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Abstract. The free undamped vibrations of rods, horns'and taut strings are governed by second-
order differential equations. It is known that the inverse problem, namely the reconstruction
of such a system, e.g. the reconstruction of the cross-sectional profile of a rod, requires the
knowledge of two free vibration spectra corresponding to two different sets of end conditions.
This paper is concerned with families of second-order systems which have one spectrum in
common. The analysis is based on the reduction of the governing equation to the standard
Sturm~Liouville form, the use of the Darboux lemma, and the research of Trubowitz, Péschel,
Deift and others. In particular the paper establishes necessary and sufficient conditions for
isospectral flow from one rod to another rod with the same end conditions, using double Darboux
transformations. '

1. Introduction

The linear, free, undamped longitudinal vibrations of a thin straight elastic rod with variable
cross section A = A(x), Young’s modulus £ and density p are governed by the equation

8 du 82u

— | FA— | =pA—.

ax ( ax) FYY
For free vibration with frequency e, the longitudinal displacement «(x, £} may be written

u(x,r) = u(x)coswt
so that u = u(x) satisfies

(Ad)' +MAu=0 A = pa?/E. ) (1)
With appropriate redefinitions of A, . A, this equation governs the modes of vibration of
a thin rod in torsion, or of an acoustic horn. We shall phrase our discussion in terms of
the rod in longitudinal vibration. After developing the analysis for the rod we will discuss
what changes have to be made for the analysis of isospectral taut strings, in section 3.

We assume that the rod has unit length and has elastically restrained ends, so that

A (0) — ku(0) = 0 = A()u'(1) + Ku(l) 2)
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where k£, X = 0. We distinguish three important cases:

. Supported (S): k=00 =K u(0) =0=ull) (3)
Free (F: k=0=K () =0=d(1) 4
Cantilever (C): k=0 K=0 u(0) = 0=1u'(1). (3)

The first two are often called Dirichlet and Neumann end conditions, respectively.,
There is a fourth case, namely the periodic rod. Here A(x), u(x) have period 1, so that
A(x) = A(1 + x), and the end conditions are

Periodic (P): u{0) = u{1) 20)] =7 w'(1). (6

We shall be concerned exclusively with rods for which A(x) is a positive, twice
continuously differentiable function of x. (These conditions are unnecessarily restrictive,
but we are not interested, at this time, in discussing the fine points of the analysis of the
case when A is merely assumed to be, e.g., continuous.} It is well known (see Gladwell
1986, ch 8) that for such A(x), and end conditions (2), there is an infinite sequence
{An}§® = Ap, Atha, ... such that

Oglo <}\.| <A.2 < e
for which (1) haé a non-trivial solution u satisfying the end conditions (2). Moreover, it is
known that Ay = 0 iff the rod is free (F) or periodic (P), and that A, — oc as n — co.
This sequence is called the spectrum of the rod for the end conditions; we can write

(A} = s(A, &, K). Q)

Since equation (1) is homogeneous in A, the spectrum depends only on the shape of A, not
on its absolute magnitude, ie. s(cA, ck,cK) = s{4, k, K). Henceforth we shall assume
that A has been normalized so that

A0y = 1. ’ 8
As equation (7) states, the spectrum depends on the shape and the end conditions. For

large n, i.e. asymptotically, the A, depend more strongly on the end conditions than on the
shape. For a non-uniform, but coatinuous rod, there are three cases:

(i) &, K finite, including the free rod, (F) for which k =0 =K
Ao = ()2 + O(L) = ©)
(ii) one of k, K finite, one infinite, including (C) k=00, K =0
A= [+ 1272+ 0(1) ' (10)
(iii) £ = co = K, ie. (8)
— [+ DrP+ o(l). | (11)

In each case the O(1) terms depends on A(x) and the finite &, K, if there is one.
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For the periodic case, (P), given by (6)
= @)+ O1) . (12)

where the O(1) terms depend on A{x), and are zero when A(x) = constant.

The shape of the rod and the end conditions uniquely deiermine the spectrum, but as
is well known, the converse is false. In fact two spectra, satisfying specific interlacing
conditions and having specific asyinptotic forms, and corresponding to two different sets
of end conditions, for example (8) and (C), are required to reconstruct the shape and end
conditions uniquely. This is well known (see Borg (1946) and Gladwell (1986) for proofs
and historical notes) and will be used in section 7. First, however, we are concerned with the
problem of finding other rods which have the same spectrum as a given rod for a particular
set of end conditions. If

$(Ay, Ky, K1) = 5(Az, ks, K2) (13)

we shall say that the rods are isospectral. The simplest, almost trivial pair of isospectral
rods is obtained by physically turning the rod and restraints around, so that

.Ag(x)=A1(1—x) k2=K1 K2=k1.
This will have no effect on the spectrum, so that
s(A1{x), &y, K1) = 5(A1(1 — x), K1, k). (14)

The remainder of the paper runs as follows. In section 2 we derive some simple
isospectral pairs. After reducing equation (1) to Sturm-Liouville form in section 3, we
introduce the Darboux lemma in section 4 and apply it to form isospectral families of rods
in sections 5 and 6. In section 7 we consider isospectral flow from one rod to another, and
in section § we briefly discuss isospectral sirings.

