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The Courant-Herrmann Conjecture (CHC) concerns the sign properties of combinations of the Dirichlet eigenfunctions of
elliptic pde’s, the most important of which is the Helmholtz equation ∆u + λρu = 0 for D ∈ R

N . If the eigenvalues are
ordered increasingly, CHC states that the nodal set of a combination v =

∑n
i=1 ciui of the first n eigenfunctions, divides

D into no more than n sign domains in which v has one sign. The conjecture is classically known to hold for N = 1, we
conjecture that it is true for rectangular boxes in R

N (N ≥ 2), but show that it is false in general.

1 Introduction

The time-reduced infinitesimal vibration of a one-dimensional system, such as a rod in longitudinal or torsional vibration,
or a taut string in transverse vibration, is governed by an ordinary differential equation of Sturm-Liouville type. Thus for a
taut string under tension T , with density ρ(x), vibrating with frequency ω, the equation governing the transverse deflection
u(x, t) = u(x) sin ωt, takes the form

u′′ + λρu = 0, λ = ω2/T . (1)

For a string with fixed ends 0, 1, the end conditions are of Dirichlet type: u(0) = 0 = u(1). The solutions of eq. (1), under
Dirichlet end conditions, have three simple properties (Gantmakher and Krein [6] and Gladwell [7]):

i) the eigenvalues λ are simple, i.e.,

0 < λ1 < λ2 < . . . .

ii) the nth eigenfunction un has exactly n − 1 simple nodes in (0, 1). At each simple node, un changes sign, so that un, by
its simple nodes, divides (0, 1) into exactly n sign-domains in which un has one sign.

In order to state the third property we must distinguish two kinds of zeros of a continuous function: a simple node, where
it changes sign; a null anti-node where it retains its sign. The third property is

iii)

u =
q∑

i=p

ciui, 1 ≤ p ≤ q ,

has no less than p − 1 simple nodes and no more than q − 1 zeros in (0, 1); in this count each null anti-node counts as two
zeros.

In particular therefore if u has q − 1 different zeros in (0, 1), then all these zeros are simple nodes. Taking p = 1, q = n we
may state that the zeros of a combination of the first n modes (ui)n

1 divides (0, 1) into no more than n sign domains. Courant’s
Nodal Line Theorem (CNLT) (Courant and Hilbert [3], and Pockels [10]) concerns the generalization of property ii) to the
Dirichlet eigenfunctions of elliptic equations, the simplest and most important of which is the Helmholtz equation
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∆u + λρu = 0, u ∈ D . (2)

Here ∆ is the Laplacian, ρ is bounded and positive, and D is a domain in R
N .

The nodal set of u is defined as the set of points where u vanishes. It is known (Cheng [2]) that for D ⊂ R
N , the nodal set

of an eigenfunction of (2) consists of (N − 1)-dimensional hypersurfaces. These hypersurfaces cannot end in the interior of
D, which implies that they are either closed, or begin and end at the boundary. In particular therefore in R

2, the nodal set of an
eigenfunction u of (2) is made up of nodal curves, which are either closed, or begin and end at the boundary. CNLT states that
if the eigenvalues (λi)n

1 are ordered increasingly, and for N ≥ 2 they are not necessarily distinct, then each eigenfunction u in
the eigenspace of λn divides D, by its nodal set, into at most n subdomains, called nodal domains, or the more informative
sign domains, in which u has one sign. This is the generalization of ii).

In a footnote on p. 454 of Courant and Hilbert [3] it is stated that H. Herrmann, in his 1932 Göttingen dissertation [9],
proved a generalization of iii) which we call the Courant-Herrmann Conjecture (CHC): any combination v =

∑n
i=1 ciui of

the first n eigenfunctions of (2) divides D by its nodal set into at most n sign domains. We examined Herrmann’s dissertation
and his subsequent publications and found that he had not even stated, let alone proved, this result. Because the nodal set of a
combination of eigenfunctions can exhibit far greater variety than that of a single eigenfunction, it is clear that in the statement
that the nodal set of v ‘divides D into sign domains’ the term ‘sign domain’ must be interpreted in a weak sense, ≥ 0 or ≤ 0.
Thus it is shown in §3 that in R

