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Abstract. Andersson recently developed an algorithm for the inverse eigenvalue
problem for the Sturm-Liouville equation in impedance form. The impedance A(x})
is assumed to be piecewise constant over N equal intervals. In this paper we show that
Andersson’s algorithm is equivalent to Schur’s algorithm, which is well known in one-
dimensional setsmology and transmission line theory, and is known to be numerically
efficient and stable,

1. Introduction

In a recent paper, Andersson [1] considered the inverse eigenvalue problem for the
Sturm-Liouville equation in impedance form, namely

(A(z)w'(2)) + w?A(x)w(z) = 0 0gegL (1.1)
subject to the end conditions

I w'(0) = 0=w'(L)
II. w(0) = 0 = w'(L).
Equation (1.1) describes the infinitesimal, free, longitudinal vibrations of a thin,
straight rod of cross-sectional area A(z) under ‘free—free’ (I} or ‘fixed—{ree’ (II) end

conditions; w is the (scaled) natural frequency. He showed that if there were given
eigenvalues (w,))’ such that

O=wy<w; < <wy=7N/2L (1.2)

and such that the even w; are eigenvalues for I, the odd for II, then there exists a
unique rod with piecewise constant A(z), such that

Alz) = 4; (j—Da<zgia (1.3)

where A = L/N, j=1,2,...,N, A, = 1. He presented an algorithm for the determi-
nation of the A;.
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The purpose of this paper is to place Andersson’s algorithm within the context of
inversion algorithms in seismology and transmission line theory [2,3}. In that context,
a medium with parameters that are piecewise constant over equal intervals of depth
A, such as (1.3), is called a Goupilleud medium. In seismology and transmission line
theory, as in most inverse scattering problems, the data does not relate to eigenvalues;
there are no eigenvalues, or so-called bound states. Instead the data refers to the
response to an input. One way of expressing the data uses the reflected wave U(#) at
equal intervals 2A, due to an Incoming wave D(t) also sampled at intervals 2A. One
of the fundamental questions is to ask whether a given reflected wave and incoming
wave actually correspond to a Goupillaud medium. This is the question: ‘Is the data
realizable?’ The realizability criterion can be phrased by introducing the Z-transforms,
U(z) and D(z), of U(¢) and D(t), and defining the left-reflection function

R(z) = gg (1.4)
and then putting

filz) = 27 R(2). (1.5)
The criterion is

M(f) = sup | [1(z) IS 1. (1.6)

Schur [4] constructed an algorithm to test whether a function f,(z) satisfies (1.6), that
is, is bounded by 1 on the unit disc. It is based on the fact that if | v [< 1, then

=227 (1.7)
1-%z

maps | z|€ lonto |w|< 1and |z |=1onto]w|=1. Schur’s algorithm is based on
the recurrence

N 1 fz‘-l(z)“7j . 1.8
f(Z)- zl_,—rjfj_l(z) J 2v31"- ( - )

where v; = f,_,(0). Suppose M(f; ;) < 1. There are two possibilities either

by =1, in whlch case the condition M(f;_,) < 1 and the maximum modulus
nﬂ'qmn]n {Knnnn I"ﬂ n Rtn forces f {z\ = ‘VJ so that the sequence terminates at
fi_zyor |y i< 1 in whu,h case M(JJ) € 1. Thus the condition (1.6) used with
the recurrence (1 8) leads to a finite or infinite sequence, v,,7;, . . ., with the property
| 7 |< 1, where the inequality is strict except possibly for the last, one. We note in
partlcular that if M{f,) =1, then M(f;) = 1 for all j, and if the sequence terminates
at j =N +1, 1tw1lldosow1th]fN ]-1

2. Formulation

First we replace equation (1.1) by two coupled first-order equations, namely

w/(2) = iwpl(e)/A(z) (2.1)
P'(2) = wA(x)w(z). (2.2)



n(z) = {A(z)}"/?
and define down and up quantities

= ${mo +77'p}
= 3{mo - n"'p}.

