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Abstract. This paper generalizes the well-known identity which relates the last components
of the eigenvectors of a symmetric matrix A to the eigenvalues of A and of the matrix An−1,
obtained by deleting the last row and column of A. The generalizations relate to matrices and to
Sturm–Liouville equations.
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1. Introduction. We use the term Jacobi matrix to denote a real symmetric
tridiagonal matrix with positive off-diagonal terms. It is well known that a Jacobi
matrix A may be uniquely constructed from the eigenvalues {λi}n1 and {µi}n−1

1 of
A and of its leading principal minor An−1, respectively. The first step in the recon-
struction procedure is to use the given eigenvalues, which must interlace so that

λ1 < µ1 < λ2 < · · · < µn−1 < λn(1.1)

to yield the last elements, x
(i)
n , of the normalized eigenvectors x(i) of A. We use the

fact that {µj}n−1
1 are the zeros of

n∑
i=1

[x
(k)
n ]2

λi − λ = 0,(1.2)

so that

n∑
k=1

[x
(k)
n ]2

λk − λ = c

∏n−1
j=1 (µj − λ)∏n
j=1(λj − λ)

.(1.3)

The identity
∑n
k=1[x

(k)
n ]2 = 1 implies c = 1, and thus

[x(k)
n ]2 =

∏n−1
j=1 (µj − λk)∏n

j=1,j 6=k(λj − λk)
.(1.4)

This relation, which has been known for many years (see, say, [7]), is an example of
what we term an eigenvector-eigenvalue relation.
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Many other such relations are known; all involve the eigenvalues of A and of
some modification of A. As another example, if {λ∗i }n1 are the eigenvalues of the
Jacobi matrix A∗, obtained by replacing the last diagonal element an by a∗n, then [6]

1 + (a∗n − an)
n∑
k=1

[x
(k)
n ]2

λk − λ =
n∏
j=1

(
λ∗j − λ
λj − λ

)
,(1.5)

from which we deduce

(a∗n − an)[x(k)
n ]2 =

∏n
j=1(λ∗j − λk)∏n

j=1,j 6=k(λj − λk)
.(1.6)

By comparing the traces of A and A∗ we obtain

(a∗n − an) =

n∑
k=1

(λ∗k − λk).(1.7)

Equations (1.6), (1.7) provide an eigenvector-eigenvalue relation; it is a particular
case of a relation referring to the eigenvalues to A and some rank-one modification of
A; see [10].

Equations (1.4), (1.5), and (1.6) relate to a Jacobi matrix; there are analogous
results for continuous systems governed by Sturm–Liouville equations. We give an
example, the analogue of (1.5), not the most general result.

Let {λi}∞0 , {λ∗i }∞0 be the eigenvalues of the nonuniform string equation

y′′(x) + λρ(x)y(x) = 0,(1.8)

subject to two sets of end conditions

y′(0)− hy(0) = 0 = y′(l) +Hy(l),(1.9)

y′(0)− hy(0) = 0 = y′(l) +H∗y(l),(1.10)

differing only at the right end, and let ρ(x) be continuous; then the end values ym(l)
of the normalized eigenfunctions of (1.8), subject to the condition (1.9), satisfy the
equation

1 + (H∗ −H)
∞∑
m=0

[ym(l)]2

λm − λ = c

∏∞
m=0(1− λ

λ∗m
)∏∞

m=0(1− λ
λm

)
.(1.11)

Since λm, λ∗m = O(m2) for large m, both infinite products converge. Again we find

(H∗ −H)[yn(l)]2 = cλn

∞∏
m=0

(
1− λn

λ∗m

)/ ∞∏
m=0

′
(

1− λn
λm

)
,(1.12)

where c
∏∞
m=0(λmλ∗m

) = 1, and the prime means m 6= n. This example appears in [8]

and is rederived in [6, p. 180].
The purpose of this paper is to explore some generalizations of the relations we

have described. They will refer to discrete and continuous systems. They will involve
squares of eigenvector/eigenfunction values at interior points and products of such
values at two different points.
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2. The generalized eigenvalue problem. Let A, B be symmetric matrices
of order n, with B positive definite, and let {λi}n1 , {x(i)}n1 be the eigenpairs of

