the overall stiffness matrix.

The latter will have the generic form

K =


k1+ k2 −k2

−k2 k2+ k3
. . .

. . .
. . . kn

−kn kn + kn+1

 . (2.1)

The stiffnessk1(kn+1) will be zero if the left- (right-) hand end is free. We will assume
that at least one end of the system is supported, so thatK is positive definite. The matrix
K may be uniquely written as the (finite element type of) superposition ofn+ 1 matrices[

0

k1

]
;
[
ki −ki
−ki ki

]
i = 2, 3, . . . , n

[
kn+1 0

0 0

]
.

For M, the reconstruction is not unique. Suppose thatM has the form

M =


c1 d1

d1 c2
. . .

. . .
. . . dn−1

dn−1 cn

 (2.2)
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where M is positive definite, andd1, d2, . . . , dn > 0. We need to expressM as the
superposition ofn element mass matrices

M1 =
[

0 0

0 f1

]
M2 =

[
e2 d1

d1 f2

]
. . . Mn =

[
en dn−1

dn−1 fn

]
.

Thus,

ei+1+ fi = ci i = 1, 2, . . . , n− 1 fn = cn.
The complete solution is a constrained (n− 1)-parameter family. We choosef1 < c1, take
e2 = c2 − f1, thenf2 so thate2f2 > d2

1, e3 = c3 − f2, and so on untilen, which must be
chosen so thatencn > d2

n−1.
We may systematically construct a one-parameter family of solutions by employing the

Sturm polynomials for the matrixM. These are

P0(x) = 1 P1(c) = c1− x Pi+1(x) = (ci+1− x)Pi(x)− d2
i Pi−1(x)

i = 1, 2, . . . , n− 1. We takef1 = x, thene2 = c1− x = P1(x), and we may choose

ei+1 = Pi(x)/Pi−1(x) i = 1, 2, . . . , n− 1

fi+1 = (d2
i /ei+1)+ x i = 1, 2, . . . , n− 2 fn = cn.

If x is positive, but not larger than the first eigenvalue ofM, then all thePi(x),
i = 0, 1, . . . , n− 1, will be positive. Thus allei andfi will be positive, and

|Mi+1| = ei+1fi+1− d2
i = ei+1x > 0 i = 1, 2, . . . , n− 2

while

|Mn| = enfn − d2
n−1 = (cnPn−1(x)− d2

n−1Pn−2(x))/Pn−2(x)

= (Pn(x)+ xPn−1(x))/Pn−2(x) > 0.

This answers question (a): givenK andM, find Ke andMe.
Gordis (1996) has considered the problem of disassemblingK andM in a wider context.

3. ReconstructingK and M from G

The basic eigenvalue problem is

(K − λM)u = 0. (3.1)

We will have to pay considerable attention to the signs of the elements in various matrices.
If P = (pij ), then we usẽP to denote the matrix((−)i+jpij ). The factorizationM = BB T

leads to the standard form

(G̃− λI)x̃ = 0

where

G̃ = B−1KB−T and x̃ = BTu.

(We useG̃ here because then, as we will show in section 5,G will have all positive terms.)
We now consider the problems of reconstructingK and M from G̃. We can carry out this
reconstruction only ifG̃ has the correct form, i.e. it is a product of three matricesB−1,
K and B−T. For this reason, we change the question. First, however, we define aJacobi
matrix as a symmetric, positive-definite, tridiagonal matrix with positive codiagonal. We
can thus state that, for our system,K̃ andM are Jacobi matrices.
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We may now rephrase our problem. Given Jacobi matricesK̃ andM with

K̃ = AA T M = BB T

whereA andB are lower bidiagonal matrices with positive diagonals and codiagonals, find
Jacobi matrices̃K∗ andM∗ with

K̃∗ = CCT M∗ = DDT

such thatC and D are lower bidiagonal matrices with positive diagonals and codiagonals,
and

G̃ = B−1KB−T = D−1K∗D−T. (3.2)

Equation (3.2) is equivalent to

G = B̃−1AA TB̃−T = D̃−1CCTD−T. (3.3)

The positive definite matrixG has a unique Cholesky factorizationG = LL T, with positive
diagonal. Thus (3.3) holds if

B̃−1A = L = D̃−1C.

