
N O R I I - I - ~  

Total Positivity and the QR Algorithm 

G .  M. L. Gladwell* 

Solid Mechanics Division 
Faculty of Engineering 
University of Waterloo 
Waterloo, Ontario, Canada N2L 3G1 

Submitted by Robert E. Hartwig 

ABSTRACT 

An n × n real matrix A is TP (totally positive) if all its minors are positive or zero; 
NTP, if it is nonsingular and TP; STP, if it is strictly TP; O (oscillatory), if it is TP and 
a power A m is STP. Let P be one of NTP, O,' STP. We prove that if A is symmetric 
and has property P,/z is not an eigem~alue of A, and A - tzI = QR and A' - IzI = RQ 
with R having positive diagonal; then/~ has property P, and vice versa. The analysis 
includes a new criterion for A to be STP. © 1998 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

Totally positive (TP) and oscillatory (O) matrices play an important  role in 
the study of  vibratory systems, as discussed by Gan tmacher  and Krein (1950). 
The  results in the p resen t  pape r  arose from the p rob lem of  constructing a 
finite e lement  model  of  a vibrating system with specified natural frequencies 
(to/)~: construct  symmetr ic  positive definite (PD)  tridiagonal matrices K, M, 
with respectively negative and positive codiagonals, such that 

( K  - o J 2 M ) x  = 0 
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has eigenvalues (a~)~. The factorization K = L L  r, Lrx  = u leads to the 
standard form 

( A  - AI )u  -- O, 

where A = L - 1 M L  - r ,  }t = 1/aJ~; the matrix A is oscillatory, as shown by 
Gladwell (1986). The technical details of the inverse problem are discussed in 
Gladwell (1997); here we focus on the fundamental problem of constructing 
an isospectral family of oscillatory matrices with eigenvalues A 1 > }t~ > ... 
> }t. > 0, by using shifted QR factorization followed by the reversal QR --, 
RQ. 

2. NOTATION AND PRELIMINARIES 

If  1 ~< k ~< n, Qk,. will denote the set of strictly increasing sequences 
a = {a 1, ot~ . . . . .  a k} chosen from {1, 2 . . . . .  n}. We write d(ot) = E~Z~(ot,+ 1 
- a i - 1), and note that if a ~ Qk,., then d ( ~ )  = 0 iff ai+l  = ai + 1. 
The elements of Qk,. are partially ordered as follows: If  ~, /3 ~ Qk,. then 
a~</3 i f a  i~</3~ f o r l ~ i ~ < k .  

Let A ~ ~ " × "  and ~, /3 ~ Qk,.. The minor of A formed from rows a 
and columns /3 is denoted by A(a ; /3) .  Following Karlin (1968), we say that 
A is 

(1) TP (totally positive) if all the minors of A are nonnegative; 
(2) NTP if A is nonsingular and TP; 
(3) STP (strictly TP) if all minors are strictly positive; 
(4) O (oscillatory) of A is TP, and A m is STP for some positive integer m. 

It is known that A is O iff A is NTP and at, i+ 1 > 0, ai+l ,  t > 0 for 
i - - 1 , 2  . . . . .  n - - 1 .  

We use SY to denote symmetric. 
Throughout the paper we assume that A ~ ~ n × n, and we will use P to 

denote one of the properties NTP, O, STP. 
I f / x  ~ ~ is not an eigenvalue of A, there is a unique factorization 

A - / z I  = QR,  (2 .1 )  
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with Q orthogonal, and R upper triangular with positive diagonal. We can 
therefore define an operator ~'~, : A ~ h~ = / ~ ( ~ ) ,  where 

.~ - / . d  = RQ. (2.2) 

We will prove 

THEOREM 2.1. P£ has property SYP iff A has property SYP. 

The paper runs as follows. In Section 3 we show that the theorem holds 
for/z = 0 by using known results on LU factorization. In Section 4 we obtain 
the two new criteria for A to be STP. We combine these with some relations 
between the so-called comer minors of A and h~, to prove the theorem when 
A is STP. Finally we prove it when A is NTP or O. 

3. LU FACTORIZATION 

The foundations of the theory regarding LU factorization were laid by 
Gantmacher and Krein (1950) and Karlin (1968). Cryer (1973) proved a 
theorem which includes 

THEOREM 3.1. A has property P iff A has an LU factorization such that 
L and U have property zxe. Also, A has property e iff A has a UL 
factorization such that L and U have property zx P. 