(A− λB)x = 0;(2.1)

then A, B may be simultaneously diagonalized so that

XTAX = ∧, XTBX = I,(2.2)

where ∧ = diag(λ1, λ2, . . . , λn), X = [x(1),x(2), . . . ,x(n)], and

A− λB = X−T (∧ − λI)X−1.(2.3)

Provided that λ 6= λi, i = 1, 2, . . . , n, we may invert this to give

(A− λB)−1 = X(∧ − λI)−1XT .(2.4)

This gives the following lemma.
Lemma 2.1. Provided the eigenvalue λk is simple, then

x
(k)
i x

(k)
j = lim

λ→λk
(λk − λ)eT

i (A− λB)−1ej(2.5)

where ei denotes the ith column of I.
Proof. Let αij(λ) be the i, j element of (A− λB)−1, so that

αij(λ) = eTi (A− λB)−1ej .(2.6)

Then (2.4) gives

αij(λ) =
n∑
k=1

x
(k)
i x

(k)
j

λk − λ(2.7)

so that, provided the eigenvalue λk is simple,

x
(k)
i x

(k)
j = limλ→λk(λk − λ)αij(λ).(2.8)

We now apply this result with some special choices of A and B. We introduce some
notation. Let Ak(AR

k ), 1 ≤ k ≤ n, denote the leading (trailing) principal submatrix
of order k of the square matrix A. We let Pk(λ),Qk(λ) denote, respectively, the kth
order leading and trailing principal minors of A− λB, and (µi)

n−1
1 denote the zeros

of Pn−1(λ).
Theorem 2.1.

[x(k)
n ]2 =

|Bn−1|
∏n−1
j=1 (µj − λk)

|Bn|
∏n′
j=1(λj − λk)

,(2.9)

where ′ denotes j 6= k.
Proof. Consider the equation

(A− λB)y = en.(2.10)

If λ 6= λi (i = 1, 2, . . . , n), then

yn = eTn (A− λB)−1en = αnn(λ).(2.11)
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But Cramer’s rule applied to (2.10) gives

yn =
|An−1 − λBn−1|
|An − λBn| =

Pn−1(λ)

Pn(λ)
.(2.12)

But {µi}n−1
1 are the zeros of Pn−1(λ) and (λi)

n
1 are the zeros of Pn(λ), so that

αnn(λ) = yn =
|Bn−1|

∏n−1
j=1 (µj − λ)

|Bn|
∏n
j=1(λj − λ)

,(2.13)

and Lemma 2.1, with i = j = n, gives

[x(k)
n ]2 =

|Bn−1|
∏n−1
j=1 (µj − λk)

|Bn|
∏n′
j=1(λj − λk)

.(2.14)

Theorem 2.1 generalizes (1.4). It holds provided that λk is simple. We recall that
the eigenvalues of a Jacobi matrix (to which (1.4) applies) are always simple, and the
eigenvalues λi, µi appearing in (1.4) always strictly interlace according to (1.1), so

that (1.4) never breaks down and [x
(k)
n ]2 is always positive; x

(k)
n is never zero. For

the generalized eigenvalue problem (2.1), the eigenvalues need not be simple, and the
eigenvalues λi, µi satisfy only

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn.(2.15)

If λk is simple, so that λk−1 < λk < λk+1, then (2.9) holds for that value of k; x
(k)
n

will be zero if µk−1 = λk or µk+1 = λk. If λk is not simple, then we have the following
corollary.

Corollary 2.1. Suppose λk has multiplicity s, so that

λk−1 < λk = µk = λk+1 = · · · = µk+s−2 = λk+s−1 ≤ µk+s−1 < λk+s.

Then

[x(k)
n ]2 =

|Bn−1|
∏n−1
j=1 ′(µj − λk)

|Bn|
∏n
j=1 ′′(λj − λk)

,(2.16)

where ′ means j = 1, 2, . . . , k− 1, k+ s− 1, . . . , n− 1 and ′′ means j = 1, 2, . . . , k− 1,
k + s, . . . , n.

Proof. The numerator and denominator of (2.14) will have a common factor
(λk − λ)s−1 which can be cancelled.