Straightforward algebra shows that this implies

cii = viaii dii = vibii i = 1, 2, . . . , n (3.4)

ci+1,i = vi+1ai+1,i di+1,i = vi+1bi+1,i i = 2, 3, . . . , n− 1 (3.5)

and
d21c11

d11d22
+ c21

d22
= b21a11

b11b22
+ a21

b22
. (3.6)

Equation (3.6) may be reduced to

a11d21+ b11c21 = v2f1

where

f1 = a11b21+ a21b11.

This has the general positive solution

c21 = v2f1 sin2 θ/b11 d21 = v2f1 cos2 θ/a11 (3.7)

where 0< θ < π/2.
This provides an(n + 1)-parameter family of Jacobi matrices̃K∗ and M∗ specified by

the n positive parametersvi and the angleθ .
Unless the parametersυi are chosen properly,K∗ will not have the generic form (2.1)

of a stiffness matrix. Matrices of this form are characterized by the equation

K{1, 1, . . . ,1} = {k1, 0, . . . ,0, kn+1}.
This states that forcesk1 and kn+1 applied to the two ends of the system will displace all
the joints to the right by one unit.

The solution (3.4)–(3.7) gives

C = γC0

whereC0 is determined onceθ has been chosen, andγ = diag{γ1, γ2, . . . , γn}. If K∗ is to
be a proper stiffness matrix, then

K∗{1, 1, . . . ,1} = {k∗1, . . . , k∗n+1}. (3.8)
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SinceK∗ = C̃C̃T = γ C̃0C̃T
0γ , we may write (3.7) as

γ C̃0C̃0γ {1, 1, . . . ,1} = {k∗1, . . . , k∗n+1}
i.e.

{γ1, γ2, . . . , γn} = C̃−1
0 C̃−T

0 {k∗1/γ1, 0, . . . ,0, k∗n+1/γn}. (3.9)

The matrix C̃−1
0 is a lower triangular matrix with all positive terms, so thatK−1

0 =
C̃−1

0 C̃−T
0 is a symmetric matrix with all positive terms. We writeK−1

0 = P =
{p1,p2, . . . ,pn}. Then the solution of (3.9) is

{γ1, γ2, . . . , γn} = (k∗1/γ1)p1+ (k∗n+1/γn)pn.

This gives the family of possible solutions. First we findγ1 and γn, then the remainder
γ2, . . . , γn−1, from (3.9). We have

γ1 = k∗1
γ1
p11+

k∗n+1

γn
p1n γn = k∗1

γ1
pn1+

k∗n+1

γn
pnn.

We may takeγ1 = 1, and choosek∗1 arbitrarily provided that 0< k∗1 < 1/p11, then

γn = pnn(1− p11k
∗
1)+ pn1p1nk

∗
1

pn1
k∗n+1 = γn

1− k∗1p11

p1n
.

We have completed the reconstruction ofK andM from G.

4. A simple isospectral set of systems

Equation (3.1) and (3.2) show that the basic eigenvalue problem is

(B̃−1A · A−TB̃−T − λI)x = 0. (4.1)

It is a standard result of matrix algebra that ifG and H are square matrices of order
n, thenGH and HG have the same eigenvalues, apart perhaps from zero. Since equation
(4.1) has non-zero eigenvalues, we can create an isospectral system (one with the same
eigenvalues) by reversing the order of the factors in (4.1) to give the system

(ATB̃−T · B̃−1A − λI)y = 0 y = (B̃−1A)−1x̃. (4.2)

This new matrix does not have the same form asG; now the bidiagonal factors are on the
outside, and the reciprocals are inside. We therefore seek lower bidiagonal matricesC and
D with positive terms, such that

B̃−1A = CD̃−1

i.e. such that

AD̃ = B̃C. (4.3)

If we can find suchC andD, then we can write (4.2) as

(D̃−TCTCD̃−1− λI)y = 0

which we may rewrite as

(C̃TC̃− DTD)v = 0 v = D−1ỹ = C̃−1x = C̃−1BTu.