We need to explain the symbol zx P. If  A is a lower (upper) triangular 
matrix, the minors A(a; /3 )  for which /3 ~< a (/3 >1 a )  will be called the 
nontrivial minors of A. The remaining minors of A, the trivial minors, are 
identically zero. We say that A has property zx P if A is a triangular matrix and 
the nontrivial minors of A satisfy the required inequalities of P. 

Regarding the property zx O, Cryer proves 

THEOREM 3.2. Let A be a zx TP lower (upper) triangular matrix. Then 
A is AO (i.e., A m is lk STP for some m) iff (i) A /s nonsingular and (ii) 
ai+l, / > O(ai ,  i+ 1 ~> O) f o r i  = 1,2 . . . . .  n - 1. 

Theorems 3.1, 3.2 have the following corollary. Let A have property P, 
and A = LU where L, U have property zx P; then B = UL has property P. 
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We are concerned only with symmetric matrices having the property P, 
i.e. having property SYP. Such matrices are PD, and therefore have a unique 
Cholesky factorization A = LL  T with positive diagonal. Theorems 3.1, 3.2 
imply that if A has property SYP then L will have property zx P, and 
B = L T L will have property SYP. 

For matrices with property SYP and /x = 0, the matrix A' of Equation 
(2.2) may be obtained from A by using two Cholesky factorizations and 
reversals: 

A = LIL~, B = L~L 1 = L2L~, /~(0) = L~L 2. 

We write Q =  L1L~ r =  L~-TL2 and R = LrL~, and note that Q Q T =  
L1L~r(L~-rLz)  r = I, so that Q is orthogonal. Now A = L1L~ ~. L~L~ = 
QR, ?~(0) = L~L~.  Li-rL~ = RQ. I f A  has property SYP, so do B and/~(0), 
and vice versa. This proves Theorem 2.1 for/z = 0. 

Symmetry is essential for the permanence of property P under ff~, as is 
shown by the counterexample for/x = 0: 

a I 1] A =  2 ' Q =  1 2 ' 

A'(0) 1 [ 1 2  + 2a 4 a - 1  ] 
--- 5 [  4 - a  2(4 a) " (3.1) 

When a -- ~, A is O and STP, and/~ is not TP; when a = 0, A is NTP, and 
/~ is not TP. When A is not symmetric, its QR factorization may n o t  be 
formed from two LU factorizations. 

The condition tha t / z  is not an eigenvalue of A is essential. The matrix A 
in (3.1) is SYO and SYSTP when a = 1. When /~ = 1, /z is an eigenvalue of 
A, and 

[11] [c cl[c  el A - / z / =  1 = c , c =  ~ - ,  

A ' ( 1 ) - / ~ I =  [ c-1 20c][c c c] [2 0] ,  ? £ ( 1 ) =  [~ 0] .  

/~(1) is not oscillatory. When A is SYO or SYSTP, its eigenvalues are distinct. 
When /z = Aq for some q, A - tzI has rank n - 1, and rnn = 0 (but no 
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other r~ is zero). Thus the last row and column of/~ - / x I  will be identically 
zero; in particular, a' --- 0, so that A cannot be SYO. r t ,  r t - -  1 

4. CRITERIA FOR STP 

We define a successive minor as an A(ot;/3) with d(oz) = 0 = d(/3).  
Fekete (1913) established the fundamental 

LEMMA 4.I. Let l~k ~- ~}~mXp (m >1 p). I f  

(1) the last p - 1 columns of A 
(2) all minors of  order p - 1 taken from the last p - 1 columns 
(3) all successive minors of  order p 

are positive, then all p th order minors are positive. 

(Note that positive here means strictly positive, not nonnegative as in the 
definition of TP.) 

Induction on p leads to the criteiron which, following Ando (1987), we 
state as 

THEOREM 4.1. A is STP if  A(ot;/3) > 0 whenever t~,/3 ~ Qk,, and 
d(o~) = 0 = d(/3),  k = 1,2 . . . .  ,n .  

In other words, for A to be STP it is sufficient that the successive minors 
be positive. 

Markham (1970) proved 

LEMMA 4.2. Let A be 0 .  I f  an1 > 0 and aa, > 0, then A is (strictly) 
positive. 