These satisfy the equations

=iwD+ 497U
= —iwl +4'5~'D

which have the solutions

Schur’s algorithm applied to an inverse eigenvalue problem

so that if A(z) = constant, then ' = 0 and

= il

U= Uue"iw't.

Ay

D; = D(ja+) U; = U(jb+)

« _ JiwaA
DJ =8 DJ-—

Put ¢4 = z1/2 then

=00 Al

Dj-1 ,} o,vo

1—1 ¥

Figure 1. Beam of piecewise constant cross-section.
Suppose A(x) has the form (1.3). Define the quantities
D} = D(ja-)

Then equations (2.9) and figure 1 show that

* . —iws
U' =€ Uj—l

U =U(a-).
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Then equations (2.4), (2.5) and the continuity of w and p across a discontinuity of

Alx) give
[D; ;] w, fay .
3=t =H»[ :-'1] [ ’..‘1]=H' [ 1-1]
Ui ] T i T I (2.14)
so that
D D
] = [ {‘_1]' 2.1
.Ujuld 17t Uj_l ( 5)
The matrix
©; = H;H;Z, (2.16)
may be written
1 [ 1 _7.]
®i=5 ’ (2.17
T S 7R )
where
A, — A,
C= (1 —~2\/2 R L i
o;={1-%) %=L YA, (2.18)

We can combine equations (2.11) and (2.14) to obtain

A=l Aeles o]
il = Sele, |7t ], (2.19)
I:UJ} 0 P 1/2 3 e 1
Put
s
D_J,, = f; (z), (2.20)

1

then equation (2.18) gives

1 fiodz -y
fiz)y= - HA——r—
e z —'J’jfj-—l(z)

_—
[
[
ot

~——

which, since 7; is real, is precisely Schur’s recurrence (1.8).

3. The forward problem

Suppose that we are given the parameters (Aj)ﬁ\r and we wish to find the eigenvalues
corresponding to the end conditions 1 and IL Suppose that the rod is vibrating with
frequency w and that the end condition at z = L is satisfied, then without loss of
generality we can take (see (2.1))

wL)=1  w'(L)=0=p(L). (3.1)
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Then D} =1y /2= U}, so that

fn(z)=1. (3.2)

The values of w(0) = wy, p(0) = p, are given by

Dy = 3{nowq + 15 ' po} (3.3)
Upg = %{Uowu - U{?]PD} (3-4)
so that
,wo _ Dy +Uy _ 272Dy + 2120;
®py ~ Dy ~U, z-172Dr _ iy
1 +g(2)
= 277 35
1—g(z) (35)
where
9(z) = 2f,(2). (3.6)

In the forward problem, we are given fu(z) = 1 and we are given the (7 )Y with
|7j| < 1. We may thus compute fy_,, faw_o,--.,f;, using the recurrence (2.20) in the
reverse form, namely

zfi(z} + 7
1+7’jzfj(2’)

The mapping of zf;(z) onto f;_,(2) has the form (1.6). Thus the region lzf; (z)] £ 1
is mapped onto [f;_,(z)| < 1, and |2f;(2)] = 1 is mapped onto |f;—1(z)] = L. But
fw{z) = 1 so that each (fj(z)){v has |f;(z)| = 1 when |z| = 1, i.e. when w is real.
Thus the function w = g(z) maps |z} < 1 onto [w| < 1, and Jz| = 1 onto [w] = 1.
When g(z) is expressed in terms of z it has the form

g(z) = P 2) (3.8)

@n-1(2)
where Py_, and Qy_, are polynomials of degree N — 1. Thus g(z) maps the circle
|z| = 1 into itself N times.
Equation (3.7} shows that if L) = 1/f;(2), then f;_1(z77) = 1/f;_1(2). But
(2™ = 1=1/fy(2), so that indeed

il =1/f(z) j=12...,N (3.9)

fioi() = j=NN-1,..2 (3.7)

