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Abstract

If A € M, is totally positive (TP), we determine the maximum open interval .# around the
origin such that, if © € #,then A — ul isTP.If Ais TP, pu € # and A — ul = LU, then B
defined by B — I = UL is TP, and has the same total positivity interval .#. If A is merely
nonsingular and totally nonnegative (TN), or oscillatory, there need be no such interval in
which A — 1 is TN.
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1. Introduction

Totally positive, and the related terms totally nonnegative and oscillatory, are
important descriptors in the characterization of matrices appearing in a variety of
contexts, see Gantmakher and Krein [3], Gladwell [5].

A matrix A € M, is said to be totally positive (TP) (totally nonnegative (TN)) if
every minor of A is positive (nonnegative). It is NTN if it is invertible and TN. It is
oscillatory (O) if it is TN and a power of A, A™,is TP. If Z = diag(+1, —1, +1,...)
and ZAZ is O, then A is said to be sign oscillatory (SO); sign oscillatory is a
particular case of sign regular.
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Cryer [2] proved that if A is NTN, then it has a unique factorization LU with
L lower triangular and having unit diagonal, U upper triangular, and B = UL is
also NTN. We may extend Cryer’s result to matrices that are TP, O or SO. If A is
TP then so is B. If A is O then it is NTN, so B is NTN. A power of A is TP so
that A™ = (LU)™ is TP, and then B"*! = (UL)"*! = U(LU)™L is TP; B is O.
Similarly if A is SO, so is B.

For symmetric A, i.e., A € S,, Gladwell [6] extended Cryer’s result as follows.
Let P denote one of the properties TP, NTN, O or SO. If A has property P, u is not
an eigenvalue of A, A — I = QR where Q is orthogonal and R is upper triangular
with diagonals chosen to be positive, and B is defined by B — I = RQ, then B also
has property P. This result depends on the fact that if A € S, and is nonsingular, then
its OR factorization may be effected by making two successive LU factorizations.
This is not true for general A € M,,.

The following counterexample, with ;« = 0, shows that Gladwell’s result can not
be extended to general A € M,;:

[2 a L2 - _ 1 Qa+2)/5
A_[l 2]Q_ﬁ[1 2}”?_*/5[0 (4—a)/5:|’

_ l 1242a 4a—1
T 5| 4—a 24-a)|°

If a =1/5, then A is TP, but B is not even TN. In Section 2 we find a restricted
version of Gladwell’s result that holds for A € M,,.

2. The total positivity interval

The TP-interval of a TP matrix, denoted by .# 4, is the maximum open interval
around zero such that A — u/ is TP for u € .# 4. We seek this interval.

Following Ando [1] we let O, , denote the set of strictly increasing sequences of
p integers taken from {1, 2,...,n}. lf o = (a1, ...,0p) € Qpand B = (B1, ...,
Bp) € Q4.n, we denote the submatrix of A lying in rows indexed by o and columns
indexed by B, by Alx|B].

Whena € Q) and 8 € Qg n, and o N B = ¢, then o U B is rearranged increas-
ingly to become a member of Q 14 .

We use Sylvester’s identity on bordered determinants:

If o, 8 € Qpn let C =(cij) where ¢;j =detAla Ui|BU j], and v, § € Qg .
then

det C[y|8] = (det A[a|B])? " det A[a U y|B U 8].

This states that if the minors of A are positive, then the minors of C are positive also.
This matrix C is bordered about the submatrix Af«|S].
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Theorem 1. Suppose A € M,, is TP. Then ¥ 4 = (—a, b) where a and b are defined
in (5).

Proof. The corner minors of A are detA[l,2,...,pln—p+1,...,n] and det
Aln—p+1,...,n(1,2,..., p]for p=1,2,...,n. It is known (Gasca and Pena
[4], Gladwell [6]) that if A is TN and its corner minors are strictly positive, then A
is TP. We may use this result to narrow the search for the total positivity interval.
Consider what happens to the minors of A — @/ as p increases (decreases) from
zero. Suppose if possible that one or more non-corner minors are the first to become
zero, at ;. = po. At po, A — pl is TN but its corner minors are strictly positive;
A is TP, contradicting the assumption that a minor is zero. Thus we may seek the
interval in which the corner minors are positive. We examine these corner minors. Let
m = [n/2], the integral part of n/2. Consider the corner minors taken from the top
right corner; these are det(A — uI)[1,2,...,plIn—p+1,...,nl,p=1,2,...,n.

For p = 1,2, ..., m the corner minors are independent of u;forp =m+1,...,n
the variable p appears in the diagonal terms a; ; — . We may partition the pth order
submatrix, and write its determinant as follows:
Agq.q+1 q1.p q1,p+1 al.n
a .. a a ... a
AP(M) — q.9+1 q.p q,p+1 q.n (1)
Ag+1,q+1 — 4 Ag+1,p+1 -+« Qg+l,n
Ap,p—n | 4p,p+1 cee Apn

Here ¢ = n — p. Now use Sylvester’s identity. If C}, = (¢;;).
cp =detA[l,2,...,qlp+1,...,n]
cij =detA[l,2,...,q,ilj,p+1,....,n], i,j=q+1,....p

then, after taking account of the change of sign arising from the column interchanges,
we find

h ™I A (1) = det(Cp + (=) epplp—g). @

Sylvester’s identity shows that C, € M, is TP, so that all the eigenvalues of C),
are positive. If g is odd then (2) shows that

