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Abstract

We prove two discrete analogues of Courant’s Nodal Domain Theorem. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Courant [5, Chapter 6, Section 6] stated a general theorem about the nodes of
an eigenfunction:Given the self-adjoint second order (elliptic) differential equa-
tion L[u] + λρu = 0 (ρ > 0) for a domain G with arbitrary homogeneous boundary
conditions; if its eigenfunctions are ordered according to increasing eigenvalues,
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then the nodes of the nth eigenfunction un divide the domain into no more than n
subdomains. No assumptions are made about the number of independent variables.

The subdomains of which Courant writes have since become known asnodal
domains, see e.g. [1]. Many other authors refer to nodal domains as well, meaning
domainsbounded by nodes, not domains on which the eigenfunctions vanish. The
nodal sets themselves are known to be of zero Lebesgue measure and of dimension
m − 1 [2,14]. This terminology is now well-established in the PDE literature, but
is inappropriate for graphs. A discrete eigenvector on a graph is defined only on
the vertex setV of a graph�. Thus, contrary to the situation on a manifold, it may
change from positive to negative without passing through zero. The discrete analogue
of a “nodal domain” is a connected set of vertices, i.e., a connected subgraph of�, on
which the eigenvector has the same, strict or loose, sign. Now such a set of vertices is
not “bounded” by “nodes”; it is merely “bounded” by vertices of the opposite loose
sign. An appropriate name for such an entity would thus appear to besign graph,
rather thannodal graph.

Before introducing the formal definition of a sign graph, we formulate the discrete
problem. LetA ∈ RN×N be a real symmetric matrix with non-positive off-diagonal
elements: ifi /= j , thenaij � 0. A has eigenvaluesλi , i = 1, . . . , N , satisfying

λ1 � λ2 � · · · � λN . (1)

With the matrixA we may associate a simple, undirected, loop-free graph� with
finite vertex setV and edge setE. We denote the vertices byPi , i = 1, . . . , N . Ver-
ticesPi , Pj areadjacent, writtenPi ∼ Pj , or equivalently{Pi, Pj } ∈ E, iff aij < 0.
It is well known that, under this association, the matrixA is irreducible iff the graph
� is connected. In this case the Perron–Frobenius theorem implies thatλ1 is non-
degenerate, i.e.,λ1 < λ2, and the first eigenvector can be chosen to be everywhere
positive.

Matrices of this type naturally arise as discreteSchrödinger operators, e.g., in the
Hückel Molecular Orbital method of Theoretical Organic Chemistry:

Huj =
∑

Pi :Pi∼Pj

aij

[
uj − ui

] + ajjuj = [Au]j . (2)

Here the diagonal terms play the role of the potential and the off-diagonal elements
are binding energies between adjacent atoms.

We focus our attention on thenth eigenvalue ofA, and suppose that it has multi-
plicity r, so that

λn−1 < λn = λn+1 = · · · = λn+r−1 < λn+r . (3)

We supposeu(n) ≡ u = {u1, u2, · · · , uN } is in the eigenspace ofλn, so that

(A − λI)u = 0. (4)

The associationui → Pi associates the real numbersui , i = 1, . . . , N , with the ver-
ticesPi of �. The numbersui will be positive, negative or zero. We introduce two
definitions:
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Definition 1. A strong positive (negative) sign graph S is a maximal, connected
subgraph of�, on verticesPi ∈ V with ui > 0 (ui < 0).

Definition 2. A weak positive (negative) sign graph S is a maximal, connected sub-
graph of�, on verticesPi ∈ V with ui � 0 (ui � 0) and with at least onePi ∈ V

havingui > 0 (ui < 0).

Theorem 1. Any eigenvector corresponding to λn has at most n + r − 1 strongsign
graphs.

Theorem 2. If � is connected, then any eigenvector corresponding to λn has at
most n weaksign graphs.