The lemma states that A is positive, i.e., a~j > 0 for all i, j = 1, 2 . . . . .  n, 
not that A is STP. Its proof does not require that A be O, only that the 
elements of A and the 2 x 2 minors of A be nonnegative, and the principal 
diagonal be positive. He uses, as we do, the statements: 

(®) if a >/ 0 or d >t 0, b t > 0 a n d c > / 0 ,  and 

a l>0 
t h e n a > 0 a n d d > 0 ;  
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((I)) i r a  > 1 0 o r d > ~ 0 r  b > 0 a n d c > 0 ,  and 

I a 
then a > 0 a n d  d >  0. 

G. M. L. GLADWELL 

We denote the pth compound matrix of A, i.e. the matrix of order 

composed of the pth order minors of A arranged in lexical order, by Ap. We 
may rephrase Lemma 4.2 as 

LEMMA 4.3. I f  

(i) A and A 2 are nonnegative (we write this A >i O, A 2 >t 0), 
(ii) the principal diagonal o f  A is positive, and 
(iii) an1 > 0 and al .  > O, 

then A is positive, i.e., A > O. 

Proof. We consider the lower triangle of A. The first column and last 
row are positive, because statement ( ¢ )  applied to 

A ( i ,  n; 1, i) = aila.i  - a .anl  >i 0 

implies a i l >  0 and a.~ > 0. I f n o w j  < i < n, then statement (cp) applied to 

A ( i ,  n ; j , i )  = aqa. i  - a . a . j  >1 0 

implies atj > 0. We can consider the upper triangle likewise. • 

We generalize this to give a new criterion for A to be STP. 

THEOREM 4.2. I f  

(i) A / sTP i.e. A_  >10, ~ = 1,2 . . . . .  n, and ~ ~ # 

(ii) A ( a ;  /3) > 0 and A(/3; or) > O for  

a = { n - p + l , n - p + 2  . . . . .  n},  / 3 = { 1 , 2  . . . . .  p}, 

p = 1,2 . . . . .  n, 
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then A is STP. 

Note that the minors A(a;  13) and A( ~; a)  are the southwest (SW) and 
northeast (NE) comer elements of Ap, i.e., A( a; ~ ) = ( Av)N. 1, A( ~; a)  = 
(Av)I, N. We cannot prove this simply by applying Lemma 4.2 to each 
compound matrix A_, for if A is TP, then (Ap) 2 is not necessarily nonnega- 
five, as shown by the counterexample 

A= 1 0 A~= 
1 1 0 , 

1 1 

1 0 0 0 0 0 
1 1 0 0 0 0 

1 ~ 0  0 0 
0 1 0 0 

1 1 1 1 1 0 
1 1 1 0 1 1 

(4.1) 

A is TP but (A~) 2 is not nonnegative; the boxed minor is negative. Fekete's 
Theorem 4.1 shows that for A to be STP it is sufficient to prove that all 
successive minors of A are positive. We could therefore consider proving 
Theorem 4.2 by applying Lemma 4.3 to the submatriees Ap, made up of 
successive minors of order p. But if A is TP, then (Ap~) 2 is not necessarily 
nonnegafive. For the A in (4.1), 

A2s 

0] 
= 0 

1 ' 

and (A~,)~ is not nonnegative; the boxed minor is negative. 
Note a difference between Theorem 4.2 and Fekete's Theorem 4.1. In 

Theorem 4.2 we presuppose that A is TP, and then have to check that the 
2n - 1 comer minors are positive; in Theorem 4.1, we do not presuppose 
that A is TP, and have to check all the successive minors; there are 
n(n + 1X2n + 1)/6 in all. Condition (i) of Theorem 4.2 is essential; 

A[- I 
satisfies (ii), but is not STP. 

We will prove the theorem by applying the 2 x 2 version of Sylvester's 
identity (Gantmacher, 1959) for bordered determinants: let 

c , j = B ( 1 , 2  . . . . .  p , i ; 1 , 2  . . . . .  p , j ) ,  i , j = p +  l , p + 2 ;  
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then 
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C ( p  + 1, p + 2 ; p  + 1, p + 2 )  

= B ( 1 , 2  . . . . .  p ; 1 , 2  . . . .  p ) B ( 1 , 2  . . . . .  p + 2 ; 1 , 2  . . . . .  p + 2 ) .  