2. Some simple isospectral pairs
To obtain the simplest isospectral pair we note that if  satisfies (1), then o = Au’ satisfies
(AT'wY +247'w =0 (15)

which is precisely (1) with A replaced by A~1.
Now consider the end conditions. We have

= Au' w' = —AAu.

Thus if the original rod is a cantilever, with #(0) = 0 = #'(1), then the new rod satisfies
@' (0) = 0 = w(l) so that it is a reversed cantilever. The cantilever cannot have a zero
eigenvalue so that we can conclude

(A, 00,0) = 3(1/A, 0, )
and using (14) we deduce that
S(A(), 00, 0) = 5(1/A(1 — ), o5, 0).
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This is a result which has been known for many years (see Eisner 1967, Benade 1976 or
Gladwell 1986 p 149), and was recently pointed ont by Ram and Elhay (1994).

If the original rod is free, so that ¥'(0) = 0 = #/(1), then @(() = 0 = w(1), so that the
new rod is supported. But the free rod has a zero eigenvalue with eigenfunction « = 1, for
which «w = 0. Thus the zero eigenvalue will not appear in the spectrum for the supported
rod. We conclude that

5'(A,0,0) =5(1/4, 00, o) : (16)

where the ' indicates that the zero eigenvalue has been omitted.
1t is also simple to deduce )

§(A, periodic) = s(1/A, periodic).

3. Reduction to Sturm—Liouville form
The cross section function A is positive; write
A=a? y=au. (17

Then

A =c* =ay —a'y (18)

so that (1) reduces to the Sturm-Liouville form

Y+ —qy=0 (19)
where

g=ala. (20)

For a given A or a, there is a unique g, but for a given g there are many a. This
allows us to obtain further isospectral sets. (Although rather obvious and observed already
by Bernoulli and Euler, the indeterminacy introduced by the Liouville transformation in the
inverse eigenvalue problem seems to have been systematically studied first by Hochstadt
(1975). He proved that classical uniqueness theorems for Sturm-Liouville problem hold,
modulo a Liouville transformation.) If gp is one @ corresponding to a given g, then variation
of parameters gives the general solution

X
a= ao{d +bf zds } b, d constant. @n
o az(s)

The normalization condition 2(0) = 1 gives d = 1, so that

x ds )?
A=Ao{1+bj; Ao(s)}' (22)
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The constant b must be chosen so that A > 0 for 0 < x < 1; a necessary and sufficient
condition is

b ds
a=1+5 f > (. : (23
o Ag(s) )
If uy, u are the solutions of (1} corresponding to exactly the same y equation (19), then
tolip = ¥ = au.

A simple calculation shows that if uy satisfies the end conditions (2) with £ = kg, K = K,
then 1 satisfies the end condition with

k=k—b K = Kooi* + b (24)
where « is giver by (23). Thus, provided that b satisfies

1 —Kp 1 s

_;<b<1+KoP P= ) 46 @
we have a one-parameter isospectral family of rods with
$(A, k, K} = 5(Ap, ko, Kp)- (26)
In particular, if kg = co = Kj, then &k = oo = K, and
s(A, oo, 00} = s{Aq, 00, 00)
provided only that b satisfies (23).
There are some simple examples of equation (22}:
Ag(x) =1 A(x) = (1 + bx)* 27
Aglx) = e A(x) = {coshex + (1 + b/a) sinhax 2. (28)
One particular example of the second is
A(x) = {cosha(x — 1/2)/ coshat/2)? (29)

which is symmetrical about the mid-section x = 1/2.

4. The Darboux lemma

We showed that the governing equation (1) could be reduced to the Sturm-Liouville
equation (19). In a series of papers (Isaacson and Trubowitz 1983, Isaacson et al 1984,
Dahlberg and Trubowitz 1984) and a book (Pdschel and Trubowitz 1987), Trubowitz and his
co-workers have given a complete characterization of the isospectral potentials g{x) for the
Sturm-Liouville problem (19} with different sets of fixed and variable boundary conditions.
Coleman and McLaughlin (1993a,b) have extended this analysis to equation (1) with
Dirichlet boundary conditions. These papers are concerned with a complete characterization
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of the isospectral sets. The present paper has a more modest aim: to show how to obtain
families of rods isospectral to a given one. The analysis used by Trubowitz et al is based
on a particular case of the factorization result stated earlier, the so-called Darboux lemma.