2. A review of previous research

The simplest non-trivial graph� is a path, i.e., a tree with no branches. For a
path, the matrixA is tridiagonal with negative off-diagonal. Research on the sign
properties of the eigenvectors of a tridiagonalA goes back to the work of Gantmacher
and Krein [11]. They show that the eigenvalues ofA are all simple, and that the
nth eigenvector hasexactly n strong sign graphs andexactly n weak sign graphs.
For a path one can simply count the number of changes in sign in the sequence
u1, u2, . . . , uN . This special case shows that neither Theorem 1 nor Theorem 2 can
be strengthened without additional assumptions.

The Laplacian L of a graph� has entriesLij = −1 iff Pi ∼ Pj ; the diagonal
elementLii equals the vertex degree ofPi [3,15]. The associated quadratic form is

L =
∑

Pi∼Pj

(ui − uj )
2 = uTLu. (5)

The Laplacian eigenvalues (eigenvectors) of� are the eigenvalues (eigenvectors) of
L. Laplacian eigenvectors are of particular interest e.g. in the context of so-called
fitness landscapes [13]. The first Laplacian eigenvalue is zero. Fiedler [7,8] noted
that the second Laplacian eigenvalue is closely related to connectivity properties of
the graph, and showed that if� is connected, then the second Laplacian eigenvector
has exactly two weak sign graphs. We can reinterpret the analysis in [9] to state that
if n � 2, any eigenvector corresponding toλn has at mostn − 1 weak positive sign
graphs and at mostn − 1 weak negative sign graphs, so thatu has at most 2(n − 1)

weak sign graphs in all.
Powers [16] extended Fiedler’s analysis. He considered theadjacency matrixA of

�, defined byaij = 1 if Pi ∼ Pj , aij = 0 otherwise, includingaii = 0, and labelled
the eigenvalues in descending order,λ1 � λ2 � · · · � λn. His results translate in-
to equivalent ones for−A, provided that the eigenvalues are reordered as in (1).
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He sharpened Fiedler’s upper bound 2(n − 1) for the number of weak sign graphs.
His bounds were specific to the adjacency matrix, and depended on the size of the
eigenvalue.

Powers correctly stated and proved that an eigenvalue corresponding toλn has at
mostn + r − 1 strict sign graphs wherer is the multiplicity ofλn, as in (3). This is
Theorem 1, proved below. However he erroneously concluded that the bound could
be reduced ton + r − 2 if it is known that some edge of� joins a vertex of a strictly
positive sign graph to a vertex of a strictly negative sign graph, i.e., there existPi ,
Pj such thatPi ∼ Pj andui > 0, uj < 0.

Fig. 1 shows a counterexample which disproves this statement. The (negative) ad-
jacency matrix has eigenvalues−2, −1, −1, 0, 1, 1, 2. One eigenvector correspond-
ing to λ5 = 1 is {0, 1, −1, −2, 2, 1, −1}, as shown. This eigenvector has six strong
sign graphs whilen + r − 2 = 5 + 2 − 2 = 5; and yet there is a pair ofPi ∼ Pj

such thatui > 0, uj < 0.
Variants of this error appear elsewhere. Thus Theorem 2.4 of Friedman [10] and

Theorem 4.4 of Van der Holst [17] can be phrased as follows:If an eigenvector u
corresponding to λn has more than n strong sign graphs, then there is no pair of
adjacent vertices, i.e., Pi ∼ Pj , such that ui > 0, uj < 0, i.e., there is no edge that
joins any two strong sign graphs. The example in Fig. 1 disproves this also: the
eigenvector shown has 6> n = 5 strong sign graphs.