(4.2) 

We will apply this to 2 x 2 minors taken from the compound matrices Ap. 
We need some abbreviations; we write 

Ap{ i , j }  = 

Bp{i;j} = 

( A ( i - p  + 1, i - p  + 2  . . . . .  i ; j , j  + 1 . . . . .  j + p -  1) 

for i = p , p  + l , . . . , n ,  j = l , 2  . . . . .  n - p  + l ,  

and i , - p  + 1 t > j ,  

A ( i , i  + 1 . . . . .  i - p  + 1 ; j - p  + 1 , j - p  + 2 . . . . .  j )  

for i = 1 , 2  . . . . .  n - p  + l ,  j = p , p  + l . . . .  , n  

and i - p  + 1 < j ,  

A ( i - p  + 1 , i - p + 2  . . . . .  i ; j , j +  1 . . . . .  j + p - 2 , j + p )  

for i = p , p  + 1 . . . .  , n ,  j =  1,2 . . . .  , n - p ,  

and i - p  + 1 >~j, 

A ( i , i  + 1 . . . . .  i + p - 2 ,  i + p ; j - p  + 1 , j - p  + 2  . . . . .  j )  

for i = 1 , 2  . . . . .  n - p ,  j = p , p + l  . . . . .  n, 

and i - p +  1 ~<j. 

Note that the comer minor A(c~;/3), A(/3; ce) in the condition of the 
theorem are A(ot;/3) = Ap{n; 1}, A(/3; o~) = Ap{1; n} respectively. 

Proof of  Theorem 4.2. We apply induction on n. The theorem is trivially 
true for n = 1, 2. Assume that it is true for matrices of order n - 1 (n >/3) 
and that A satisfies conditions (i) and (ii). 

Condition (ii) states that Ap{n;1} > 0 for p = 1 , 2 , . . . , n ,  so that 
Ap+l{n;1} > 0  for p = 0 , 1 , 2  . . . . .  n -  1; p = 0  gives Al{n;1} = a , , l >  0; 
p = 1 gives 

A2{n; 1} = an_l,lan, 2 - -  an,lan_l, 2 > 0 
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Since all four terms in this inequality are nonnegative, s tatement (19) yields 
an-1, 1 ~ Al{n  -- 1; 1} > 0. 

We examine the logic: the positivity of  the SW comer  terms of  A and A 2 
implies the positivity of  the SW comer  term ( a , _  x, 1) in A L, the leading 
principal minors of  A. I f  we can show that conditions (i) and (ii) for A imply 
conditions (i) and (ii) for A L, then our induction hypothesis will imply that 
A L is STP. This is the first step. Then  all we will have to do, in the second 
step, to prove that A itself is STP, is to show that all the minors involving the 
last row a n d / o r  last column are positive. 

Step I: Sylvester's identity (4.2) and appropriate row and column inter- 
changes yields the identity 

A p { n  - 1; 1} B p { n  - 1; 1} 
Ap{n;1} Bp{n;1} = A p _ l { n  -- l ; 1 } A p + l { n ; l  } (4.3)  

linking four terms in ~kp. Consider (4.3) for p = 2, 3 . . . . .  n -  1. Since 
Ap+ l{n; 1} > 0 and all four terms in the determinant,  being minors of  A, are 
nonnegative, s tatement (®) states that 

if A p _ l { n  - 1;1} > 0, then a p { n  - 1;1} > 0. 

But A l { n -  1; 1} > 0, so that A p { n -  1; 1} > 0, p = 1,2 . . . . .  n -  1. But 
Ap{n - 1; 1} = A ( n  - p,  n - p + 1 . . . . .  n - 1; 1, 2 . . . . .  p)  is the SW cor- 
ner  p th  order  minor of  AL; it is positive. By considering the NE comer  in a 
similar fashion, we can show that A p { 1 ; n -  1} > 0, p = 1,2 . . . . .  n -  1. 
This proves step I. Our  induction hypothesis now states that A a is STP. 

Step II: We now show that all the minors involving the last row a n d / o r  
last column are positive. Lemma  4.1 states that we need  consider only 
successive minors involving the last row or column. We consider those 
involving the last row. Condition (ii) gives 

~'1 - { A p { n ; 1 } ,  p = 1 ,2  . . . . .  n} > 0. 