Ap(u) >0 ifcpp > —Aptim,R (3)

where A 1im, r is the least eigenvalue of C); R denotes the fact that we are consid-
ering right-hand corner minors. If g is even then (2) shows that

Ap(u) >0 ifcppu < Aplim,R- 4)

For each odd ¢, (3) gives a lower bound for w; for each even ¢, (4) gives an upper
bound for . The TP interval .# 4 = (—a, b) is bounded by the least of these upper
bounds and the greatest of the lower bounds. Thus
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- -1

a = MNp—=;+1,....n:q odd p {)‘p,min,Rs )"p,min,L}: (5)
- —1

b= minp—m+1,...,n;q even p {}\p,min,Rs kp,min,L}

where L denotes the eigenvalues derived from the left-hand corner minors. [

Numerical experiments indicated that there was no particular ordering among the
eigenvalues A i, for different values of p. It proved to be difficult to find a TP
matrix A such that A — w1 loses its total positivity for a positive value of u less than
that A1, the lowest eigenvalue of A. However, for the TP matrix

1.8756  0.7300 1.2706 11.7002 8.1829
1.8747 0.7513 1.3534 12.5589 8.9982
A=1.8003 0.7433 1.3884 12.9948 9.5591
1.6674 0.7070 1.3636 12.8930 9.7773
1.4929 0.6492 1.2889 12.3143 9.6265

the top right 3x3 minor of A — xI becomes zero at . = 4.1190e=%, which is less
than A1 = .0001, the lowest eigenvalue of A; this shows that A — uI can lose its
total positivity for values of  such that 0 < p < 4.

Corollary 2.1. If 4 = (—a, b) is the TP interval for A, then A — diag(u, (12,
.., Upn) is TP provided that u; € 4,1 =1,2,...,n.

Proof. Let

Wy = max [(j, Mg= min ;.
i=1,2,...n i=1,2,....n

Consider the minor A, (w1, u2,..., 1,) obtained by replacing i, , by
diag(tg+1, .., p) in (1). If ¢ has even parity
h T A (i 12, ) = det(C — cpdiag(g i - fhp))
=det{C) — cpurlp—q + cpdiag((tr — pg41)s - - (br — pp))}
> det(Cp — cpprIpy—g) = b I A (1) > 0
because all the minors of Cj, — ¢, 1,4 are positive. Similarly, if ¢ has odd parity,
then

Ap(/'l/lv MZv ey Mn) 2 Ap(:u“S) > 0 D

Theorem 2. If A € M, is TP and A has LU factorization A = LU where L has
unit diagonal, then B = UL has the same TP interval S as A : I o = Ip.

Proof. For given p, denote the matrix C,, and scalar ¢, for B by D, d,, respec-
tively

cp=detA[l,2,...,qlp+1,...,n]=detU[1,2,...,q|lp+1,...,n]
=detB[1,2,...,qlp+1,....,nl=d,
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and
Co=Llg+1,....plVIg+1,...,p]
where
v =detU[1,2,...,q,ilj,p+1,....,n], i,j=1+1,...,p
while the corresponding matrix obtained from B is
D,=Vig+1,...,plLlg +1,...,pl.
But Cj, and D), have the same eigenvalues, so that each upper (lower) bound appear-

ing in (5) for A appears also in the corresponding bound for B, and vice versa. Hence
B has TP interval .# 4. [

Corollary 2.2. Suppose A€ M, is TP, ve 4, A—vI=LU, B—vI =UL,
then B is TP with TP interval ¥ 4.

Proof. If A has TP interval .#4 = (—a, b), then A — vI has TP interval (—a —
v,b —v); B— vl has TP interval (—a — v, b — v); B has TP interval (—a, b). [

It appears that it is not possible to extend Theorem 1 to matrices that are merely
TN or NTN, as the following examples show. The matrix

0 0 O
A=1|1 1 1
I 1 1

is TN, but A — [ is not TN for any u # 0.
Now we seek A € M, that is NTN but which has no interval around zero in which
it is NTN. Take n = 5, so that

aig — p ap a3 a4 ais
azy ay — u a3 axy azs
A—pl=| a3 as as — [ as4 ass
as ag as3 asq — W ass
asi as; as; as4 ass —

Write G = A — ul. Consider the two corner minors detG[1, 2, 3|3,4,5] and
det G[2, 3, 4, 5|1, 2, 3, 4]. We neek to make the former negative for all positive u,
and the latter negative for all negative . To do this, we need to make

detA[l,2,3|3,4,5] =0, detA[l,2]4,5] >0

detA[2,3,4,5|1,2,3,4] =0, as; > 0.

Factorize A = LU ; these conditions will be satisfied if we can find L, U, both NTN,
such that

detU[1,2,3]3,4,5]=0, detU][l,2]4,5]>0

detL[2,3,4,5]1,2,3,4] =0, I5; >0.
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These conditions are satisfied by

[1 0 0 0 O 1 1 1 1 1
1 1.0 0 0 0 1 4 8 12
L=|1 11 0 o, u=|0 0 1 3 5],
1 1 1 1 0 0 0 0 1 3
11 1 11 0 0 0 0 1

11 1 1 1

1 2 5 9 13
A=1|1 2 6 12 18
1 2 6 13 21
1 2 6 13 22

Now we have
detG[1,2,3|3,4,5] = —4u, detG[2,3,4,5]1,2,3,4] = ,u3.

Note that A is not just NTN, it is O. This counterexample shows that even an oscil-
latory matrix need not have an interval .# 4 in which it is TN.
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