Thus we may put

K∗ = C̃TC̃ M∗ = DTD. (4.4)
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The matricesK̃∗ andM∗ will be Jacobi matrices.
We now examine equation (4.3). Each side is the product of lower bidiagonal matrices;

that on the left is

a11

a21 a22

a32 a33

. . .
. . .

an,n−1 ann





d11

−d21 d22

−d32 d33

. . .
. . .

−dn,n−1 dnn

 .

Equation (4.3) thus yieldsn separate sets of equations; theith set involves the elements in
the ith columns ofD andC. For i = 1, 2, . . . , n− 2, theith set is

aiidii = biicii ai+2,i+1di+1,i = bi+2,i+1ci+1,i (4.5)

ai+1,idii − ai+1,i+1di+1,i = −bi+1,icii + bi+1,i+1ci+1,i . (4.6)

For i = n − 1, the second of these equations is missing; fori = n, there is just the first
equation.

To solve these equations, we note that fori 6 n−2, we can take one element in theith
pair of columns ofC and D arbitrarily, and determine the remaining three elements. We
write

cii = γiaii dii = γibii γi > 0 i = 1, 2, . . . , n (4.7)

and find

ci+1,i = γiτiai+2,i+1 di+1,i = γiτibi+2,i+1 i = 1, 2, . . . , n− 2 (4.8)

where

τi = fi/fi+1 fi = aiibi+1,i + ai+1,ibii . (4.9)

This is the general solution fori 6 n− 2.
For i = n− 1, we use (4.7) in (4.6) to give

anndn,n−1+ bnncn,n−1 = γn−1fn−1

for which the general positive solution is

cn,n−1 = γn−1fn−1 sin2 θ/bnn dn,n−1 = γn−1fn−1 cos2 θ/ann. (4.10)

This analysis provides an (n+ 1)-parameter family of pairs of Jacobi matricesK̃∗ andM∗,
such that the systemK∗ andM∗ is isospectral toK andM. The solution (4.7)–(4.10) gives

C̃ = C̃0γ

whereC0 depends only onθ , andγ = diag(γ1, . . . , γn). Again, as in section 3,γ may be
chosen to makeK∗ = C̃TC̃ = γ TC̃T

0C̃0γ have the generic form (2.1).

5. A wider isospectral family of systems

To obtain a larger family of systems which are isospectral toK andM, we use some recent
results on the preservation of signs in a matrix under shiftedQR factorization and reversal.
In this section we state, without proof, some results obtained in Gladwell (1996b). First,
however, we introduce some terminology.

If 1 6 k 6 n, Qk,n will denote the set of strictly increasing sequencesα =
{α1, α2, . . . , αk} taken from{1, 2, . . . , n}.
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Let A ∈ Rn×n andα, β ∈ Qk,n. The minor ofA taken from rowsα and columnsβ is
denoted byA(α;β). Following Karlin (1968) we say thatA is

(i) TP (totally positive) if all minors ofA are non-negative;
(ii) NTP if A is non-singular and TP;
(iii) STP (strictly TP) if all minors are strictly positive;
(iv) O (oscillatory) if A is TP, andAm is STP for some positive integerm. It is known

that A is O iff A is NTP andai,i+1 > 0, ai+1,i > 0 for i = 1, 2, . . . , n− 1.
Note that the phraseall minors means all the minors of order 1, the elements of the

matrix, and all those of order 2, 3, . . . , n are non-negative or positive, as the case may be.
These conditions are stricter than those for a positive definite (PD) matrix:A is PD if the
principal minorsA(α;α) are positive. Clearly a symmetric STP matrix is PD; it can be
shown that a symmetric TP matrix is PD, but the converse of this statement is false.