Duval and Reiner [6] tried to show that an eigenvector corresponding toλn has
no more thann strong sign graphs. Friedman [10], however, had given the sim-
ple example of a star onN vertices for which the second Laplacian eigenvalue has
multiplicity N − 1, and has an eigenvector withN − 1 strong sign graphs but, as
always, exactly two weak sign graphs. If thereforeN − 1 > 2, i.e.,N � 4, then a
second eigenvector has more than 2 strong sign graphs, falsifying Theorem 6 and
Corollary 7 of [6]. WhenN = 4 the Laplacian eigenvalues areλ1 = 0,λ2 = λ3 = 1,
andλ4 = 3. Fig. 2 shows a second Laplacian eigenvector which has 3(> 2) strong
sign graphs.

Fig. 1. The eigenvector corresponding toλ5 has six strong sign graphs.



E.B. Davies et al. / Linear Algebra and its Applications 336 (2001) 51–60 55

Fig. 2. This second eigenvector has three strong sign graphs.

Colin de Verdière [4] correctly stated that any eigenvector corresponding toλn

has at mostn weak sign graphs (Theorem 2), but his proof relies on unsubstantiated
assertions. Friedman’s [10] proof of Theorem 2 is incomplete also.

The present paper has a somewhat curious history. In March 2000, one of us,
GMLG, submitted a manuscript to LAA containing proofs of Theorems 1 and 2
and pointing out the error in [6]. Soon after EBD, JL, and PFS independently sub-
mitted a joint manuscript to LAA which gave essentially the same proof of Theo-
rem 1 and a substantially shorter proof of Theorem 2. The present contribution is an
amalgamation of these two manuscripts.

3. Strong sign graphs

Let A be as in Section 1, let the eigenvalues be labelled as in (1) and (3), and
supposeu is in the eigenspace ofλn. We introduce the concept ofadjacency.

Definition 3. Two different strong or weak sign graphsS1, S2 are said to beadjacent
if there existP1 ∈ S1, P2 ∈ S2 such thatP1 ∼ P2.

It follows from this definition that if two different sign graphs are adjacent, then
they have opposite signs. For if they had the same sign then neither would be max-
imal. Supposeu hasm strong sign graphsSi , i = 1, . . . , m. Definem vectorswi ,
i = 1, . . . , m, such that

wi =
{

u onSi,

0 otherwise.
(6)

Explicitly, let wi = {wi,1, wi,2, . . . , wi,N }. Thenwi,j = uj if Pj ∈ Si , wi,j = 0
otherwise.

Thus

u =
m∑

i=1

wi . (7)

Now form

v =
m∑

i=1

ciwi . (8)
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Using straightforward algebra, we may verify Duval and Reiner’s [6] useful.

Lemma 1.

vTAv − λvTv =
m∑

i=1

c2
i wT

i (Au − λu) − 1

2

m∑
i,j=1

(ci − cj )
2wT

i Awj .

This leads to:

Theorem 1. Any eigenvector corresponding to λn has at most n + r − 1 strong sign
graphs.

Proof. Since none of thewi is identically zero and they are disjoint, their linear span
has dimensionm. It follows that there exist non-zero real coefficientsci ,
i = 1, . . . , m, such thatv is non-zero and is orthogonal to the first(m − 1) eigen-
vectorsu(j), j = 1, . . . , m − 1 of A, i.e.,

vTu(j) = 0, j = 1, 2, . . . , m − 1. (9)

Without loss of generality we can takevTv = 1. Therefore, by the minimax theorem
[5, Chapter 1, Section 4] we have

vTAv � λm. (10)

Now use Lemma 1 withλ = λn, u ≡ u(n). We find

vTAv − λn = −1

2

m∑
i,j=1

(ci − cj )
2wT

i Awj . (11)

A term wT
i Awj is non-zero only ifwi , wj correspond to adjacent sign graphs; adja-

cent sign graphs have opposite signs; adjacent sign graphs are disjoint. This means
that any non-zero productwT

i Awj involves only negative, off-diagonal terms inA;
therefore

wT
i Awj = (+)(−)(−) = +. (12)

Therefore, Eq. (11) gives

vTAv − λn � 0. (13)