2 the nodal set of a combination may contain isolated nodal points, in addition to nodal curves;
in R

3 the nodal set may contain isolated nodal points and curves in addition to nodal surfaces.
Nevertheless, the CHC does appear to hold for at least some domains D ⊂ R

N for N ≥ 2, in particular for square domains
in R

2, as we show in §2. However, as we prove in §3 it is false in general. We find a domain D ⊂ R
2 for which v = c1u1+c2u2,

computed by MATLAB, has 3 sign domains. Not only is CHC false, but we conjecture that given m, we may find D ⊂ R
2, such

that a combination, say c1u1 + c2u2, may have more than m sign domains; we exhibit domains D for which this combination
has 3, 4, and 5 sign domains. Note that Arnol’d [1], working in an extremely abstract context, proved that (the analogue of)
CHC, in his context, was false; he did not present a counterexample. We conclude that CHC is true for combinations of the
first 13 modes of a square membrane. We conjecture that CHC is true for any combinations of modes of a square, rectangle,
or other convex membrane.

There is a discrete analogue of eq. (1) and corresponding discrete analogues of properties i)-iii). The discrete analogue of
eq. (1) is the matrix equation

(A − λI)u = 0, (3)

where A = A(n × n) is a symmetric tridiagonal matrix with strictly negative codiagonal. It is known (Gantmakher and
Krein [6] and Gladwell [7]) that

i) the eigenvalues of (3) are simple, i.e.,

λ1 < λ2 < ... < λn .

To state the discrete form of ii) one must introduce the sign counts S+
u , S−

u ; these, the discrete replacements for the concepts
of simple node and null anti-node, are the maximum and minimum numbers of sign changes in the sequence u1, u2, ..., un

obtained by assigning + or − to any zero terms. The discrete form of ii) is

ii′) if ui is the eigenvector corresponding to λi, then

S+
u = S−

u = i − 1 .

This implies that the first and last components u1,i, un,i are non-zero, and if um,i = 0 (1 < m < n) then um−1,i, um+1,i

are non-zero and have opposite signs.
The discrete analogue of iii) is

iii′)

u =
q∑

i=p

ciui, 1 ≤ p ≤ q ≤ n,

q∑
i=p

c2
i > 0 ,

then

p − 1 ≤ S−
u ≤ S+

u ≤ q − 1 .

We conclude that there is a clear correspondence between (1) and (3), and between i)-iii) and i′)-iii′).

Recent research has shed light on discrete counterparts of these results for matrices other than tridiagonal. These are
conveniently described by using graph theory. Suppose G is a simple undirected graph without loops on N vertices (Pi)N

1
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making up the vertex set V . Let A be a symmetric matrix of order N with the property that if i �= j then

aij < 0 if (Pi, Pj) ∈ V ,

aij = 0 otherwise .

If u = {u1, u2, ..., uN}, we now assign a sign +, 0,− to Pi according to whether ui is positive, zero, or negative. Now we
introduce strong (weak) sign graphs as maximal connected subgraphs of G on which the vertices have the same strict (loose)
signs. The discrete counterpart of ii) is then given by Davies, Gladwell, Leydold, and Stadler [4] as ii′′). If u is an eigenvector
corresponding to λn, and λn has multiplicity r, then u has at most n + r − 1 strong sign graphs, and at most n weak sign
graphs. Gladwell and Zhu [8] showed that when λn is an eigenvalue of multiplicity r the eigenspace of λn may be spanned
by r orthonormal vectors uj , j = n, n + 1, . . . , n + r − 1 , such that uj has at most j strong sign graphs. Alternatively, the
eigenspace of λn may be spanned by r linearly independent vectors uj , j = n, n + 1, ..., n + r − 1 , such that each uj has
at most n strong sign graphs. In §3 we show that there is no simple analogue of iii) for eigenvectors on a graph. References
relating to the history of these problems may be found in Davies, Gladwell, Leydold, and Stadler [4] and Gladwell and Zhu [8].