We will sometimes use SY to denotesymmetric.
Consider some examples. A Jacobi matrix, as we have defined it, is O. It is NTP because

any non-zero minor is the product of principal minors, which are positive, and/or codiagonal
terms, which are positive. It is O because it is NTP and becauseai,i+1, ai+1,i > 0.

One of the basic results about oscillatory matrices is thatA is O iff Ã−1 is O. This is
a direct consequence of the formula for the elements of the adjointÂ, as (−)i+j∗ (minor
of A). This means thatA−1 is O iff Ã is O. In particular, therefore, the reciprocal,K−1, of
the stiffness matrix in (2.1) is O, becauseK̃ is a Jacobi matrix.

The product of two NTP matrices is NTP, and the product of two O matrices is O.
Therefore, if K̃ and M are Jacobi matrices, then all the matricesK−1M, MK−1, M̃−1K̃,
and K̃M̃−1 are O. Let us show that the matrixG = B̃−1K̃B̃−T is O. The lower bidiagonal
matrix B is obtained by factorizingM = BB T. Since M is O, B has positive diagonal
and codiagonal, and so is NTP. Therefore,B̃−1 is NTP, and so is the product of the NTP
matricesB̃−1, K̃ and B̃−T. Thus G is NTP. To prove that it is O, we must show that
gi,i+1(= gi+1,i ) > 0, for i = 1, 2, . . . , n− 1. Temporarily putB̃−1 = C, K̃ = D then using
Einstein’s summation convention we may write

gi,i+1 = cij djkci+1,k.

Every element in this product is non-negative, and in particular the elementscii , di,i+1, and
ci+1,i+1 are strictly positive. Thus

gi,i+1 > ciidi,i+1ci+1,i+1 > 0

andG satisfies the criterion for O. Actually,G is also apositivematrix; all its elements are
strictly positive. This follows becauseC(= B̃−1) is a strictly positive lower triangle andCT

is a strictly positive upper triangle;gij = cikdklcjl so that if i > j thengij > cij djj cjj > 0,
while if i 6 j , gij > ciidiicji > 0.

The theory regarding oscillatory matrices is based on two theorems: Perron’s theorem,
that apositivematrix (aij > 0) has at least one real positive eigenvalue, which is larger than
the modulus of any other (possibly complex) eigenvalue; and the Binet Cauchy theorem
which states that ifA = BC, andAp, Bp, Cp are thepth compound matrices ofA, B, and
C, respectively, thenAp = BpCp. Remember that ifA is n × n, thenAp is the matrix of
orderN × N , whereN = (np), constructed from thepth-order minors ofA, arranged in
lexical order.

A real squaresymmetricmatrix has real eigenvalues. The theorems of Perron and Binet
Cauchy yield the fundamental result, that eigenvalues of an oscillatory matrix (whether
symmetric or not) are real, distinct and positive. Thus when, as is so in our case,K̃ andM
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are Jacobi matrices, the eigenvalues of (3.1) satisfy

0< λ1 < λ2 < · · · < λn.

This is a fundamental result: the finite-element model of an inline system given byK in
(2.1) andM in (2.2) always has distinct eigenvalues.

We now come to the result proved in Gladwell (1996b). IfA ∈ Rn×n andµ is not an
eigenvalue ofA, there is a unique factorization

A − µI = QR (5.1)

whereQ is orthogonal andR is upper triangular with positive diagonal. We can therefore
define an operatorGµ: A → A′ = A′(µ) where

A′ − µI = RQ. (5.2)

The matrixA′ is a unique function ofA andµ. Equations (5.1) and (5.2) have two simple
consequences:

A′ = µI+ RQ = µI+QTQ(RQ) = µI+QT(QR)Q
= µI+QT(A − µI)Q = QTAQ (5.3)

A′R = µR+ (RQ)R = µR+ R(QR) = R(µI+ (QR)) = RA. (5.4)

Equation (5.3) shows thatA and A′ are unitarily equivalent; they have the same
eigenvalues. It also shows thatA′ is symmetric iffA is symmetric, and thatA′ is positive
definite iff A is positive definite.