Sylvester's indeitity yields 

A p { n  - 1;j} A p { n  - 1;j + 1} 
A p { n ; j }  A p { n ; j  + 1} = A p _ l { n  - 1 ; j  + 1 } a p + l { n ; j } .  

(4.4) 
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Since we have shown that  A L is STP, Ap_l{n - 1 ; j  + 1} > 0 f o r ( j  + 1) 
+ ( p  - 1) ~< n - 1, i.e. j + p ~< n. Since all four terms on the left of  (4.4) 
are nonnegative,  s ta tement  ( 0 )  gives 

if j + p ~< n and Ap+l{n;j} > O, then Ap{n;j + 1} > 0. 

This gives the pat tern  of  implications shown in Figure 1. 
This means  that  if 

~j - {Ap{n;j}, p = 1 ,2  . . . . .  n - j  + 1}, 

then ~j > 0 implies ~j+ 1 > 0. Since ~1 > 0, we conclude that ~j > 0 for 
j = 1, 2 . . . . .  n. W e  can prove similarly that  all the successive minors involv- 
ing the last column of  A are positive. Hence  A is STP. • 

COROLLARY 1. Under the conditions of the theorem, (Ap~)~ is strictly 
positive. 

An application of  Sylvester's identity similar to (4.4) shows that  successive 
2 × 2 minors of  Ap,  are positive. L e m m a  4.1 implies that all are positive. 

COaOLLAaY 2. Condition (i) of the theorem may be replaced by 

( i a )  A L / s T P ;  
(i b) the principal minors of A are positive. 

At{n; 1} .an{n; 1} A~{n; 1} 
/ / 

At{n; 2} Az{n; 2} . . . .  
/ / / 

. , , .  ° • . . . ° , ,  * 

At{n;n-2} A2{n; n-2} . A 3 { n ;  n-2} 
J" p- 

At{n;n-1} . A2{n; n-1 } 
p" 

At{n; n} 

. . . . .  A..~ In; I } . A~{n; I l 

A.. 2{n;2} ,A"- I{n;2} 
p- 

FIG. 1. The pattern of implication of positivity. 
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Proof. We use induction on n as before. The corollary holds when 
n = 1, 2. Assume that it is true for matrices of order n - 1 (n ~> 3). The 
argument used in the proof of Theorem 4.2 has two parts. For the lower 
triangle, they are 

(1) Ap{n; 1} > 0, p = 1,2 . . . . .  n, implies Ap{n - 1; 1} > 0, p = 1, 2, 
. . . .  n -  1; 

(2) ~j > 0 i m p l i e s  ~j+l > 0, j =  1,2 . . . .  n -  1. 

When only A L, not A, is TP, the argument leading to (1) fails when 
p = n - 1; for Bn_l{n - 1; 1} in (4.2) is not a minor Of AL, since it involves 
the last column of A. Thus we cannot deduce that A,_ l{n - 1; 1} > 0. 
However, this is a principal minor of A, andis positive by the hypothesis (i b); 
we have therefore established (1). 

The argument leading to (2) fails in a similar way. When j + p = n, i.e. 
p = n - j ,  Ap_l{n - 1;j  + 1} is not a minor of A L, because it involves the 
last column of A L. From (4.3) we can deduce only 

if j + p  ~ < n -  1 and Ap+l{n; j }  > 0, then Ap{n ; j  + 1} > 0. 

This means that the pattern of implications excludes those shown as broken 
lines in Figure 1. But the final diagonal of principal minors of A is positive by 
hypothesis. Thus (2) holds, and A is STP. • 

5. SOME FUNDAMENTAL PROPERTIES OF QR 

The basic equations are 

A - /zI  = Q R ,  

These yield 

so that 

h~ - / z I  = R Q .  ( 5 . 1 )  

/~ = / z I  + Q r Q R Q  = / z I  + QT(Q _ / z I ) Q ,  

2~ -- QTAQ. 

This shows that 2~ is SY iff A is SY. If  A is SYP, then it is PD, and hence/~ is 
PD. 
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The equations (5.1) yield 

A'R=pR+RQR=pR+R(A- 

The Binet-Chauchy theorem (AB = C * APB, 

(X)p~p =Rp~,. 

Now we can prove 

(zX")pRp =RpA; 

by induction. The Binet-Cauchy theorem gives 

(Am)p = (A,)" = A';: 

and similarly 

(A’yp = oqJm = AA;. 