The results in Theorem 2.1 and its corollary are obtained from Lemma 2.1 for

i = j = n. There are analogous expressions for [x
(k)
1 ]2, but there are, in general, no

simple extensions to [x
(k)
m ]2 where 1 < m < n. To obtain simple extensions we must

restrict the forms of A and B and suppose that they are both tridiagonal.
We obtain the following lemma.
Lemma 2.2. Suppose A and B are tridiagonal matrices with codiagonals (b1, b2,

. . ., bn−1) and (d1, d2, . . . , dn−1), respectively, and suppose 1 ≤ i ≤ j ≤ n and λ 6= λk,
k = 1, 2, . . . , n. Then

αij(λ) = (−1)i+j
Pi−1(λ)

∏j−1
k=i(bk − λdk)Qn−j(λ)

Pn(λ)
.(2.17)
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Proof. Consider the equation

(A− λB)y = ej .(2.18)

If λ 6= λk, k = 1, 2, . . . , n, then

yi = eTi (A− λB)−1ej = αij(λ).(2.19)

But Cramer’s rule applied to (2.18) shows that

αij(λ) = yi =
p̂ij(λ)

pn(λ)
,(2.20)

where p̂ij(λ) is the determinant of the matrix obtained by replacing the ith column
of A− λB by ej . Thus

i

p̂ij(λ) =

∣∣∣∣∣∣∣∣∣∣
a1 − λc1 b1 − λd1 0
b1 − λd1 a2 − λc2 · · · 0
· · · · · · · · · 1

· · · 0 · · · an−1 − λcn−1 bn−1 − λdn−1

0 · · · bn−1 − λdn−1 an − λcn

∣∣∣∣∣∣∣∣∣∣
j.

(2.21)

Assuming that i ≤ j, and expanding p̂ij(λ) along its ith column, we obtain the stated
result.

Note that the numerator involves a leading minor, a product, and a trailing minor.
Let us consider the interpretation of (2.18). The original equation may be in-

terpreted as the equation governing the free vibration of a mechanical system with
stiffness and inertia matrices A, B, respectively. The eigenvalues λi are the squares,
ω2
i , of the natural frequencies; and the xi, the eigenvectors, are the mode shapes.

The term αij(λ) is the influence function linking coordinates i and j: it gives the
solution yi for a unit in the jth place on the right-hand side of (2.14). We can think
of this as the displacement at i due to a unit load at j; thus αij(λ) is the receptance
[3] between points i and j. Equation (2.18) thus states that αij(λ) is zero when
Pi−1(λ) = 0, Qn−j(λ) = 0, or the product is zero. But the zeros of Pi−1(λ) are
simply the eigenvalues (λLk )i−1

1 of the equation

(Ai−1 − λBi−1)x = 0,(2.22)

while the zeros of Qn−j(λ) are the eigenvalues (λRk )n−j1 of the equation

(AR
n−j − λBR

n−j)x = 0.(2.23)

(Remember that Ak(ARk ) is the leading (trailing) principal submatrix of order k.) In
the important physical case in which bk < 0 and dk ≥ 0, the product in (2.18) has no
positive zero; we examine this application in section 5.

We now have the following theorem.
Theorem 2.2. Suppose B is diagonal, 1 ≤ i ≤ j ≤ n, and 1 ≤ k ≤ n. Then

x
(k)
i x

(k)
j

αij(0)
=
λk
∏i−1
m=1(1− λk

λLm
)
∏n−j
m=1(1− λk

λRm
)∏n

m=1 ′(1− λk
λm

)
.(2.24)
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Proof. When B is diagonal, dr = 0, so that (2.17) reduces to

αij = c
Pi−1(λ)Qn−j(λ)

Pn(λ)
, c = (−1)i+j

j−1∏
r=i

br.(2.25)

On normalizing αij by its value for λ = 0, and by factorizing the various terms, we
find

Φij(λ) ≡ αij(λ)

αij(0)
=

∏i−1
m=1(1− λ

λLm
)
∏n−j
m=1(1− λ

λRm
)∏n

m=1(1− λ
λm

)
.(2.26)

Using this in (2.6), we find the required result.
We note that, when B is diagonal, the (λm)n1 are distinct, so that the denominator

in (2.24) cannot be zero. The numerator can be zero, since one of each of the sets
(λLm)i−1

1 and (λRm)n−j1 can be equal to λk. Theorem 2.1, Corollary 2.1, and Theorem
2.2 provide generalization of the known result (1.4).

