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Abstract

We prove two discrete analogues of Courant’s Nodal Domain Theorem. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Courant [5, Chapter 6, Section 6] stated a general theorem about the nodes of
an eigenfunctionGiven the self-adjoint second order (elliptic) differential equa-
tion L{u] + Apu = 0 (p > 0) for adomain G with arbitrary homogeneous boundary
conditions; if its eigenfunctions are ordered according to increasing eigenvalues,
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then the nodes of the nth eigenfunction u,, divide the domain into no more than n
subdomains. No assumptions are made about the number of independent variables.

The subdomains of which Courant writes have since become knowodab
domains, see e.g. [1]. Many other authors refer to nodal domains as well, meaning
domainsbounded by nodes, not domains on which the eigenfunctions vanish. The
nodal sets themselves are known to be of zero Lebesgue measure and of dimension
m — 1 [2,14]. This terminology is now well-established in the PDE literature, but
is inappropriate for graphs. A discrete eigenvector on a graph is defined only on
the vertex seV of a graphl’. Thus, contrary to the situation on a manifold, it may
change from positive to negative without passing through zero. The discrete analogue
of a “nodal domain” is a connected set of vertices, i.e., a connected subgrBpbrof
which the eigenvector has the same, strict or loose, sign. Now such a set of vertices is
not “bounded” by “nodes”; it is merely “bounded” by vertices of the opposite loose
sign. An appropriate name for such an entity would thus appear sighegraph,
rather thamodal graph.

Before introducing the formal definition of a sign graph, we formulate the discrete
problem. LetA € R¥*Y be a real symmetric matrix with non-positive off-diagonal
elements: i # j, thena;; < 0.A has eigenvalues;, i =1, ..., N, satisfying

M<K A< < Ay 1)
With the matrixA we may associate a simple, undirected, loop-free giap¥ith
finite vertex setV and edge seE. We denote the vertices¥,i =1,..., N. Ver-

tices P;, P; areadjacent, written P; ~ P;, or equivalently{P;, P;} € E, iff a;; < 0.
It is well known that, under this association, the magiis irreducible iff the graph
I' is connected. In this case the Perron—Frobenius theorem impliesithignon-
degenerate, i.eA1 < A2, and the first eigenvector can be chosen to be everywhere
positive.

Matrices of this type naturally arise as discr8thrddinger operators, e.g., in the
Huickel Molecular Orbital method of Theoretical Organic Chemistry:

c?fMjZ Z aij [uj—u,-]—i—ajjuj:[Au]j. 2)
P;:Pi~Pj
Here the diagonal terms play the role of the potential and the off-diagonal elements
are binding energies between adjacent atoms.
We focus our attention on theh eigenvalue oA\, and suppose that it has multi-
plicity r, so that

A—1 < An =Appl =+ = Aytr—1 < Apgr- ()
We suppos@™ = u = {u1, u, - - -, uy} is in the eigenspace af,, so that

(A —2hu=0. (4)
The association; — P; associates the real numbatsi = 1, ..., N, with the ver-

tices P; of I'. The numbers; will be positive, negative or zero. We introduce two
definitions:
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Definition 1. A strong positive (negative) sign graph S is a maximal, connected
subgraph of", on verticesP; € V withu; > 0 (u; < 0).

Definition 2. A weak positive (negative) sign graph Sis a maximal, connected sub-
graph ofI’, on verticesP; € V with u; > 0 (1; < 0) and with at least on®; € V
havingu; > 0 (u; < 0).

Theorem 1. Any eigenvector correspondingto A, hasat most n + r — 1 strongsign
graphs.

Theorem 2. If I' is connected, then any eigenvector corresponding to 1, has at
most n weaksign graphs.

2. A review of previousresearch

The simplest non-trivial grapli’ is a path, i.e., a tree with no branches. For a
path, the matrixA is tridiagonal with negative off-diagonal. Research on the sign
properties of the eigenvectors of a tridiagoAajoes back to the work of Gantmacher
and Krein [11]. They show that the eigenvaluesfofare all simple, and that the
nth eigenvector hasxactly n strong sign graphs anekactly n weak sign graphs.

For a path one can simply count the number of changes in sign in the sequence
ui, uz, ..., uy. This special case shows that neither Theorem 1 nor Theorem 2 can
be strengthened without additional assumptions.