G. M. L. GLADWELL 

/-&I) =RA. (5.2) 

= Cp> now gives 

(5.3) 

(5.4 

(5.5) 

(5.6) 

The result holds for m = 1. If it holds for m, then 

Equating the lower left-hand comer elements on both sides of (5.4), we 
find 

Arh lull = (RP)NNA;b; 1) (5.7) 

where, as before, N = 
( 1 

F is the order of A,. 
When p is not an eigenvalue of A, so that all the rjj are positive, we may 

write (5.7) as 

A;( n; 1). (5.8) 

This holds for p = 1,2, . . . , n and m = 1,2, . . . . 
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Suppose first that A is SYSTP. The analysis of Section 3 shows that g (0 )  is 
STP. Equation (5.6) for m = 1 shows that, for all t~ ~ Xq, q = 1, 2 . . . . .  n, 

Ap{n; 1} > 0, p = 1,2 . . . . .  n. ( 6 . 1 )  

The matrix A'(/z), and all the minors of /~( i t ) ,  are continuous functions of tt. 
Therefore there is: an open interval around zero in which g ( / x )  is STP. We 
first show t h a t / ~ ( i t )  is STP for all /z < 0. For if that were not so, there 
would be a /z 0 < 0 for which some of the minors were zero while the 
remainder were positive. But then/I~(it0) would be TP, while the comer 
minors A'p{n; 1} would be positive, so that Theorem 4.2 would show that 
/~(/z 0) is STP. This contradiction implies that h~(/z) is STP for all /z < 0. An 
exactly similar argument shows that g ( / z )  is STP for al l /z satisfying 0 ~</x < 
An, where "~n is the least eigenvalue of A. 

At tt = An, as we showed in Section 3, the last row and column of 
/g(/z) - t t I  are zero. The leading principal submatrix gL(A,) is PD and, by 
continuity as /x ~ )t,, TP. 

We cannot immediately extend this argument t o / z  > /~n by continuity, as 
we know only that A'L(A . )  is TP, not STP. But gL(A,) is SYNTP, and an 
SYNTP matrix A may be approximated arbitrarily closely by the SYSTP 
matrix GAG, where 

G = G ( k )  = (g , j )  = e x p [ - k ( i - j ) 2 ] ,  i , j =  1,2 . . . . .  n. 

The matrix G is SYSTP and G(k)  ~ I ,  as k ~ oo. [Note that the parameter 
p in (c) on p. 213 of Ando (1987) should be in tile numerator, not the 
denominator.] 

Write 

= L s T ' 

let G L be the principal leading submatrix of G, and form the matrix 

o 
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At /z = )t,, A' L is NTP  and b ( /x )  -- 0; GLN_LG L is STP. By continuity there  
is an open interval around /,  = )tn in which GLIiLG L is STP. Ei ther  
GLgL(iZ)G L is STP for all /x satisfying )t, ~</z < )to_l, or there  is a /~1 
satisfying A n < t*l < ) t , -  1 at which GLKL( /Z l )G L is only TP. In  the fo rmer  
case, on taking the limit k ~ oo we deduce  that  /~L(/~) is TP  for all 
)tn < /£ < ) tn -  1" Then  we can apply Corollary 2 of  Theo rem 4.2 to deduce  
that  P~(/z) is STP. In  the latter case, we show t h a t / g (  it1, k)  is STP by again 
applying Corollary 2 of  Theo rem 4.2; the leading principal submatrix 
GL2~L(/xl)G L of  K (  t*l, k)  is TP, and P~( t*l, k)  is PD; we need  to ensure  
that  the c o m e r  minors of  P~( t*l, k)  are positive. Since G L becomes  increas- 
ingly diagonally dominant  as k increases, we may state 

A'p(/Xl, k ) { n ;  1} = A'(/.&l)p{/1; 1} -I- O ( e  - k )  

so that for sufficiently large k, i.e. k > K, 

a',( k){, , ,  1} > o. 

Thus Corollary 2 of  Theo rem 4.2 states that, for k > K, K(/-~1, k)  is STP. 
Now, letting k ~ 0% we deduce  that  #2(~1) is TP. Now we apply T h e o r e m  
4.2 and deduce  that  X ( / z  1) is STP. H e n c e / ~ ( / x )  is STP for all /x satisfying 
)tn < /.L < )tn - 1, and by the same argument  for all /x 4= )t , q = 1, 2, , n q . . . .  