The Darboux lemma (Darboux 1882, 1915) runs as follows. Let x be a real number,

and suppose g = g{x) Is a non-trivial solution of the Sturm~Liouvilie equation

-8 +dg=upg

with potential § = g(x). If f is a non-trivial solution of

—f'+4f=r

and A # u, then

1 1
y==[g.fl==(f —¢F
g g

is a non-trivial solution of the Sturm-Liouville equation

—¥'+dy=>i
where

2

g

d
§ = 27— In(s(x))-

(0)

@D

(32)

(33)

(34)

The Darboux lemma enables us to find a solution of a new equation, (33), if we know two
solutions g, f of another equation, (30), comresponding to two different values A, of a

parameter.
Forif z=gf' —g'f, then

?=gf"—g"f=(W-MNfg

so that z satisfies

and hence y = z/g satisfies

Le.

ie.

(35)

(36)
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ie.
gn gf ’
oo §- (o

which is (34).

We note that if f is non-trivial, then y is non-trivial. For if it were trivial, then z = [g, f]
would be identically zero, so that 77 = 0. But then equation (35) yields (4t —A)fg = 0
which is impossible since A # p and f, g are non-trivial. This establishes the first part of
the lemma. There is a second part of the lemma, which states that the general solution of
the equation

=y +dy=py
is
1 X
y= E (1 +c f ) ds) ¢ = constant.
A ‘

This follows immediately by putting A = g in equation (37) and retracing the steps to
equation (36) which is now

@ =0 ie. (yg) = cg*
g

{Poschel and Trubowitz (1987, p 89) give a longer, but intuitively more instructive derivation
of the Darboux lemma in which the Sturm-Liouville operator —D? 4+ § — . is factorized as
the product of two operators; by reversing the order of the factors we then obtain the new
Sturm-Liouville operator —D? 4+ § — p.)

5. Single application of the Darboux lemma

Suppose that we have rod A = A@) with spectrum  {A,}3° corresponding to end
conditions (2). Transforming to Sturm—Lmuvﬂle form, we have a set of eigenfunctions
gn satisfying

— 8y + 48 = Mk (38)
and some end conditions

8,(0) — gy (0) = 0 = g;(1) + Hg,(1). (39)
In particular the zeroth eigenfunction gy will satisfy

— & + 480 = Aogo. (40)

Applying the Darboux lemma, with g, go, An, Ao replacing f, g, A, pt respectively, we
deduce that

1
= - leo. ] » (41)
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is a non-trivial soletion of
— 1+ Ghy = Aphy (42)

where
2
‘é =‘q\ —235 lﬂgu. . (43)

We can use the result only if gp is positive throughout 0 < x € 1. This will be the case
if k, K are finite (see Gladwell 1986). Thus equation (42) will be a proper Sturm~Liouville
system. Moreover, since g, and go both satisfy the same end condition (39}, A, will satisfy

B,(0) = 0 = h, (D). (44)

This means that the eigenfunction of the new Sturm-TLiouville equation (42}, and hence of
any rod corresponding to this potential g, will satisfy the supported end conditions. We
must now find a function & or, in fact, a family of such &, corresponding to the new §.
The original rod with cross section A had a function & satisfying
—d"+ga=0.

Equation (21) states that all g of the form

az-a{1+bf:%} @5)
satisfy the same equation, i.e.

—ad"+§a=0. ) 7 (46)
Applying the Darboux lemma to (40), (46), we deduce that if A9 > 0, then

i = —lgo.c] @7

1s a solution of
— &+ ga=0. (48)

For this & to be a possible a(x} for the new rod with supported ends, it must be of one
sign throughout 0 £ x £ 1. First we note that since @ > 0 throughout 0 € x £ 1, the
intermediate a given by (45) will be positive throughout if

1 gs

=14b | ——-
=1+ | B

(49)
is positive, and will have one simple zero if &« < 0. Now we show that & given by (47) can
have at most one zero in any interval in which a, given by (45), is of one sign. For suppose
& had two such zeros, x1, X3 (X1 < X2} in such an interval then, by Rolle’s thearem, [gq, al’
must be zero at an intermediate point. But equation (35) shows that

[go, 2]’ = Aoago # O

which 1s 2 contradiction.
There are two cases to consider:
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(i) a, given by (45) has no zeroin 0 € x £ 1. Now @ > 0 and & > 0. & can have at
most one zero in 0 £ x £ 1, and so will have no zero if it has the same sign at O and a.
A simple calculation shows that

O =b—k  a(1)=(Ka+b)/a().