The Laplacian L of a graphI” has entried ;; = —1 iff P, ~ P;; the diagonal
element_;; equals the vertex degree Bf [3,15]. The associated quadratic form is

L= (wi—up*=u'Lu. (5)
Pi~P;

The Laplacian eigenvalues (eigenvectorsJ @re the eigenvalues (eigenvectors) of
L. Laplacian eigenvectors are of particular interest e.g. in the context of so-called
fithess landscapes [13]. The first Laplacian eigenvalue is zero. Fiedler [7,8] noted
that the second Laplacian eigenvalue is closely related to connectivity properties of
the graph, and showed thatifis connected, then the second Laplacian eigenvector
has exactly two weak sign graphs. We can reinterpret the analysis in [9] to state that
if n > 2, any eigenvector correspondingip has at most — 1 weak positive sign
graphs and at moat — 1 weak negative sign graphs, so thdtas at most@ — 1)
weak sign graphs in all.

Powers [16] extended Fiedler's analysis. He considereddjaeency matrix A of
I', defined byy;; = 1if P; ~ P}, a;; = 0 otherwise, including;; = 0, and labelled
the eigenvalues in descending order,> A2 > --- > A,. His results translate in-
to equivalent ones for-A, provided that the eigenvalues are reordered as in (1).
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He sharpened Fiedler’s upper boun@ 2- 1) for the number of weak sign graphs.
His bounds were specific to the adjacency matrix, and depended on the size of the
eigenvalue.

Powers correctly stated and proved that an eigenvalue correspondind&s at
mostn + r — 1 strict sign graphs wheteis the multiplicity of A,,, as in (3). This is
Theorem 1, proved below. However he erroneously concluded that the bound could
be reduced ta + r — 2 if it is known that some edge df joins a vertex of a strictly
positive sign graph to a vertex of a strictly negative sign graph, i.e., there Rxist
P; such thatP; ~ P; andu; > 0,u; <O.

Fig. 1 shows a counterexample which disproves this statement. The (negative) ad-
jacency matrix has eigenvalue®, —1, —1, 0, 1, 1, 2. One eigenvector correspond-
ingtois =1is{0,1, -1, -2, 2,1, —1}, as shown. This eigenvector has six strong
sign graphs while1 +r —2=542—-2=5; and yet there is a pair af; ~ P;
such that; > 0,u; < 0.

Variants of this error appear elsewhere. Thus Theorem 2.4 of Friedman [10] and
Theorem 4.4 of Van der Holst [17] can be phrased as folldfvan eigenvector u
corresponding to A, has morethan n strong sign graphs, then there is no pair of
adjacent vertices, i.e., P; ~ P;, suchthatu; > 0, u; < 0, i.e, thereisno edge that
joins any two strong sign graphs. The example in Fig. 1 disproves this also: the
eigenvector shown has:6 n = 5 strong sign graphs.

Duval and Reiner [6] tried to show that an eigenvector corresponding tas
no more tham strong sign graphs. Friedman [10], however, had given the sim-
ple example of a star oN vertices for which the second Laplacian eigenvalue has
multiplicity N — 1, and has an eigenvector witti — 1 strong sign graphs but, as
always, exactly two weak sign graphs. If therefote- 1 > 2, i.e., N > 4, then a
second eigenvector has more than 2 strong sign graphs, falsifying Theorem 6 and
Corollary 7 of [6]. WhenV = 4 the Laplacian eigenvalues are= 0,1, = A3 = 1,
andi4 = 3. Fig. 2 shows a second Laplacian eigenvector which has 3 strong
sign graphs.

Fig. 1. The eigenvector correspondingiiphas six strong sign graphs.
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Fig. 2. This second eigenvector has three strong sign graphs.

Colin de Verdiére [4] correctly stated that any eigenvector corresponding to
has at most weak sign graphs (Theorem 2), but his proof relies on unsubstantiated
assertions. Friedman’s [10] proof of Theorem 2 is incomplete also.

The present paper has a somewhat curious history. In March 2000, one of us,
GMLG, submitted a manuscript to LAA containing proofs of Theorems 1 and 2
and pointing out the error in [6]. Soon after EBD, JL, and PFS independently sub-
mitted a joint manuscript to LAA which gave essentially the same proof of Theo-
rem 1 and a substantially shorter proof of Theorem 2. The present contribution is an
amalgamation of these two manuscripts.

3. Strongsign graphs

Let A be as in Section 1, let the eigenvalues be labelled as in (1) and (3), and
supposaei is in the eigenspace af,. We introduce the concept afljacency.

Definition 3. Two different strong or weak sign grapkis, S2 are said to badjacent
if there existP, € S1, P> € S2 such thatP; ~ P».

