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The total positivity interval
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Abstract

If A ∈ Mn is totally positive (TP), we determine the maximum open interval I around the
origin such that, if µ ∈ I, then A − µI is TP. If A is TP, µ ∈ I and A − µI = LU , then B

defined by B − µI = UL is TP, and has the same total positivity interval I. If A is merely
nonsingular and totally nonnegative (TN), or oscillatory, there need be no such interval in
which A − µI is TN.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Totally positive, and the related terms totally nonnegative and oscillatory, are
important descriptors in the characterization of matrices appearing in a variety of
contexts, see Gantmakher and Krein [3], Gladwell [5].

A matrix A ∈ Mn is said to be totally positive (TP) (totally nonnegative (TN)) if
every minor of A is positive (nonnegative). It is NTN if it is invertible and TN. It is
oscillatory (O) if it is TN and a power of A, Am, is TP. If Z = diag(+1,−1,+1, . . .)
and ZAZ is O, then A is said to be sign oscillatory (SO); sign oscillatory is a
particular case of sign regular.
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Cryer [2] proved that if A is NTN, then it has a unique factorization LU with
L lower triangular and having unit diagonal, U upper triangular, and B = UL is
also NTN. We may extend Cryer’s result to matrices that are TP, O or SO. If A is
TP then so is B. If A is O then it is NTN, so B is NTN. A power of A is TP so
that Am = (LU)m is TP, and then Bm+1 = (UL)m+1 = U(LU)mL is TP; B is O.
Similarly if A is SO, so is B.

For symmetric A, i.e., A ∈ Sn, Gladwell [6] extended Cryer’s result as follows.
Let P denote one of the properties TP, NTN, O or SO. If A has property P, µ is not
an eigenvalue of A, A − µI = QR where Q is orthogonal and R is upper triangular
with diagonals chosen to be positive, and B is defined by B − µI = RQ, then B also
has property P. This result depends on the fact that if A ∈ Sn and is nonsingular, then
its QR factorization may be effected by making two successive LU factorizations.
This is not true for general A ∈ Mn.

The following counterexample, with µ = 0, shows that Gladwell’s result can not
be extended to general A ∈ Mn:

A =
[

2 a

1 2

]
, Q = 1√

5

[
2 −1
1 2

]
, R = √

5

[
1 (2a + 2)/5
0 (4 − a)/5

]
,

B = 1

5

[
12 + 2a 4a − 1

4 − a 2(4 − a)

]
.

If a = 1/5, then A is TP, but B is not even TN. In Section 2 we find a restricted
version of Gladwell’s result that holds for A ∈ Mn.

2. The total positivity interval

The TP-interval of a TP matrix, denoted by IA, is the maximum open interval
around zero such that A − µI is TP for µ ∈ IA. We seek this interval.

Following Ando [1] we let Qp,n denote the set of strictly increasing sequences of
p integers taken from {1, 2, . . . , n}. If α = (α1, . . . , αp) ∈ Qp,n and β = (β1, . . . ,

βp) ∈ Qq,n, we denote the submatrix of A lying in rows indexed by α and columns
indexed by β, by A[α|β].

When α ∈ Qp,n and β ∈ Qq,n, and α ∩ β = φ, then α ∪ β is rearranged increas-
ingly to become a member of Qp+q,n.

We use Sylvester’s identity on bordered determinants:
If α, β ∈ Qp,n let C = (cij ) where cij = detA[α ∪ i|β ∪ j ], and γ , δ ∈ Qq,n,

then

detC[γ |δ] = (detA[α|β])q−1 detA[α ∪ γ |β ∪ δ].
This states that if the minors of A are positive, then the minors of C are positive also.
This matrix C is bordered about the submatrix A[α|β].
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Theorem 1. Suppose A ∈ Mn is TP. Then IA = (−a, b) where a and b are defined
in (5).