We now explore some continuous analogues of these results.

3. Sturm–Liouville systems. Let L denote the Sturm–Liouville operator given
by

Ly(x) = −(p(x)y′(x))′ + q(x)y(x),(3.1)

and consider the system

Ly(x) = λρ(x)y(x),(3.2)

subject to the end conditions

p(0)y′(0)− hy(0) = 0 = p(l)y′(l) +Hy(l).(3.3)

Such a system can model the free vibration of a rod or string fastened at its ends by
springs of stiffness h, H, respectively; h or H is zero at a free end, infinite at a fixed
end.

We are not concerned here with the most general regularity conditions satisfied
by p, q, and ρ. We assume that p(x), p′(x), q(x), and ρ(x) are continuous in (0, l).
References to the general theory may be found in [9], [1], and [2].

The Green’s function G(x, s, λ) for the system satisfies, as a function of x
(a) the equation (3.2), except at s,
(b) the end conditions (3.3),
(c) the jump condition

[p(x)y′(x)]x=s+
x=s− = −1.(3.4)

It is well known [4, Chapter 5] that if λ is not an eigenvalue of (3.2), (3.3), then
G(x, s, λ) may be constructed as follows. Let φ(x), ψ(x) be solutions of (3.2) satisfying

p(0)φ′(0)− hφ(0) = 0 = p(l)ψ′(l) +Hψ(l),(3.5)

respectively; then

p(x){φ(x)ψ′(x)− φ′(x)ψ(x)} = constant.(3.6)
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Fig. 1.

This constant is zero if λ is an eigenvalue of (3.2), (3.3) and nonzero otherwise; in the
latter case we can choose the constant to be −1, and then

G(x, s, λ) =

{
φ(x)ψ(s), 0 ≤ x ≤ s,
φ(s)ψ(x), s ≤ x ≤ l.(3.7)

The functions φ, ψ are functions of x and λ; if λ = 0 is not an eigenvalue of (3.2),
(3.3), i.e., if h, H are not both zero, then

G(x, s, 0) =

{
φ0(x)ψ0(s), 0 ≤ x ≤ s,
φ0(s)ψ0(x), s ≤ x ≤ l,(3.8)

where φ0(x), ψ0(x) denote φ(x), ψ(x), respectively, for λ = 0.
The Green’s function G(x, s, λ) is the analogue of the receptance αij(λ) for matrix

systems; like αij(λ), it has poles and zeros. In section 2 we explicitly showed αij(λ) as
a product of two polynomials Pi−1(λ), Qn−j(λ) divided by Pn(λ). The polynomials
Pi−1(λ), Qn−j(λ) related to the parts of the system, respectively, to the left of i and to
the right of j, and their zeros were the eigenvalues of these parts, as shown in (2.22),
(2.23). We will now show how the Green’s function G(a, b, λ), with a ≤ b, may be
expressed in an analogous way as a product of two quantities referring, respectively,
to the parts of the system to the left of a, and to the right of b, divided by a third
quantity relating to the whole interval (0,l).

Suppose a ≤ b, and define the normalized Green’s function

Φ(a, b, λ) =
G(a, b, λ)

G(a, b, 0)
=

φ(a)ψ(b)

φ0(a)ψ0(b)
.(3.9)

Let {λLn}∞1 , {λRn }∞1 be the eigenvalues of the subsystems S1, S2 governed by (3.2)
with the end conditions

1. p(0)y′(0)− hy(0) = 0, y(a) = 0,(3.10)

2. y(b) = 0, p(l)y′(l) +Hy(l) = 0,(3.11)

and let {λn}∞1 be the eigenvalues of (3.1)–(3.3). We prove the following theorem.
Theorem 3.1.