Thus & will have one sign throughout if

b>k or -—<b<
P

where p = f, (1/42(s)) ds. ,

(i) ¢, given by (45) has one zero in 0 < x < 1. Now a(§) == 0 for some & satisfying

LEL e 0and b < —1/p. Since &(&) = b/a(€) < 0, a(x) will have one sign

throughout iff 4(0) < 0, &{1) < 0, i.e. iff » < —K /(1 + Kp), but since b £ —1/p, this is
satisfied antomatically.

We deduce that equations (45), (47) provide a one-parameter family of isospectral rods
if

—K

b k. 50
irxp > 0

b <

We conclude that provided neither end of the original rod is supported (ie. &, K are
finite) and the rod is not free (i.e. A > 0), then the new rod with A = 2 and the supported
end conditions, has the spectrum {A,}5°. Thus

S'(A, k, E) = s(A, 00, 00) (51)

where the prime signifies that Ao has been deleted.
If the original rod is free, then Ag = 0 and gy = a. Now the second part of the Darboux

lemma states that the general solution of equation (48) is

X
&=-,1:{1+bf &Z(S)ds} (52)
a 0
so that
§'(A,0,0) = 5(A, 00, 00). (53)

We now show that A, and h, given by (41) are in fact the (n — Dth eigenvalue and
eigenfunction of the A rod, First we show that there is a zero of g, between two consecutive
zeros of k,. This follows from (35); if x;, x2 are two consecutive zeros, then

X2
= [g0, &] I} f (808, — 8p&n)ds = (Ao — Ap) f 808n ds.
x

But go has constant sign throughout 0 < x < 1 so that g, must change sign, and have a
zero, between x; and x;. Now we show that there is a zero of £, between consecutive zeros
of gn. This follows from (41), namely
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when g, = 0, &, = g/,. But g, has opposite signs at successive zeros of g,. Thus &,
changes sign, and therefore has a zero, between zeros of g,. We conclude that the zeros of
gn and h, interlace. But g, has n zeros in 0 < x < 1 while £,(0) = 0 = Ay (1). Therefore
hn has (n — 1) zeros in 0 < x < 1:itis the (r — 1th eigenfunction. We may thus rewrite
equation {51), (53) respectively as

J‘-n (AAS ks K) = ln—](*‘if o, DO) (54)
Aa(A,0,0) = Ay (4, 00, 00). (55)
‘We may verify this by considering the various asymptotic forms, for the eigenvalues, as

given by Hochstadt (1961) or Gladwell (1986} (but note that, in the latter, w? should be
replaced by @?_, in example 8.11.2 on p 184). Thus

. ! 12 h+H
(JL,;(A,k,K)—f édx) =+ 2
0

+0@™)
RIT

1 1/2
(}Ln_l(A, oo, 00 — f édx) =nm +0(n~3).
0

These agree because equations (43), (39) show that

- 1 i I i 1
) . (D) gocO)) f
dx = de—2 - = d 2(H + 1.
fu ? fo 7 (30(1) @) = Jy 1 TAHEER

The simplest example of (55) occurs for the uniform rod. Here go = I so that § = §
and A = A; this js evident from equations (9), (10). )

The analysis of this section breaks down if gy has a zero at an end, as it does when one
or other end of the rod is fixed. For such cases we must modify the analysis by applying
the Darboux lemma twice, as we shall now describe.

6. Double application of the Darboux lemma
Suppose that we have a rod 4 = A(x) with spectrum {A,}%° corresponding to end
conditions {2). Transforming to Sturm-Liouville form, we have a set of eigenfunctions
gn satisfying

g 48 = Angn (56)
and some end conditions

8,(0) — hga(0) = 0 = g, (1) + Hg,(1) (57

exactly as in equations (38), (39). We now choose a particular eigenvalue and eigenfunction
Am. 8 m need not be zero. Thus g, satisfies '

— &n +48m = 8- (58)
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Applying the Darboux lemma, we find a non-trivial solution

1
Ay = g—[gm, &rl n#m ' ’ (59)
of
— B+ Ghy = Anhy (60)
where
v a d?
q=q—2wlngm- (61)

On the other hand, the second part of the Darboux lemma states that the general solution of
— Hy + Ghy = Aphm (62)

is

1 X
hm=—(1—i—c[ g,%,dx). (63)
8m 0 .

We now apply the Darboux lemma to equations (60}, (62) and deduce that if # 5 m,
then ’