and hence

oz71) = 1/9(2). (3.10)
The mapping of |z| = 1 into itself caused by g(z) produces two sets of N points
on |z| = 1 of significance, namely
A={z/|z]=1and g(z) = 1}
B={z/]z| =1and g(z) = -1}.
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The points in A correspond to values of z for which, according to (3.5), p, = 0; the
z values give values of w which are eigenvalues of 1. Similarly the z values in B give
wy = () so that w corresponds to an eigenvalue of II. The known interlacing of these
two sets of eigenvalues means that the points of A and B will interlace on the circle
|z| = 1. Equation (3.10) shows that if z is a member of either set, then z~! = z is a
member of the same set. Figure 2 shows the arrangement of the two sets when N = 2
and N = 3. Since g(1) = | and g(—1) = (=1)V, therefore z =1 is in A, while z = ~1
isin A if N is even, and in B if N is odd. It may easily be verified that there are
N + 1 values of z in A|JB which satisfy

Ogarg(z) s (3.11)

and the remaining N — 1 values may be obtained as z=! = z, where z satisfies (3.10).
The N + 1 values of z satisfying (3.11) yield N + 1 eigenvalues w; satisfying (1.2).
Since z = €2 is a periodic function of w with period /8 = N=/L, each value
of z gives rise to an infinite sequence of eigenvalues with equal spacing Nx/L, and
each z=! = e~ 2“2 gives another such sequence. Thus the system not only has the
eigenvalues wg,w,, ..., wy, but also

w2N+k=N7r/L+wk sz_,k':NW/L_‘wk kIO,:i'_l,:l:Q, (312)
o — P e
L ] -
N =2 N=23

Figure 2. The members of A {x) and B {O) interlace on the circle.

4. The inverse problem

Now we are given N +1 eigenvalues w; satisfying (1.2). We must use them to construct
9(z) and hence f,(z), and then find the 7; which will lead eventually to fy(z) = 1.
It is convenient to make a dlstlnctlon between even and odd values of N. In the
case when N is even, let N = 2M. Of the N +1 = 2M + 1 eigenvalues, M + 1 are
even, corresponding to I; the set A consists of 2M points: z; = 1, zy = —1, and the
M — 1 pairs zzj,z;jl, i=1,2,...,M—1. The 2M odd 2’s in B occur in M pairs
z2j_1,22-j1_1, ji= 1,2,...,M. Thus
2 CHM (2~ 29, Mz — 231 )
mwy _ 1+g(z) 1 2j-1 2j-1

= (4.1)
Po 1-g(2) (22 - 1)1—[; 1 Yz - z"j)(z_ziz_j])
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so that g(#) = 1 when 2 is a root of the denominator, and g(z) = —1 when z is a root
of the numerator. The constant, € must be chosen so that g =0,ie C=-1,
the numerator of g{z) will then have no constant term in its power series expansion,
while the highest powers in the denominator, 22M | will cancel, so that g{z) will have
the form (3.8). Denote the right-hand side of equation (4.1) by f(z), so that

1+9(2) _
1-g(z)

The function f{z) will map the open, connected region

flz)=¢. (4.2)

R={z/l:l<1)

into an open, connected region in the (-plane. The function f(z) maps the origin
z=0onto { =1, and |z| = 1 into the imaginary axis. We conclude that f(z) maps
]z} € 1 into the right-hand half-plane, so that

if |z] € 1 then Re f(z) 2 0
if |z| = 1 then Re f(2} = 0.

Since the given eigenvalues, w;, corresponding to I and II interlace, i.e. the members
of A and B interlace, then as we proceed counterclockwise around |z| = 1 starting
from z = 1, the points of A and B are mapped successively onto the point at infinity

and the origin in the {-plane. Equation (4.2) implies

_fn-1_ (-1
sl (4.3)

But if Re { = £ > 0, then ¢ is no further from 1 than it is from-1, that is [(—1]| < [(+1]
so that |g(z)| € 1. We conclude that g(z}, and hence, by the Schwarz lemma, f,(2),
is bounded by 1 on the unit disc.