This combined with (10) states thatλm � λn. Sinceλn < λn+r , we haveλm < λn+r ,
and havem < n + r, i.e.,m � n + r − 1. �

Discussion. The logical negative form of Theorem 2.4 of [10] and Theorem 4.4 of
[4], which we have already falsified by counterexample, is as follows:If there is a
pair of vertices Pi, Pj such that ui > 0, uj < 0 and Pi ∼ Pj , then u has no more
than n strong sign graphs, i.e., m � n. We can deducem � n from (10) and (11)
if we can show that the R.H.S. of (11) is strictly negative. For then (13) would be
replaced by
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vTAv − λn < 0, (14)

so thatλm < λn andm < n. But to deduce (14) it is not enough that there is one term
wT

i Awj which is strictly positive, as suggested; we must also haveci /= cj . That is
why the purported theorem is false; we can deduce only (13).

4. Weak sign graphs

We first derive some preliminary results about zero vertices ofu.
(i) A zero vertex of u is either adjacent only to other zero vertices, i.e., it is an

interior vertex of a zero graph; or is adjacent to vertices of bothstrict signs: it
is a boundaryvertex. The vectoru satisfiesAu = λu, i.e.,

N∑
j=1

aijuj = λui. (15)

If ui = 0, then
∑N ′

j=1 aijuj = 0, where the sum is taken over allj with j /= i.
Sinceaij = 0 unlessPi ∼ Pj , the sum may be taken over thosej for which
Pi ∼ Pj ; for thosej , aij < 0. Since all the coefficients in the restricted sum are
strictly negative, either alluj for which Pi ∼ Pj are zero, or there is positive
and a negative among them.

(ii) Each zero vertex belongs to exactly one weak positive sign graph and exactly
one weak negative sign graph.
This follows directly from the definition of weak sign graphs.

(iii) If two different weak sign graphs S1, S2 have a non-zero intersection, i.e., they
overlap, they must have opposite signs. For otherwise neither would be maxi-
mal. If S1 ∩ S2 /= 0 andPi ∈ S1 ∩ S2, thenui = 0.

We now prove:

Lemma 2. Suppose S1, S2 are adjacent weak sign graphs. There is a pair of vertices
P1, P2 such that P1 ∈ S1, and P2 ∈ S2 \ S1 and P1 ∼ P2.

Proof. Without loss of generality, assume thatS1 is weak positive andS2 is weak neg-
ative. If S1, S2 are disjoint, then by the definition of adjacency, there existP1 ∈ S1,
P2 ∈ S2 such thatP1 ∼ P2; becauseS1, S2 are disjoint,P2 ∈ S2 \ S1. OtherwiseS1,
S2 have a non-empty intersectionS1 ∩ S2. S1 ∩ S2 is a strict subgraph of� so that
not all verticesP1 ∈ S1 ∩ S2 can be interior vertices in the sense of (i). Any boundary
vertexP1 will have the required property: for such aP1, there will be a vertexP2
such thatP2 ∼ P1, andu2 < 0, i.e.,P2 ∈ S2 \ S1. �

Now suppose thatu hasm � n weak sign graphsSi . We definewi , i = 1, . . . , m,
by (6), and we chooseci , i = 1, . . . , m, not all zero, to makev given by (8)
orthogonal to the firstm − 1 eigenvectors ofA. We prove a continuation result for
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the coefficientsci , which is a discrete analogue of the unique continuation principle
for eigenfunctions.

Lemma 3. Suppose m � n, and two of the weak sign graphs S1 and S2 of u are
adjacent. Without loss of generality we may suppose that S1 is weak positive and S2
weak negative. Then c2 = c1.