1

k,,=hm

[m, Ba) ' (64)

i$ a non-trivial solution of
— kI 4+ ghy = Anky (65)

where
. 2 . d?
g=qg— 2a"x'§(h1hm) =§- zm(ln gnhm)-

We now examine ¢ and the function &,. first we note that equation (63) gives gnfim,
so that

d2 X ’
q=§—2@1n[l+cfo g,%,ds]. (66)

If g,, has been normalized so that fﬂ1 g2(5)ds = 1, then ¢ will be continuous in 0 < x < 1
if ¢ > —1. We now evaluate k,: it is

1 R
k, = }{"(h”’k:‘ —~ K by =h — P - (67)
m "m
But equation (39) shows that
"M ’ !
B = EmBa —EmBn _p 8m _ (3 3)g — eEm

Em m m
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so that on substituting this into equation (67) we find

d
ky = (;\-m - A-rz)grz - hna@mhm)/gmkm

But
f o 1 x
hy = _____gmg,, Emln = _f (gmg:: - ;’;;gn)ds
8m 8m Jo
Am—Aa [
=" j Zm&n ds.
Em 0
This means that k, has a factor A, — Ay, so that if we write
1
= 3
T A — g

and use equation (63) to give gmhy, we find

B = g — C8m fgx 8m8rls (68)
PO l4cfy gids
Now we see that this is a non-trivial solution of equation (63) even when n in that equation
is equal to m. Tt can readily be shown that % is normalized so that fﬂl [£2(x)Pdx = 1.

To this point we have two Sturm-Liouville equations with potentials § and ¢
respectively, and for each solution g, of the first we have a solution k2 of the second.
Moreover, if g, satisfies g,(0) = 0 = g,(1), then &0 satisfies £2(0) = 0 = k“(l) so that §
and ¢ are isospectral. To examine what happens for other end conditions we must construct
the corresponding rods.

To find a(x) we use the Darboux lemma, noting that the original &, the intermediate &
and the final @ are solutions of the equations

—&"+ga=0 (69)
_H +5a=0 70)
—a"+ga=0 (71)

respectively. Thus the Darboux lemma applied to equations (58), (69) shows that a non-
trivial & is
“ 1 n
a=—I{gn, a]

while the Darboux lemma applied to equations (62), (70) shows that a non-trivial a is

1 .
a = —I["p, al (72)
Bm
Note that this & and a are just one of each of the families of &’s and a’s corresponding to
¢ and ¢ respectively; all others may be found by using the analysis of section 3. We can
find a just as we found &,:

o= f— clgm. algm _ o 73)

Im(l+c [ g2(s)ds)
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We see immediately that if the original rod has cross sectional A = 4% and satisfies the

supported end conditions, and if a, & are linked by equation (73), then the new rod A = 4?
with the supported end conditions, has the same spectrum, ie.

s(A, 0o, o0) = 5(4, 00, &0). (74)

We must now examine other end conditions.
Suppose the end conditions for the original rod A are

A () — ku(0) = 0 = AL’ (1) + Ru(l). (75)
Equations (17), (18) show that these transform to
[&. gnlo — k2a(0)/3(0) = 0 = (&, g1 + Kga(1)/4(1) (76)

s0 that the end values of a{x) given by (73) satisfy

a(0) clgm, Alogm (0} ckgZ(0)

=1- =1t 77
20) IO mla@F ~ P 77
a(l) _ - clgm 8hign(l) _ cRe2()
aq) ! Amf@(DIE+¢) - AalB(DPA+c) Ar. 78

Note that unless the left-hand end of the original rod is supported or free, the new a(x)
will not be normalized so that a(0) = 1. We first show that if ¢ > —1 then Bo, B are both
positive, Let u,, = g,,/@ be the mth mode of the rod. Then —(Au’Y = A, Au, so that

1 1 ! 1
f tn(Aul, Y dx = —[un,Auj,]} -+-f All JPdx = Af A2 dx = }Lm[ gldx =Ap
0 ] 0 0
and on using the end conditions (75) we find
A > K2 (1) + ku (0)
so that

2 (0)(1 + ) + Ku2 (1)
> "
ka2 (0)(1 + ) + Ku2 (1)
Am(1 + C)

>0

> 0.

These inequalities will hold provided that at least one end of the rod is not supported, i.e.
either i, (0) # 0 'or u,, (1} 5 0. Thus the only case which is excluded is the supported rod
(S), given by (3).