Now suppose that A is SYNTP. We  may approximate it arbitrarily closely 
by the SYSTP matrix A(k)  = GAG,  and use the theorem we have proved  for 
an SYSTP matrix. We  know that  the matrix A(kY(/x)  derived f rom A(k)  is 
STP for all ~ 4= )t(k) , where )t(k)q denotes the q th  eigenvalue of  A(k)  q 

Since the eigenvalues of  a matrix are continuous functions of  its entries, each 
sequence )t(k)q, k = 1, 2 . . . . .  will converge to )tq. Choose ~ > 0; then we 
may find K such that for all k > K and all q = 1,2 . . . . ,  n, I)t(k)~., - Aq[ < ~. 

This means that  if k > K, P~(k)(lz) will be  STP for all tz satisfying I)tq - tit 

> e, q = 1,2 . . . . .  n. This means that  for all k = 1,2 . . . . .  we may find K 
depending  on k such that  for all k > K and all q = 1 , 2 , . . . ,  n, we have 
I)tq(k) - )tql < 1/k .  Thus if k > /K,  A(k ) ' ( / z )  is STP for all tz satisfying 
I t* - )tql > 1 / k  for q = 1, 2 . . . . .  n. Taking the limit k ~ oo and noting that 
the e lements  of  P~ are continuous functions of  those of  A, we deduce  that 

P: ( / . e )  = l i m  A ( k ) ' ( / x )  
k - - + ~  

is NTP  fo r /x  4= )tq, q = 1, 2 . . . . .  n. 

I f  A is SYO, then it is SYNTP. Therefore  by the preceding conclusion 
X ( / x )  is NTP.  Now we use (5.8). Since A is SYO, there is a power  A m tha t  is 
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t m  SYSTP. For that power, Ap{n; 1} > 0 for all p, so that A v (/-0{n; 1} > 0 for 
all /z ~ Aq. Thereom 4.2 applied to A'm(tz) shows that/~m(/x) is STP, hence 
h~(/z) is O for all /z :~ )tq. 

We have now proved the "if '  part of Theorem 2.1. The "only if" part 
follows in exactly the same way, for if the equations (5.1) hold, then since A 
and A' are symmetric, we may write 

- ~ I  = QTRr, A - ~ I  = RTQ r. 

We now argue from h~ to A. The change from the upper triangle R to the 
lower triangle R r has no effect on any of the arguments we have used. 

7. CONCLUDING REMARKS 

If A has property SYP, then the operator ~'~ maps A into an orthogonally 
similar matrix/~(/x) with property SYP. Equation (5.2) and its generalizations 
(5.3) and (5.4) show that ff~ will preserve the band structure A, Ap, and Ap. 
Thus from any one A with property SYP, we may generate an orthogonally 
similar family of matrices by repeated application of ff~, with the same or 
different values of/z;  all of them will have the same structure as A. Note that 
this does not contradict the possible convergence of symmetric A to its 
diagonal under repeated QR factorizations and reversals. If  A has property 
SYP, then all the iterates will have property SYP even though they may 
converge to the diagonal under the appropriate conditions. 

There are two simple, but important special cases of our analysis. If  A is 
symmetric and tridiagonal, it will be SYO iff it is PD and has positive 
codiagonal. Equation (5.2) shows that .~ is symmetric and tridiagonal. This 
case was considered in more detail in Gladwell (1995). I f A  is the inverse of a 
symmetric PD tridiagonal matrix with negative codiagonal, then it is SYO. 
The equation RA -1 = (P~)-IR derived from (5.2) shows that X will be the 
inverse of a PD tridiagonal matrix with negative codiagonal. The family of 
such matrices includes the D-matrices considered by Markham (1970). We 
note however that if A is a D-matrix, then ~ is not necessarily a D-matrix, as 
shown by the counterexample 

[11 A =  1 , / z = ~ ,  A ' =  1 2 "  
g 

A~ is not a D-matrix. 
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Provided that /x is less (greater) than the lowest (highest) eigenvalues of 
A, there is an analogue of Theorem 2.1 for A' derived from A by the 
operations A - / x I  = _ L L  r, P~ - / x I  = _ L r L, with L having positive diag- 
onal  

1 thank Thomas Markham for  telling me about Ando's paper. Hongmei 
Zhu helped me by finding counterexamples. 
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