Φ(a, b, λ) =

∏∞
n=1(1− λ

λLn
)
∏∞
n=1(1− λ

λRn
)∏∞

n=1(1− λ
λn

)
.(3.12)

Proof. Fig. 1 shows the system divided into three parts.
To find the Green’s function of system 1, we need function φ1(x), ψ1(x) satisfying,

respectively, the left and right end conditions of system 1 and the jump condition; we
may take

φ1(x) = φ(x), ψ1(x) = ψ(x)− ψ(a)

φ(a)
φ(x).(3.13)
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We now introduce the function

H1(λ) = lim
ε→0

G1(ε, a− ε, 0)

G1(ε, a− ε, λ)
(3.14)

= lim
ε→0

φ1,0(ε)

φ1(ε)
· ψ1,0(a− ε)
ψ1(a− ε) ,(3.15)

where φ1,0(x), ψ1,0(x) denote, respectively, the values of φ1(x), ψ1(x) for λ = 0. Since
ψ1(a) = 0 = ψ1,0(a), we have

lim
ε→0

ψ1,0(a− ε)
ψ1(a− ε) =

ψ′1,0(a)

ψ′1(a)
=

φ(a)

φ0(a)
(3.16)

because of (3.6). The limit of the first quotient in (3.14) is

lim
ε→0

φ1,0(ε)

φ1(ε)
= lim
ε→0

φ0(ε)

φ1(ε)
=
φ0(0)

φ(0)
(3.17)

if h is finite, and φ′0(0)/φ′(0) if h is infinite. Thus

H1(λ) =

{
φ0(0)
φ(0) · φ(a)

φ0(a) if h is finite,
φ′0(0)
φ′(0) · φ(a)

φ0(a) if h is infinite.
(3.18)

We may now consider system 2 similarly. We take

φ2(x) = φ(x)− φ(b)

ψ(b)
ψ(x), ψ2(x) = ψ(x),(3.19)

define

H2(λ) = lim
ε→0

G2(b+ ε, l − ε, 0)

G2(b+ ε, l − ε, λ)
,(3.20)

and find

H2(λ) =

{
ψ(b)
ψ0(b) · ψ0(l)

ψ(l) if H is finite,
ψ(b)
ψ0(b) · ψ

′
0(l)
ψ′(l) if H is infinite.

(3.21)

Finally we take the whole system, with end conditions (3.3), and define

H(λ) = lim
ε→0

G(ε, l − ε, 0)

G(ε, l − ε, λ)
(3.22)

and find that this has one of the values

φ0(0)ψ0(l)

φ(0)ψ(l)
,

φ′0(0)ψ0(l)

φ′(0)ψ(l)
,

φ0(0)ψ′0(l)

φ(0)ψ′(l)
,

φ′0(0)ψ′0(l)

φ′(0)ψ′(l)
(3.23)

according to whether both, one, the other, or neither of h, H are finite.
Combining (3.18), (3.21), (3.22) we find the fundamental relation for Φ(a, b, λ)

defined in (3.9):

Φ(a, b, λ) =
H1(λ)H2(λ)

H(λ)
.(3.24)
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We now show that H1(λ), H2(λ), and H(λ) may, like Pi−1(λ), Qn−j(λ) and Pn(λ)
in (2.21), be expressed as product of factors relating to the subsystems 1, 2, and the
whole.

First consider the case when h is finite. It is known (see, for example, [11]) that,
treated as a function of λ, the quantity φ(a)/φ(0) is an entire function of λ, of order
1/2. By Hadamard’s factorization theorem it may therefore be expressed as a product
of its factors; i.e.,

φ(a)

φ(0)
= c

∞∏
n=1

(
1− λ

an

)
.(3.25)

But the zeros of φ(a) are precisely the eigenvalues of system 1 (i.e., λLn) so that
an = λLn . It is known [11] that λLn = O(n2) for large n, so that the product (3.24)
converges. The constant c is φ0(a)/φ0(0). Thus

H1(λ) =
φ(a)

φ(0)
· φ0(0)

φ0(a)
=
∞∏
n=1

(
1− λ

λLn

)
.(3.26)

If h is infinite, H1(λ) is defined by the second line of (3.18), but the final result
for H1(λ) still holds.