We now have a one-parameter family of rods a(x) = a.(x) defined for 0 € x < 1
and ¢ > —1; each member of the family is positive at x = 0, x = 1, and when ¢ = 0,
ao(x) = d(x) is positive in 0 < x € 1. To show that a,(x) must be posm\re mo<zg1
for all ¢ > —1 we use the following deformation lemma:
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Lemma lI. Let kg, 1 € ¢ € ¢z, be a family of real valued functions of x in [0, 1] which
is jointly continuously differentiable in ¢ and in x. Suppose that for every c, &, has a finite
number of zeros in [0, 1], all of which are simple, and has boundary values with signs
that are independent of ¢. Then, the number of zeros of k. is independent of ¢, for all ¢
satisfying ¢; € ¢ € e, b ‘ ‘

This is a slightly extended version of a lemma derived by Paschel and Trubowitz (1587,
p 41); they simply supposed that ‘%; has boundary values that are independent of ¢';
however, their proof may easily be extended to yield the required result,

It may easily be seen that a(x) can have only a finite number of roots, and that these
must be simple, so that the lemma implies that a(x) must be positive for 0 € x £ 1 and
¢ > —1. The deformation lemma above can be used to show that a given by (73) is strictly
positive in the case of the supported rod (S) also.

We now examine the end conditions for the new rod. The eigenfunctions of the new
rod are vy, where au, = k2.

A tedious, but straightforward calculation shows that, at x =Q and at x =1,

kS =vgn la, k% = y[2, g

where

mfrere i
This means that the end conditions for the new rod have constants &, X, where

k = Bok K =B K. (80)
Thus

s(A,k, B) = s(4,k, K) (81)
and, in particular,

s(A,0,0) = s(4,0,0) ] (82)

s(A, 00,0) = 5(A, 0, 0). (83)

It must be remembered, of course, that the particﬁular A which is formed from a given A
depends on the end conditions corresponding to A, so that the A’s in equations (81), (82),
(83) are all different. )

7. Isospectral flow

Two rods with their cross sectional profiles A;{x), Aas(x) and their corresponding end
conditions specified by k1, Ky and kp, K> are said to be isospectral if they have the same
spectrum, i.e. if equation (13) holds. We now ask whether it is possible to flow from one
rod to another by means of a finite or infinite sequence of double Darboux transformations
(DDTS).
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We base our answer to this question on the result, due to Borg (1946) and Levinson
(1949), that if the spectrum of the Sturm~Liouville equation (17) is known for two sets of
end conditions (39), with the same value of A, and two different values H;, H, (one must
therefore be finite) of H, then g (x) is uniquely determined. But knowing the spectra for two
such sets of end conditions is equivalent to knowing the spectrum for one set (39), with H
finite, and the values {y,(1)}3° of the normalized eigenfunctions at x == 1, We can wransfer
this result to the rod and can deduce that A(x) is uniquely determined by its value A(0),
its spectrum {A,}§° for the end conditions (2), with X finite, and the end values {u,(x)}§’
of the eigenfunctions normalized so that

1
f A [ ()P dx =
[H]

This means that, when X is finite, we can label any such rod by the sequence {u,(1)}3° of
normalized eigenfunction values.

If two rods are isospectral, so that they have the same spectrum, they must necessarily
have the same asymptotic spectrum. The asymptotic spectrunmi is given by equations (9)-
(11). This means that if two rods are isospectral then either ky, K1, ko, K2 are all finite or
one of k1, K and one of kp, Ko are infinite or both k;, K and k», K> are infinite.

We can think of a DDT as an operator Dp, speciﬁed by a non-negative integer m and a
real parameter ¢ > —1. The operator ’Dm ¢ changes 4 into a glven by equation (73); g, into
k9 according to equation (68); and k Rintok = ﬁok K= )311{ where Bo. B are given by
(77) (78). We can deduce how D, . changes the mode shape u, into v, by noting that

dity = gn avy = k,?.
Thus in particular

vp(l) Ko(1) a(1) —y 1
wa(l) g al) g
where v is given by equation (79).

By turning the rod around, if necessary, we can reduce our study to six cases: (i} (C)
k=00, KE=0, (i) (FHk=0=K,(iii)(S)k=0c0=K,(iv)0<k<o0, K=0,()
k=00,0< K <coand (vi) 0 < k < 00, 0 < K < oo. Equations (77), (78) show that
Bo, fr1 are unity iff k, K take the values 0 or oo, L.e. in cases {(i)—(iii).

(i) (C) ie. k =00, K = 0. Under D, , a(0) = a(0) and

() ve(l) 1
PO e S Ty

Thus any cantilever rod specified by {u,(1)}§° may flow to a cantilever specified by {v,(1}}§°
by the sequence of transformations

oa
U (1) _ 1
1_[ Do Um(1) I+ €

We note that the transformation Hm—ﬂ Dy, .. will enforce the required end values { v,,,(l)}D ;
and the asymptotic results |u,(1)| — 1, |v,(1)[ = 1 mean that ¢, — 0 as n — o¢. Strictly,
it is necessary to examine the effect on a(x) on an infinite sequence of such transformations.
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(ii) (F) i.e. £ =0, K. We may treat this essentially the same way; we may flow from
any free rod to any other free rod.