Now apply Schur’s algorithm to f,(z) to produce a sequence {fj(z)}{v. The form
of g(z) given by (3.8) leads to a form

filz) = Py _y(2)/Qpn_,(7) (4.4)

with real coefficients. Therefore all ; will be real. Equation (4.1) shows that g(z) has
the properties

9(z)

gz =1/g(z)  g(1)=1L (4.5)
Therefore f,(z~) = 1/f,(z), and f,(1) = 1. Equation (1.8) now shows that

EN=1RG) f)=1  §=12..,N (4.6)
because the statement is true for j = 1. Thus f;(z) will have the form

[;(z) = Py_;(2)/Qn_j(z)  i=12,...,N (4.7)

so that the sequence will converge with fy(z) =1 as required, and the v; will satisfy
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Since A; = 1, by assumption, these 7; lead to a unique set of finite, positive (AJ-)’I"r
as required. We stress that the single condition (1.6) ensures the existence of the v

satisfying (4.8).

In the case when N is odd, let N = 2M — 1. Of the N +1=2M eigenvalues, M
are even and M are odd; the set A consists of 2z =1 and M -1 pairs 235y zz‘jl, J =
1,2,...,M~1. The 2M~1odd 2’sin B are 2y = —1 and M —1 pairs z,,_;, iy J =
,2,...,M -~ 1. Now

naw, _ L+ g(2) _ Clz+ 1)1—[;\4:;1(2 — 2z )z — z;jl—l)
Po 1 - g(z) (z—1) Hj‘i’{l(z — 23 )(z = zz_jl)

where again ¢(0) = 0 implies C = —1. Apart from this, the argument follows as
before.

For computational purposes, Schut’s algorithm leads to a recurrence relation for
the coefficients in the polynomials Prn_j(z) and Qu_;(2). Let

(4.9)

Noj N~j
Py_j(z) = Z aN—j,kzk Qn_;(2) = z bN—j,kzk' (4.10)
k=0 k=0

Equation (4.10) or (4.9) yields the values of @y and by, from data. Equation
(4.6) states that

Oy gk = by Nk k=0,1,2,...,N—j (4.11)
The recurrence (2.20} yields

¥ = aN—j+1,0/bN—j+1,U (4.12)

G’N—j,k :aN—j+1.k+1_7ij—j+1,k+l k:0,1,2,...,N-j (413)

bk =bONojpre — YViON 41,k k=0,1,2,... N —j (414)

Just as the sequen ces {aN_j_,_l’k}f:_oj'H and {l‘)N_j_H’k]»k“':ﬂj‘H consist of the same
numbers, in opposite orders, so equations (4.13) and (4.14) will produce sequences
{aN_ij }fz'(f and {bN—j,k}f=_oj cc?nsisting of the same numbers in opposite orders.

In its simplest terms the algorithm has three steps; we have adapted the procedure
of Kailath and Lev-Ari [6):

. Take the coefficients of Pn_,;(2) from equation (4.1) or (4.9) and construct the
2 x N matrix

II. Compute v, = ay/apy_; and construct
¢ =11 Tnl|lg=|0 ayp 0y - dy_g Ay g
' -T2 1 ° Gv_y @n_3 e ag 0

III. Shift the top row of the matrix formed in II to the left and delete the last column
to form the 2 x (N — 1) matrix
@ 4 ay,
R PRI
and go to step I.
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5. Conclusions

We have shown that Schur’s algorithm ensures the existence of, and provides an al-
gorithm for computing, the set of N values of the Goupillaud model of the Sturm-
Licuville equation in impedance form. Schur’s algorithm is known to be computation-
ally stable and efficient [3].

We note that by making trivial changes in the analysis we can construct the
Goupillaud model from N interlacing eigenvalues, 0 < w; < wy < - < wp = TN/2L,
corresponding to

I w'(0) = 0= w(L) odd w;
. w(0) =0=w(l) even w;.
However, it is nof possible to use the essentially algebraic method of this paper to

construct the 4; from the eigenvalues 0 < w, < w, < +++ < wy corresponding to the
general end conditions

L w'((0) = 0= w'(L)+ Hw(L)
1l. w(0) = 0= w (L) + Hu(L).
This is because w will appear in the analysis as itself, and not just in the form e?«#.
It is possible also to apply the analysis to the equation
w(2) + Ap(e)u(z) = 0 (5.1)

which appears in connection with string vibrations, since this may be transformed
into (1.1) with an appropriate change of variable.
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