Proof. The corner minors of A are detA[1, 2, . . . , p|n − p + 1, . . . , n] and det
A[n − p + 1, . . . , n|1, 2, . . . , p] for p = 1, 2, . . . , n. It is known (Gasca and Pena
[4], Gladwell [6]) that if A is TN and its corner minors are strictly positive, then A

is TP. We may use this result to narrow the search for the total positivity interval.
Consider what happens to the minors of A − µI as µ increases (decreases) from
zero. Suppose if possible that one or more non-corner minors are the first to become
zero, at µ = µ0. At µ0, A − µI is TN but its corner minors are strictly positive;
A is TP, contradicting the assumption that a minor is zero. Thus we may seek the
interval in which the corner minors are positive. We examine these corner minors. Let
m = [n/2], the integral part of n/2. Consider the corner minors taken from the top
right corner; these are det(A − µI)[1, 2, . . . , p|n − p + 1, . . . , n], p = 1, 2, . . . , n.
For p = 1, 2, . . . , m the corner minors are independent of µ; for p = m + 1, . . . , n
the variable µ appears in the diagonal terms ai,i − µ. We may partition the pth order
submatrix, and write its determinant as follows:

!p(µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aq,q+1 . . . q1,p q1,p+1 . . . a1,n
...

...
...

...

aq,q+1 . . . aq,p aq,p+1 . . . aq,n
aq+1,q+1 − µ aq+1,p+1 . . . aq+1,n

. . .
... . . .

...

ap,p−µ ap,p+1 . . . ap,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1)

Here q = n − p. Now use Sylvester’s identity. If Cp = (cij ).

cp = detA[1, 2, . . . , q|p + 1, . . . , n]
cij = detA[1, 2, . . . , q, i|j, p + 1, . . . , n], i, j = q + 1, . . . , p

then, after taking account of the change of sign arising from the column interchanges,
we find

c
p−q−1
p !p(µ) = det(Cp + (−)q−1cpµIp−q). (2)

Sylvester’s identity shows that Cp ∈ Mp−q is TP, so that all the eigenvalues of Cp

are positive. If q is odd then (2) shows that

!p(µ) > 0 if cpµ > −λp,lim,R (3)

where λp,lim,R is the least eigenvalue of Cp; R denotes the fact that we are consid-
ering right-hand corner minors. If q is even then (2) shows that

!p(µ) > 0 if cpµ < λp,lim,R. (4)

For each odd q, (3) gives a lower bound for µ; for each even q, (4) gives an upper
bound for µ. The TP interval IA = (−a, b) is bounded by the least of these upper
bounds and the greatest of the lower bounds. Thus
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a = minp=m+1,...,n:q odd c
−1
p {λp,min,R, λp,min,L},

b = minp=m+1,...,n;q even c
−1
p {λp,min,R, λp,min,L} (5)

where L denotes the eigenvalues derived from the left-hand corner minors. �

Numerical experiments indicated that there was no particular ordering among the
eigenvalues λp,min for different values of p. It proved to be difficult to find a TP
matrix A such that A − µI loses its total positivity for a positive value of µ less than
that λ1, the lowest eigenvalue of A. However, for the TP matrix

A =




1.8756 0.7300 1.2706 11.7002 8.1829
1.8747 0.7513 1.3534 12.5589 8.9982
1.8003 0.7433 1.3884 12.9948 9.5591
1.6674 0.7070 1.3636 12.8930 9.7773
1.4929 0.6492 1.2889 12.3143 9.6265




the top right 3×3 minor of A − µI becomes zero at µ = 4.1190e−05, which is less
than λ1 = .0001, the lowest eigenvalue of A; this shows that A − µI can lose its
total positivity for values of µ such that 0 < µ < λ1.

Corollary 2.1. If IA = (−a, b) is the TP interval for A, then A − diag(µ1, µ2,

. . . , µn) is TP provided that µi ∈ IA, i = 1, 2, . . . , n.

Proof. Let

µr = max
i=1,2,...,n

µi, µs = min
i=1,2,...,n

µi.