(iii) (8) £k = co = K. To treat this we use equation (16). For any supported rod A,(x)
there is a free rod Bi(x) = 1/41(x), such that

SI(Bl, 0, 0) = S(A1, OO,VOO).

From B;(1) we can pass to any isospectral free rod Bp(x) as described above, and
thence to0 As(x) = 1/B2(x) via

§'(Bay, 0,0) = 5(As, 00, 00).

These cases are the only ones in which any rod can flow to any other isospectral rod.
In fact, as we shall show, any rod cannot even flow to any other isospectral rod with the
same end conditions.

‘We begin our consideration of cases (iv)—(vi) by noting what happens to a(x), u,(x),
k, K after successive operations D,, . with the same m and different values of ¢, namely
e @, .., e, Changing our notation, we start from ap(x), u® (x), kg, Ky and suppose

D, glai1(0), w0 (x), kimy, Ko} = {ai(x), e (x), ki, K} i=12,..,N

Equations (77)-(79) show that

a® _,, Dhea® _ ooy 20, @6 0G0 _ o
ap(0) Amlao(0)2 70 a1(0) Al BSPag(0)]2
so that on writing
kogn(® _
Anlao@P "
we find
——=l14+2= =148,V + 2
a(0) ( g )7 e )
and generally
an (O) kN (,) -
) T = LT Zc (34)
A similar calculation shows that
K N @ izl
.“i(ﬂ-_-_“'.=1_e Y. Cm > 1(_) (85)
ap(l) Ko = Lten o (L+cq)?
where
_ Kogz(1)

= e (DR
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Note that, unlike the sum in (84), the sum in (85) depends on the order in which the ¢®
are taken. We may now treat (iv).

V) 0 < k < 0o, K = 0. Now ay(1) = as(1) so that equation (79) shows that, of the
normalized eigenmode values at x = 1, only the mth is changed, and

N
1
M1y — ,O
Uy D=,y V| | —-
" E 1+

If the end condition at x = 0 is to remain invariant, then equation (84) shows that we must
choose the ¢ > —1 so that

N - -
> oc@=o. (86)
-

If we are to choose
(1) /() = rm , (87)

then we must take

[Ta+c®)=—. (88)
=1 Fr
Put 1 + ¢ = x;, then x; > 0, and equations (86), (88) become
N N 1
;= N = —
> [Tx=1
i= i=1
But since the x; are positive and the geometric mean of xi, xa, ..., Xy I$ not greater than
the arithmetic mean, we must have
ntxp4-+x
(1o g2, .. 2V g 2 T =1 (89)

N
so that r,, = 1. (There is equality in (89) iff all the x; are equal; since their arithmetic mean
is 1, they must then all be 1, ie. ¢® =0, = 1,2,..., N.) This means that it is possible
to flow from one system 0 < k& < co, K = () to another with the same end conditions only
if
w1 m=0,12,.... 90)
(Note that we can, and do, choose 4’ > 0.) If (90) holds, then we can take N =2, so that
W +c?=0 (L+cHA+cP) =1/r,

ie.

P =D =/1—-1/rm.
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The next case is (v) £ = c0, 0 < K < oo. If the end condition at x = 1 is to remain
invariant we must choose the ¢ so that the sum in (85) is zero, and so that (87) is satisfied,
ie.

N i

>l Oy = H(l +ey) =

= 1+em j= 1(1+c i1 Fm

Putting ¢ = —1+ 1/u;, ry, = r, we find
N i—1 N )
F=Y (—u)[[u}=0 [Te=r (91)
i=1 j=1 i=1

After some tedious calculation we find that

Py =D

{(N+1+{N-1r}

so that when 0 < r < 1, there is no positive solution of (81). When r > 1 we may take
N =2 so that

1—u1+(1—u2}u?=0 Uil =T

te. 1 —(r3+ Du + u% = (), which has positive roots.
The final case is (vi) 0 < k < 00, 0 < K < co. If the end conditions are to remain
invariant, and if (87) is to hold we must choose ¢¥) = —1 4 1/x; so that

i—1 N

i%:N Z(l—u‘)nuf'—o Hu,—=r.
i=] "t

i=1 =1 i=l

Again these have a positive solution only if r 22 1. When r > 1 we may take N =3 and,
after some tedious routine caleulation, show that the equations have a positive solution.