Equation (5.4) shows that ifA is symmetric and banded, thanA′ has the same bandwidth
asA. In particular, ifA is symmetric tridiagonal, then so isA′.

The theorem proved in Gladwell (1996b) refers to asymmetricmatrix A with one of
the three properties NTP, O, and STP; we label these generically as P. We have proved:

Theorem 1. A′ has property SYP iffA has the corresponding property SYP.

In particular therefore, ifA is symmetric and oscillatory (SYO) andµ is not an
eigenvalue ofA, then A ′ is symmetric and oscillatory. A special case of this is that if
A is a Jacobi matrix, andµ is not an eigenvalues ofA, thenA′ is a Jacobi matrix.

We now examine the consequences of equation (5.4). SinceR is upper triangular,
equation (5.4) yields

j∑
k=1

g′ikrkj =
n∑
k=i

rikgkj . (5.5)

In particular, if i = n, j = 1, then

g′n1r11 = rnngn1. (5.6)

Since the diagonal ofR is positive, we deduce thatg′n1 > 0(= 0) iff gn1 > 0(= 0). Taking
j = 1 in (3.5) we have

g′i1r11 =
n∑
k=i

rikgk1

from which we deduce that ifgi1, gi+1,1, . . . , gn1 are all zero, then so areg′i1, g′i+1,1, . . . , g
′
n1.

Taking j = 2 in (5.5) we have

g′i1r12+ g′i2r22 =
n∑
k=i

rikgk2
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from which we deduce that ifg′i1, g
′
i+1,1, . . . , g

′
n1 are zero andgi2, gi+1,2, . . . , gn2 are zero,

then so areg′i2, g
′
i+1,2, . . . , g

′
n2. These results concern the first two columns ofA′. We

can clearly generalize them to the third and subsequent columns. WhenA is symmetric,
the results concerning the columns in the lower triangles ofA andA′ will yield analogous
results for the rows in the upper triangles. We see that if the columns ofA in the lower
triangles have a non-increasing pattern of zeros, as in figure 1, thenA′ has the same pattern.

Figure 1. The zero elements ofA are contained in the rectangles on the lower left and the
upper right.

The preservation of these patterns of zeros was deduced from equation (5.4). We can
deduce analogous results concerning the preservation of pattern of zeros of the minors of
A andA′ by using the equation

A′pRp = RpAp (5.7)

which follows from applying the Binet Cauchy theorem to (5.4). SinceRp is an upper
triangular matrix (of orderN ) with positive diagonal, equation (5.7) shows thatGµ will
preserve any non-increasing pattern of zeros of the columns in the lower triangle ofAp,
and if A is symmetric, the corresponding pattern of zeros of the rows in the upper triangle.

In the analysis we have just described, we have used the symbolA to denote a symmetric
matrix of ordern. Now we will apply these results to the symmetric matrixG, which we
have shown is oscillatory (O). We revert to our former use ofA as a lower bidiagonal
matrix with positive diagonal and codiagonal. We will show that if the oscillatory matrix
G is obtained as in (3.3), i.e.

G = B̃−1AA TB̃−T

from the two Jacobi matrices̃K = AA T andM = BB T, and ifµ is not an eigenvalue ofG,
thenG′(µ), which is oscillatory by theorem 1, can also be factorized in the form

G′ = B̃′−1A′A′TB̃′−T (5.8)

whereK̃′ = A′A′T andM′ = B′B′T are Jacobi matrices.
We need to establish two results: thatG′ can be factorized in such a way thatA′ and

B′ are lower bidiagonal; and thatA′ and B′ both have positive diagonal and codiagonal.
We consider the results in that order.
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To establish the band forms, we consider howG was constructed:G = B̃−1K̃B̃−T. We
write this G̃ = B−1KB−T or K = BG̃BT. This we can write asC = G̃BT, K = BC. The
equationBC = K is

bikckj = kij . (5.9)