2 CHC for rectangles

For the square D = (0, 1) × (0, 1) the eigenvalues and eigenfunctions of (2) for ρ ≡ 1 are

λp = λm,n = π2(m2 + n2), up = um,n = sinmπx sin nπy .

Since we are concerned only with sign domains, we may scale x and y and consider

um,n = sinmx sin ny in D′ ≡ (0, π) × (0, π). (4)

First we show that the nodal set of a combination may consist of a single isolated point:

u = 2u1,1 + u1,3 + u3,1 = 4 sinx sin y(cos2 x + cos2 y)

has an isolated nodal point (π/2, π/2). This single example is sufficient to show that sign domains must be interpreted in a
weak sense. Under this interpretation, this combination u has just one sign domain: it satisfies u ≥ 0 throughout D.

Now we use the result

sin mx = sinxUm−1(cos x) ,

where Um−1 is a Chebyshev polynomial of the second kind. Since sin x sin y is positive in D′, the sign properties of um,n are
the same as those of

vm,n = Um−1(cos x)Un−1(cos y) .

Furthermore, since the correspondence cos x → X; (0, π) → (−1, 1) is 1 : 1, we may equivalently study the properties of

wm,n = Um−1(X)Un−1(Y ), (X, Y ) ∈ (−1, 1) × (−1, 1) . (5)

In the absence of an analytical proof, we had to resort to an examination of individual cases, a tedious process. The order
in which the eigenvalues λp appear is shown in the first column of Table 1. The second column shows the values of m, n.
The third column shows the new high order terms which appear in combination of the first p eigenfunctions. The last column
shows the nodal curves of a combination which exhibits the maximum member of sign domains. These combinations were
found empirically.

This empirical examination shows that, for the cases considered, CHC does hold. We examined the conjecture for rectangles
also. Now

λm,n = π2
(

m2

a2 +
n2

b2

)
um,n = sin

mπx

a
sin

nπy

b
.

Again we may scale x and y, and consider um,n given by (5); the difference is merely that the order in which the λm,n appear
depends on the ratio a : b. We were unable to find a counterexample to CHC.

As we have shown, the problem reduces to the question of how many regions a polynomial Pn(x, y) divides a square, by
its nodal places. This problem is still open, as is the problem of how many regions a polynormal divides the whole plane, by
its nodal places.

It is instructive to consider how the original result iii) is proved when N = 1. It is proved ([6], [7]) by replacing the
differential eigenvalue problem by an integral one, by considering compound operators on a higher dimensional product space,
and noting that certain determinants formed from the original eigenfunctions are fundamental Dirichlet eigenfunctions on one
orthant 0 ≤ x1 ≤ x2 ≤ . . . ≤ xp ≤ 1 of the product space. It is not possible to carry this argument over to the case in which
D = (0, 1) × (0, 1) .
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Table 1 CHC is true for the first 13 eigenfunctions on the square.

3 CHC is false

We exhibit Fig. 1. This shows the nodal curves of a combination v = u2 +cu1 for three values of c, as calculated by MATLAB.
When c = 0, v = u2 has just one nodal curve, two sign domains. As c increases, the nodal curve rises and eventually (for
c ≈ 0.96) makes a discontinuous jump into two separate curves, producing two disjoint negative sign domains, and thus three
sign domains in all. This single counterexample is sufficient to disprove CHC for general domains. Admittedly the modes have
been calculated by MATLAB and not analytically, but in such a simple situation there is little reason to doubt the accuracy of
the MATLAB solution. Fig. 2 shows two other examples of domains in which v has 3 or 4 negative sign domains, and thus 4
and 5 sign domains in all. These examples indicate that not only is CHC false for non-convex domains, but that it is ‘entirely’
false and misleading in the sense that, given m > 2, it seems to be possible to construct a domain such that a combination of
the first two modes of D has more that m sign domains.

Fig. 1 The nodal lines of the linear combinations cu1 + u2 for c = 0, 0.96, 1.2.
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Fig. 2 The nodal lines of the linear combination cu1 + u2 may divide the domain into a) four or b) five sign domains.