8. Isospectral strings

The free vibration of a string with linear density p = p(x) pulled with tension T is governed
by
8%u 8%u
"W
For free vibration with frequency o, u(x, ) may be written
ulx, £} = u(x)coswe

so that # = u(x) satisfies

d2u 2

T+ e =0. ©2)
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If the ends of the strings are restrained with springs of stiffnesses &, K, then

du
T e
dx

— ku(0) =0 = T%( + Ku(l). (93)
o} , ! i

If p(x) is twice continucusly differentiable, we may make the Liouville transformation
1 X i
t= [oorre p= [t s
2Jo 0

@ =2a ) yE) = aeuw)
to reduce equation (92) té the dimensionless equation

Y HG-—y=0  A=pHT 94)
over 0 €& € 1. Here ' = d/dg, and

q(&) = d"®)/a@). (95)
The end conditions (93) transform into

Y

vk (2),=0=1

¥
{al )’]1 +K (_) .
a’i
The first observation we can make concerning isospectral strings stems from the
asymptotic form of the eigenvalues. Whatever the end conditions, and whatever the potential
g, the eigenvalues A, of (94) have the asymptotic form

. = nm + O(L).

Therefore if two strings with parameters p(x), I, Ti and pp(x), I, T2 are isospectral, i.e.
(wndi = {wp)2, then, for large n,

2 ) ) 2 2
pilwn)y P5(®0)3
S5 S R — £2.7r2

T n = nr + 0(1) T
so that

) 2
P1 3
L 6
T T2 . 6)

The analysis of isospectral strings follows exactly the same lines as that for isospectral rods,
except that, after having found a(§) from ¢ (£) using equation (95), we must find the revised
independent variable x from

£ d& 7
x-l/o @) | o7)
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a<

Figure 1. Single application of the Darboux lemma:  Figure 2. Double application of the Darboux lemma:
examples of rods under supported eénd conditions with  examples of isospectral rods under supported end
the same (‘higher’) spectrum as a given rod (with conditions with A =1, a(x) as in equation (73) and
ﬁ(x) = e2*) under free~free end conditions. Curves 1- ¢ = —0.9, —0.45, 0, 0.45, 0.9 {curves 1-3 respectively):
5 for & = —0.15, =0.075, 0, 0.075, 0.15; d(x) ssin (@ m=1; ) m=2; () m = 10.

equation (52).

9, Examples

Figure 1 shows a pair of rods related by a single application of the Darboux lemma. Here
the initial rod is free, and has A(x) = ¢%. The derived rod

. 1 ® 2
Alx) = Z&x—){l +c£ Al d.s]
has the same supported spectrum as the first except for the rigid-body mode. We note that,
when ¢ =0,
1 A(l —x)
Az A

Since the conditions at the ends are the same, the supported spectrum for A(x) is the same
as that for A(I —x), i.e. for A(x) when ¢ =0,

Alx) =
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" -~

Figure 3. Double application of the Darboux lemama:  Figure 4. Double application of the Darboux lemma;
examples of isospectral rods under free-free end examples of isospectral rods under cantilever end
conditions with A = 1. a(x) as in equation (73) and  conditions with A = 1, a(x) as in equation (73} and
¢ =—09, ~0.45, 0, 0.45, 0.9 (curves 1-5 respectively): ¢ = —0.9, —0.45. 0, 0.45, 0.9 (curves 1-5 respectively):
@m=1,F)m=2. . @m=1G)m=2

Figures 2—4 show families of rods which are isospectral to the uniform rod fi(x) =1 for
supported, free and cantilever end conditions respectively. These have been derived using
equation (73) with m = 1, 2 and 10. We note that when ¢ is taken towards the limit —1, or
m is taken to be large, then the profile departs significantly from the uniform rod, so that
we could not expect its vibrations to be adequately described by the simple equation (1);
transverse or other motions would have to be considered.

10. Conclusions

We have shown that if we start with one rod and one set of end conditions, we may construct
many families of rods which have the same spectrum as the original for specific sets of end
conditions. The indeterminacy arises from the Liouville transformation to normal form or
from one or more applications of the Darboux lemma. In each case the new rods and thelr
normat modes can be constructed explicitly, i.e. without extra computation.

We showed that for the three extreme end conditions, (S), (C), (F) listed in section 1 any
rod can flow to any isospectral rod with the same end conditions. Under the three remaining
sets of end conditions, listed (iv)}—{vi) in section 7, a rod can flow to an isospectral rod with
the same end conditions only iff ry defined by equation (87) is greater than or equal to
unity form =0,1, 2,.

The paper therefore leaves open the question of whether there is some other kmd of
transformation, apart from the double Darboux transformation, by which isospectral flow is
possible when r,, < L.
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