But K is tridiagonal, so thatkij = 0, for i = 1, 2, . . . , n− 2; j = i + 2, . . . , n. The matrix
B is lower bidiagonal, so that (5.9) gives

bi,i−1ci−1,j + biicij = 0 i = 1, 2, . . . , n− 1; j = i + 2, . . . , n. (5.10)

Thus

b11c1j = 0 j = 3, 4, . . . , n

and hence

cij = 0 i = 1, 2, . . . , n− 2; j = i + 2, . . . , n.

Now considerC = G̃BT, which we write as

cij = g̃ikbjk = g̃i,j−1bj,j−1+ g̃ij bjj .
When combined with (5.9), this gives

g̃i,j−1bj,j−1+ g̃ij bjj = 0 i = 1, 2, . . . , n− 2; j = i + 2, . . . , n.

Sinceg̃ij = (−)i+j gij andG is symmetric, we may write these equations as

bj,j−1


gj−1,1

gj−1,2

...

gj−1,j−2

 = bjj


gj1

gj2

...

gj,j−2

 j = 3, 4, . . . , n. (5.11)

We will show that these equations mean that the compound matrixG2 of 2× 2 minors
of G has a pattern of zeros like that shown in figure 1. Starting from its left-hand end, the
last row ofG2 contains the terms

G(n− 1, n; 1, 2),G(n− 1, n; 1, 3), . . . ,G(n− 1, n; 1, n− 2), . . . .

By taking j = n in (5.11), we see that all these minors are zero. The penultimate row of
G2 starts with the terms

G(n− 2, n; 1, 2), . . . ,G(n− 2, n; 1, n− 3).

We will show that these are all zero. To do so, we take the zero determinant∣∣∣∣∣∣
gn−2,1 gn−2,1 gn−2,k

gn−1,1 gn−1,1 gn−1,k

gn,1 gn,1 gn,k

∣∣∣∣∣∣
and expand it along its first column to give

gn−2,1G(n− 1, n; 1, k)− gn−1,1G(n− 2, n; 1, k)+ gn,1G(n− 2, n− 1; 1, k) = 0.

However, as we showed earlier,G is a positive matrix, so thatgn−2,1, gn−1,1 and gn,1
are all positive. This means that if two of the minors in this equation are zero, then
so is the third. But ifk = 2, 3, . . . , n − 3, then (5.11) withj = n − 1 shows that
G(n − 2, n − 1; 1, k) = 0, while (5.11) withj = n shows thatG(n − 1, n; 1, k) = 0.
Therefore,G(n− 2, n; 1, k) = 0, k = 2, 3, . . . , n− 3.
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The row ofG2, third from the bottom, starts with the termsG(n− 2, n− 1; 1, k); these
again are zero fork = 2, 3, . . . , n−3. Proceeding in this way we find thatG(i, j ; 1, k) = 0
for 3 6 i < j , k = 2, . . . , i − 1. This provides a non-increasing pattern of zeros for the
columns ofG2 in the lower triangle, and this will thus be transmitted to the corresponding
compound matrixG′2 of G′.

The matrixG′, like G, is a positive matrix. To see this, we note thatgn1 > 0, and hence,
by (5.7),g′n1 > 0. All the 2× 2 minors ofG′ are non-negative, becauseG′ is oscillatory;
therefore,

G′(i, n; 1, i) ≡ g′i1g′ni − g′iig′n1 > 0.

However,G′ is positive definite so thatg′ii > 0 and henceg′i1g
′
ni > g′iig

′
n1 > 0, so that

g′i1 > 0, i.e. the first column and last row ofG′ are positive. Now

G′(i, n; j, i) = g′ij g′ni − g′iig′nj > 0

so thatg′ij g
′
ni > g′iig′nj > 0 andg′ij > 0.