We may deduce, in a similar way, that

H2(λ) =
∞∏
n=1

(
1− λ

λRn

)
.(3.27)

To investigate H(λ), we note that the jump condition (3.6) and second of the end
conditions (3.5) give

ψ(l){p(l)φ′(l) +Hφ(l)} = 1 = ψ0(l){p(l)φ′0(l) +Hφ0(l)}(3.28)

so that when h, H are finite, and not both zero,

H(λ) =
p(l)φ′(l) +Hφ(l)

φ(0)
· φ0(0)

p(l)φ′0(l) +Hφ0(l)
.(3.29)

Again, H(λ) is an entire function of order 1/2, whose zeros are those λ for which there
is a solution φ(x) satisfying both end conditions (3.3), i.e., λ = λn. Thus

H(λ) =
∞∏
n=1

(
1− λ

λn

)
.(3.30)

This result still holds when one or both of h, H are infinite.
Equations (3.24), (3.26), (3.27), (3.29) now yield the stated result (3.12).
Corollary 3.1. Let {ur(x)} be the eigenfunctions of (3.1)–(3.3); then

ur(a)ur(b)∑∞
r=1

ur(a)ur(b)
λr

=
λr
∏∞
n=1(1− λr

λLn
)
∏∞
n=1(1− λr

λRn
)∏∞

n=1 ′(1− λr
λn

)
.(3.31)

Proof. The usual modal expansion of G(a, b, λ), namely,

G(a, b, λ) =

∞∑
r=1

ur(a)ur(b)

λr − λ ,(3.32)
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when substituted in (3.9), gives

Φ(a, b, λ) =

∑∞
r=1

ur(a)ur(b)
λr−λ∑∞

r=1
ur(a)ur(b)

λr

,(3.33)

which, when combined with Theorem 3.1, yields the required result.
We note that

∞∑
r=1

ur(a)ur(b)

λr
= φ0(a)ψ0(b),(3.34)

and φ0(a), ψ0(b) may be expressed explicitly in terms of p(x), q(x), h, H.

4. Conclusion. Corollary 3.1 provides the desired continuous analogue of Theo-
rem 2.2. The analysis shows that the continuous analogues of the leading and trailing
minors are the functions H1(λ), H2(λ), defined in (3.14), (3.20). We note that H1(λ),
H2(λ) are not just reciprocals of the Green’s functions, as one might expect at first
thought, but limiting values of the normalized reciprocals of the Green’s functions
between the points near the ends of the intervals (0, a) and (b, l).

Various other eigenvector-eigenvalue relations may be obtained from Theorem 2.2
by taking i = j, i = 1, or j = n or in Corollary 3.1 by taking a = b, a = 0, or b = l.

5. An application. Consider the mass spring system shown in Fig. 2. This is
the customary model of an in-line axially vibrating system; by replacing the masses
and axial springs by polar inertias and torsional springs, respectively, we obtain the
analogous torsionally vibrating system. We show that the analysis may be used
to find those frequencies of oscillation at which a particular displacement vanishes.
These frequencies are the vibration absorber frequencies which play an important
role in vibration isolation. We may tune, for example, the working frequencies of an
unbalanced motor, mounted on a shaft, to eliminate the steady state vibrations at
a certain position where sensitive mechanical or electrical equipment is located, such
as isolation from vibration and noise-induced vibration usually required in aircraft
structures. (For other applications, see [5, Sections 3.2, 3.3, 4.2].)
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Fig. 2. A spring-mass system (a) has left and right end parts shown in (b) and (c), respectively.
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x=b

x=l

x κ(

(a)

x x),   κ(x),   ρ(x)

x=a

x=a

(b)

κ( ρ(x)

x=b

x=l

(c)

1. sin ω t

u(a)

x),   ρ(x)

Fig. 3. The rod (a) has left and right end parts (b) and (c).

The receptance αij in (2.6) gives the response at mass i due to a unit load with
frequency ω (ω2 = λ) at mass j. Without loss of generality we can consider just the
case i ≤ j. The expression (2.22) for αij shows that ui will be zero if λ = λLm for some
m = 1, 2, . . . , i − 1 or λ = λLm for some m = 1, 2, . . . , n − j. Moreover, by applying
superposition, we see that if loads are applied at masses i + 1, . . . , n with the same
frequency ω (ω2 = λ), then ui will be zero if λ = λLm for some m = 1, 2, . . . , i− 1.

The continuous analogue of the discrete system of Fig. 2 is the axially vibrating
rod shown in Fig. 3a. Now we apply Theorem 3.1. If a load with frequency ω (ω2 = λ)
is applied at x = b, then the displacement at x = a will be zero if λ = λLn or λ = λRn
for some n. By superposition, we see that if loads are applied to the part a < x ≤ l
with the same frequency ω, then u(a) will be zero if λ = λLn for some n.
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