It follows from this definition that if two different sign graphs are adjacent, then
they have opposite signs. For if they had the same sign then neither would be max-
imal. Supposal hasm strong sign graphs;, i = 1, ..., m. Definem vectorsw;,
i=1,...,m,such that

~_ju ons;,
Wi = {0 otherwise ®)

Explicitly, let w; = {w; 1, w; 2, ..., w; n}. Thenw,-,j =uj if PjeSi,w,;=0
otherwise.
Thus

u:ZW,-. (7)

Now form

V= ZC,’W,'. (8)
i=1
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Using straightforward algebra, we may verify Duval and Reiner’s [6] useful.
Lemmal.

m m
1
vIAV — vy = E cw! (Au — ru) — > E (ci — )] Aw;.
i—1 ij=1

This leads to:

Theorem 1. Any eigenvector corresponding to A, hasat most n + r — 1 strong sign
graphs.

Proof. Since none of they; is identically zero and they are disjoint, their linear span
has dimensionm. It follows that there exist non-zero real coefficients,

i=1....m, such thatv is non-zero and is orthogonal to the fifst — 1) eigen-
vectorsu), j =1,...,m —10fA, ie.,
viul =0, j=12....m—-1 (9)

Without loss of generality we can takév = 1. Therefore, by the minimax theorem
[5, Chapter 1, Section 4] we have

VIAV > 4. (10)
Now use Lemma 1 with = 1,,, u = u™. We find

1 m
VIAV — A, = -5 Z (ci — c)*w] Aw;. (11)
i,j=1
Aterm WlTAWj is non-zero only if;, w; correspond to adjacent sign graphs; adja-
cent sign graphs have opposite signs; adjacent sign graphs are disjoint. This means

that any non-zero produml.TAw ; involves only negative, off-diagonal terms Aq
therefore

Wi AW, = (4)(-) (=) = +. (12)
Therefore, Eq. (11) gives
vIAv — 2, <0. (13)

This combined with (10) states thaf, < A,. Sincer, < A4, Wwe haver,, < A4,
andhaven <n+r,ie.m<n+r—-1. O

Discussion. The logical negative form of Theorem 2.4 of [10] and Theorem 4.4 of
[4], which we have already falsified by counterexample, is as follotvhere is a

pair of vertices P;, P; suchthatu; > 0, u; < 0and P; ~ P;, then u has no more

than n strong sign graphs, i.e., m < n. We can deduce: < n from (10) and (11)

if we can show that the R.H.S. of (11) is strictly negative. For then (13) would be
replaced by
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VIAV — 4, <0, (14)

sothath,, < X, andm < n. Butto deduce (14) itis not enough that there is one term
WITAW]- which is strictly positive, as suggested; we must also kavé c;. That is
why the purported theorem is false; we can deduce only (13).

4. Weak sign graphs

We first derive some preliminary results about zero verticas of

(i) A zero vertex of u is either adjacent only to other zero vertices, i.e, it isan
interior vertex of a zero graph; or is adjacent to vertices of bothstrict signs: it
isaboundaryvertex. The vectow satisfiesAu = Au, i.e.,

N
Za,-juj = AU;. (15)
=1

If u; =0, thenZZ/\’:’1 a;ju; = 0, where the sum is taken over glwith j #i.
Sincea;; = 0 unlessP; ~ P;, the sum may be taken over thogdor which
P; ~ P;, forthosej, a;; < 0. Since all the coefficients in the restricted sum are
strictly negative, either alk; for which P; ~ P; are zero, or there is positive
and a negative among them.

(i) Each zero vertex belongs to exactly one weak positive sign graph and exactly
one weak negative sign graph.
This follows directly from the definition of weak sign graphs.

(i) If two different weak sign graphs S1, S2 have a non-zero intersection, i.e., they
overlap, they must have opposite signs. For otherwise neither would be maxi-
mal. If S1 N S = 0andP; € S1 N So, thenu; = 0.

We now prove:

Lemma 2. Suppose S1, S» areadjacent weak sign graphs. Thereisa pair of vertices
Py, Pp suchthat P1 € S1,and P> € S2\ Sy and P1 ~ Po.

Proof. Without loss of generality, assume tifatis weak positive ands is weak neg-
ative. If S1, S» are disjoint, then by the definition of adjacency, there eRist S1,

P> € S7 such thatP; ~ P; becauses, So are disjoint,P; € S> \ S1. OtherwiseSy,

S> have a non-empty intersectidih N S2. S1 N S2 is a strict subgraph of so that
not all verticesP; € S1 N Sz can be interior vertices in the sense of (i). Any boundary
vertex P1 will have the required property: for suchR, there will be a vertex,
such thatP, ~ P;, andus < 0,i.e.,Po € So\ S1. O

Now suppose that hasm > n weak sign graphs;. We definew;,i =1, ..., m,
by (6), and we choose;, i =1,...,m, not all zero, to makes given by (8)
orthogonal to the firstn — 1 eigenvectors oA. We prove a continuation result for
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the coefficients;, which is a discrete analogue of the unique continuation principle
for eigenfunctions.