To constructB′ and K′ we must retrace the steps from (5.9) to (5.11) with the new
matrix G′.

6. Conclusions

In the preceding sections, we have shown how we can construct families of isospectral
systems(K,M), from one system. The widest family is that discussed in section 5. From
one pair we construct the oscillatory matrixG and from that we may construct an infinity
of other oscillatory matricesG′ by repeated shifts, with different shiftsµ. From the new
G′ we construct pairsK′ andM′. It is still an open question whether, starting from one pair
of (K,M) with eigenvalues(λi)n1 with 0 < λ1 < · · · < λn, we may construct the complete
family of pairs.

This paper is an extension of Gladwell (1995). There we considered a spring mass
system for whichK has the form (2.1), butM is diagonal, i.e.M = diag(m1, m2, . . . , mn).
For such a systemG = M̃−1/2K̃M̃−1/2 is a Jacobi matrix. In that paper we proved that,
from any Jacobi matrixG, we could proceed byn − 1 shiftsµ1, . . . , µn−1, to any other
isospectral Jacobi matrixG∗, and we gave an explicit procedure for finding the appropriate
shifts. We have not yet been able to generalize this result to two arbitrary isospectral
oscillatory matricesG = B−1K̃B−T, G∗ = B∗−1K̃∗B∗−T constructed from pairs of Jacobi
matricesK̃ = AA T, M = BB T, K̃∗ = A∗A∗T, M∗ = B∗B∗T.

In this paper we have shown how to construct a family of systems which are isospectral
to a given system. However, it still remains an open question of how to constructonepair
of Jacobi matrices̃K andM such that (3.1) has given eigenvaluesλ1, λ2, . . . , λn satisfying
0 < λ1 < λ2 < · · · < λn. As an attempt to answer this question we present the following
result.

Take K and M to be almost diagonal. Ifkii = ai , where 0< a1 < a2 < · · · < an,
kii = −ε, mii = 1, mi,i−1 = ε, then, for smallε, the eigenvalues of (K,M) will be given
by

λi = ai + o(ε2).

We may extend this result to find a pairK andM with eigenvalues which difer fromλi
by terms of orderε4. We take

kii = λi m11 = 1− d1ε
2 mnn = 1+ dnε2

mii = 1 i = 2, . . . , n− 1 − ki,i−1 = biε = mi,i−1 i = 2, . . . , n.
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We can easily show that if we choose

d1λ1

(1+ λ1)2
= b2

1

λ2− λ1
= b2

2

λ3− λ2
= · · · = b2

n−1

λn − λn−1
= dnλn

(1+ λn)2
then the eigenvalues ofK and M are λi + o(ε4); ε must be kept small compared to the
minimum spacing between eigenvalues. This result is unsatisfactory for the following
reason. If we factorizeM = BB T, then the elements ofB−1 will decrease likeεr , where
r is proportional to the distance away from the diagonal. Thus, even thoughG is actually
a positive matrix, it will be practically banded, and so therefore will any otherG′ derived
from G by shifted QR.

We must not takeboth K and M to be almost diagonal. We may takeK to be nearly
diagonal, andM not, and formG̃ = B−1KB−T. Alternatively, we may takeM to be
almost diagonal, andK = AA T not, and form the oscillatory matrixH = A−1MA−T with
eigenvaluesλ−1

i . This is a problem for further analytical or numerical research.
In this paper we assumed that the oscillatory matrixG was formed from reducing the

generalized eigenvalue problem (3.1) to standard symmetric form. We assumed that the
vibrating system was rod-like, so that bothK and M were tridiagonal. If the system is
beam-like, then bothK and M will be pentadiagonal and, provided that they are formed
from splines, as in Gladwell (1991),̃K andM will still be oscillatory so that the matrixG
obtained after reduction to stardard symmetric form will also be oscillatory. This means
that the conclusions we have drawn for the rod problem may be generalized to the beam
problem.

Practical examples of isospectral finite-element rods and beams will be considered in a
subsequent paper.
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