To show that there is no discrete counterpart of CHC, i.e., of iii) for a general graph, or even a tree, we consider the star on
N points shown in Fig. 3, and consider the matrix

A =




1 −1 −1 . . . −1
−1 2
−1 3

...
. . .

−1 N




.

The eigenvalues are the roots of

f(λ) ≡ 1 − λ −
N∑

i=2

1
i − λ

so that

λ1 < 2 < λ2 < . . . < λN−1 < N < λN

and the eigenvectors are

xi =
{

1,
1

2 − λi
,

1
3 − λi

, . . . ,
1

N − λi

}
.

Consider combinations of x1 and x2:

x =
{

1 + c,
1

2 − λ1
+

c

2 − λ2
,

1
3 − λ1

+
c

3 − λ2
, . . . ,

1
N − λ1

+
c

N − λ2

}
.

Choose c so that −1 < c < −(N − λ2)/(N − λ1) then x has signs

{+, +,−,−, . . . ,−} .

There are N − 1 sign graphs: the number of sign graphs can be made as large as desired simply by increasing N .

4 A restricted theorem

In all the examples shown in §3, u has just one positive sign domain. These are examples of

Theorem 1. Suppose D is a connected domain in R
N , and that eq. (2) has eigenvalues λi and eigenfunctions ui. If the

eigenvalues are ordered increasingly, n ≥ 2, c > 0, and u1 > 0 in D, then v = un + cu1 has at most n − 1 positive sign
domains.
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Fig. 3 A star on N points.

P r o o f. Define

[u, v]D =
∫

ρu(x)v(x)dx , (u, v)D =
∫

∇u(x) · ∇v(x)dx .

Suppose v has m positive sign domains (Di)m
1 . Define

wi(x) =
{

βiv(x) , x ∈ Di ,
0, otherwise .

Since the Di are disjoint, (wi)m
1 are orthogonal. Scale the wi, i.e., choose the βi > 0, so that [wi, wi]Di = 1. Now compute

(wi, wi)Di
. We have

(wi, wi)Di =
∫

Di

∇wi · ∇widx

=
∫

Di

{÷(wi∇wi) − wi∆widx

=
∫

Di

wi
∂wi

∂n
ds +

∫
Di

ρwi(λnun + λ1cu1)dx

and since wi = 0 on ∂Di we have

(wi, wi)Di = [wi, λnun + λ1cu1]Di .

Now we take

u(x) =
m∑

i=1

ciwi(x),
m∑

i=1

c2
i = 1 ,

and compute the Rayleigh Quotient for u(x):

[u, u]D =
m∑

i=1

c2
i [wi, wi]Di =

m∑
i=1

c2
i = 1 ;

(u, u)D =
m∑

i=1

c2
i (wi, wi)Di

=
m∑

i=1

c2
i [wi, λnun + λ1cu1]Di

.

But on Di, λnun + λ1cu1 = λn(un + cu1) + (λ1 − λn)cu1 = λnwi + (λ1 − λn)cu1 , so that

(u, u)D = λn

m∑
i=1

c2
i [wi, wi] + (λ1 − λn)

m∑
i=1

c2
i [wi, cu1]Di .

The Rayleigh Quotient for u is

λR ≡ (u, u)D

[u, u]D
= λn − (λn − λ1)c

m∑
i=1

c2
i [wi, u1]Di . (6)

Now choose (ci)m
1 so that [u, uj ] = 0, for j = 1, 2, . . . , m − 1, then the minmax theorem for the Rayleigh Quotient states

that λR � λm, with equality if and only if u = um. On the other hand, since D is connected, λ1 is simple (Pockels [10]) so
that λn − λ1 > 0; since the Di are, by hypothesis, positive sign domains, we have [wi, u1]Di > 0; hence eq. (6) states that
λR < λn so that λm < λn and m < n, i. e., m � n − 1 .

We note that Fiedler [5] proved a discrete analogue of this result for eigenvectors on a graph.
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5 Conclusions

The Courant Herrmann Conjecture appears to be true for a restricted class of domains, but whether it is true even for squares
in R

2 is still open. It is false in general.
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