Consider the minor !p (µ1, µ2, . . . , µn) obtained by replacing µIp−q by
diag(µq+1, . . . , µp) in (1). If q has even parity

c
p−q−1
p !p(µ1, µ2, . . . , µn) = det(Cp − cpdiag(µq+1, . . . , µp))

= det{Cp − cpµrIp−q + cpdiag((µr − µq+1), . . . , (µr − µp))}
� det(Cp − cpµrIp−q) = c

p−q+1
p !p(µr) > 0

because all the minors of Cp − cpµrIp−q are positive. Similarly, if q has odd parity,
then

!p(µ1, µ2, . . . , µn) � !p(µs) > 0. �

Theorem 2. If A ∈ Mn is TP and A has LU factorization A = LU where L has
unit diagonal, then B = UL has the same TP interval I as A : IA = IB.

Proof. For given p, denote the matrix Cp and scalar cp for B by Dp, dp respec-
tively

cp = detA[1, 2, . . . , q|p + 1, . . . , n] = detU [1, 2, . . . , q|p + 1, . . . , n]
= detB[1, 2, . . . , q|p + 1, . . . , n] = dp
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and

Cp = L[q + 1, . . . , p]V [q + 1, . . . , p]
where

vij = detU [1, 2, . . . , q, i|j, p + 1, . . . , n], i, j = 1 + 1, . . . , p

while the corresponding matrix obtained from B is

Dp = V [q + 1, . . . , p]L[q + 1, . . . , p].
But Cp and Dp have the same eigenvalues, so that each upper (lower) bound appear-
ing in (5) for A appears also in the corresponding bound for B, and vice versa. Hence
B has TP interval IA. �

Corollary 2.2. Suppose A ∈ Mn is TP, ν ∈ IA, A − νI = LU, B − νI = UL,
then B is TP with TP interval IA.

Proof. If A has TP interval IA = (−a, b), then A − νI has TP interval (−a −
ν, b − ν); B − νI has TP interval (−a − ν, b − ν); B has TP interval (−a, b). �

It appears that it is not possible to extend Theorem 1 to matrices that are merely
TN or NTN, as the following examples show. The matrix

A =

0 0 0

1 1 1
1 1 1




is TN, but A − µI is not TN for any µ /= 0.
Now we seek A ∈ Mn that is NTN but which has no interval around zero in which

it is NTN. Take n = 5, so that

A − µI =




a11 − µ a12 a13 a14 a15
a21 a22 − µ a23 a24 a25
a31 a32 a33 − µ a34 a35
a41 a42 a43 a44 − µ a45
a51 a52 a53 a54 a55 − µ




Write G = A − µI . Consider the two corner minors detG[1, 2, 3|3, 4, 5] and
detG[2, 3, 4, 5|1, 2, 3, 4]. We neek to make the former negative for all positive µ,
and the latter negative for all negative µ. To do this, we need to make

detA[1, 2, 3|3, 4, 5] = 0, detA[1, 2|4, 5] > 0

detA[2, 3, 4, 5|1, 2, 3, 4] = 0, a51 > 0.

Factorize A = LU ; these conditions will be satisfied if we can find L, U , both NTN,
such that

detU [1, 2, 3|3, 4, 5] = 0, detU [1, 2|4, 5] > 0

detL[2, 3, 4, 5|1, 2, 3, 4] = 0, l51 > 0.
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These conditions are satisfied by

L =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


 , U =




1 1 1 1 1
0 1 4 8 12
0 0 1 3 5
0 0 0 1 3
0 0 0 0 1


 ,

A =




1 1 1 1 1
1 2 5 9 13
1 2 6 12 18
1 2 6 13 21
1 2 6 13 22


 .

Now we have

detG[1, 2, 3|3, 4, 5] = −4µ, detG[2, 3, 4, 5|1, 2, 3, 4] = µ3.

Note that A is not just NTN, it is O. This counterexample shows that even an oscil-
latory matrix need not have an interval IA in which it is TN.
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