Lemma3. Supposem > n, and two of the weak sign graphs S; and S, of u are
adjacent. Without loss of generality we may suppose that Sy is weak positive and S»
weak negative. Then ¢ = c1.

Proof. The minimax theorem implies' Av — 4,, > 0, and Lemma 1 implieg' Av —
An <0, and

m
D (ci — c)*w] Aw; = 0. (16)
i,j=1
Now use Lemma 2. 181, S» are disjoint, then there is a paft, P> such thatP; ~
P>, u1 >0 anduz <0, a2 < 0. ThUSWIAWZ > uiaioup > 0, and (16) implies
C1 = C2.
OtherwiseSy, S» overlap. SincaTAv — A, = 0, v, like u, is in the eigenspace of
An, and therefore so is
m
z=c1u—v=Z(c1—cj)wj. a7)
j=1
By definitionw;; = 0 unlessP; € §;. ChoosePy, P> as inLemma 2Py € S1N S»
impliesw; 1 = O for all j, so thatz; = 0.
Sincez is in the eigenspace af,, we have

Mz=Az= (c1—c;)AW; (18)
j=1
so that
m m N
Mz1=0=Y (c1—c))(AW)1 =D (c1—c)) Y _aywj;. (19)
j=2 j=2 i=2

where we have used; 1 = 0. The termuy;, fori > 2, is zero unles®; ~ P;. Since
uy1 = 0, all suchpP; are inSy or S2. The sum in (19) is therefore ovgr= 2 only:

N
0=(c1—c2) Y aywa,;. (20)
i=2
SincesS; is weak negativeyy;wp; > 0fori =1,..., N: each termin the sum is
non-negative. Sinc@, ~ P> we haveai < 0; sincePs € Sz \ S1, wo2 = uz <0,
so that

N
> aniw; > aiuz > 0 (21)
i=2

and hencei1 =c2. O
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This lemma states that ifi > n, then two adjacent sign graphs appeariny in
must appear with the same relative weights= ¢, as they did iru.
We are now in a position to establish:

Theorem 2. If I' is connected, any eigenvector corresponding to A, has at most n
weak sign graphs.

Proof. Suppose, if possible, that hasm weak sign graphs;, i = 1,...,m, and

m > n. At least one of the coefficients, sayci, is nonzero. Since > 1, we have

m > 2. Sincel  is connectedS; must be adjacent to at least one other sign graph,
which we labelS,. Lemma 3 states thab = ¢;1. If m > 3, one ofSy, S2 must be
adjacent to one of the remaining sign graghsi = 3, ..., m, saySs, otherwisel’
would not be connected. Therefarge = c2 = ¢1 by Lemma 3. I — 1 steps we
conclude that,, = ¢,,—1 = - -- = ¢1. Hencev = cju. Butv was constructed so that

it was orthogonal tar® fori = 1, ..., m — 1;if m > n, vis orthogonal ta:™ = u
contradictingv = ciu. Thereforen <n. O

5. Concluding remarks

The proof of Theorem 1, on strong sign graphs, hinges on two fundamental re-
sults: Courant’s minimax theorem, and Duval and Reiner's Lemma 1. Theorem 2, on
weak sign graphs, used these two, the preliminary results (i)—(iii), and Lemmata 2
and 3. In finite element applications, one encounters not the standard eigenvalue
problem (4), but the generalized problem

(K — AM)u = 0, (22)

whereK is positive semi-definite anil is positive definite. Typically, the off-diag-
onal elements oK are non-positive, those & are non-negative, and whent j,
kij < O,m,'j > 0iff P, ~ P; [12].

SinceM is positive definite the minimax theorem holds for the rafi&Kv/vTMv.
Duval and Reiner's Lemma 1 may also be generalized to read:

Lemmal’.
m 1 m
T 2., 2., T
vi(K — AM)v = Z;CiWi (K = AM)u — 5 .Zl(Ci —c)?w] (K — AM)w;.
= 1,]j=

Snce K is positive semi-definite and M positive definite, the eigenvalues are non-
negative. This means that when w;, w; correspond to adjacent sign graphs

W] (K = AM)W; = (H){(—) — () (HH=) = (). (23)

All the arguments used to establish Theorems 1 and 2 proceed as befora, with
replaced byK — AM.
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