Proof. The minimax theorem impliesvTAv − λm � 0, and Lemma 1 impliesvTAv −
λn � 0, and

m∑
i,j=1

(ci − cj )
2wT

i Awj = 0. (16)

Now use Lemma 2. IfS1, S2 are disjoint, then there is a pairP1, P2 such thatP1 ∼
P2, u1 > 0 andu2 < 0, a12 < 0. ThuswT

1Aw2 � u1a12u2 > 0, and (16) implies
c1 = c2.

OtherwiseS1, S2 overlap. SincevTAv − λn = 0, v, like u, is in the eigenspace of
λn, and therefore so is

z = c1u − v =
m∑

j=1

(c1 − cj )wj . (17)

By definitionwj,i = 0 unlessPi ∈ Sj . ChooseP1, P2 as in Lemma 2;P1 ∈ S1 ∩ S2
implieswj,1 = 0 for all j , so thatz1 = 0.

Sincez is in the eigenspace ofλn, we have

λnz = Az =
m∑

j=1

(c1 − cj )Awj (18)

so that

λnz1 = 0 =
m∑

j=2

(c1 − cj )(Awj )1 =
m∑

j=2

(c1 − cj )

N∑
i=2

a1iwj,i , (19)

where we have usedwj,1 = 0. The terma1i , for i � 2, is zero unlessPi ∼ P1. Since
u1 = 0, all suchPi are inS1 or S2. The sum in (19) is therefore overj = 2 only:

0 = (c1 − c2)

N∑
i=2

a1iw2,i . (20)

SinceS2 is weak negative,a1iw2,i � 0 for i = 1, . . . , N : each term in the sum is
non-negative. SinceP1 ∼ P2 we havea12 < 0; sinceP2 ∈ S2 \ S1, w2,2 = u2 < 0,
so that

N∑
i=2

a1iw2,i � a12u2 > 0 (21)

and hencec1 = c2. �
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This lemma states that ifm � n, then two adjacent sign graphs appearing inv
must appear with the same relative weightsc1 = c2 as they did inu.

We are now in a position to establish:

Theorem 2. If � is connected, any eigenvector corresponding to λn has at most n
weak sign graphs.

Proof. Suppose, if possible, thatu hasm weak sign graphsSi , i = 1, . . . , m, and
m > n. At least one of the coefficientsci , sayc1, is nonzero. Sincen � 1, we have
m � 2. Since� is connected,S1 must be adjacent to at least one other sign graph,
which we labelS2. Lemma 3 states thatc2 = c1. If m � 3, one ofS1, S2 must be
adjacent to one of the remaining sign graphsSi , i = 3, . . . , m, sayS3, otherwise�
would not be connected. Thereforec3 = c2 = c1 by Lemma 3. Inm − 1 steps we
conclude thatcm = cm−1 = · · · = c1. Hencev = c1u. But v was constructed so that
it was orthogonal tou(i) for i = 1, . . . , m − 1; if m > n, v is orthogonal tou(n) = u
contradictingv = c1u. Thereforem � n. �

5. Concluding remarks

The proof of Theorem 1, on strong sign graphs, hinges on two fundamental re-
sults: Courant’s minimax theorem, and Duval and Reiner’s Lemma 1. Theorem 2, on
weak sign graphs, used these two, the preliminary results (i)–(iii), and Lemmata 2
and 3. In finite element applications, one encounters not the standard eigenvalue
problem (4), but the generalized problem

(K − λM)u = 0, (22)

whereK is positive semi-definite andM is positive definite. Typically, the off-diag-
onal elements ofK are non-positive, those ofM are non-negative, and wheni /= j ,
kij < 0, mij > 0 iff Pi ∼ Pj [12].

SinceM is positive definite the minimax theorem holds for the ratiovTKv/vTMv.
Duval and Reiner’s Lemma 1 may also be generalized to read:

Lemma 1′.

vT(K − λM)v =
m∑

i=1

c2
i wT

i (K − λM)u − 1

2

m∑
i,j=1

(ci − cj )
2wT

i (K − λM)wj .

Since K is positive semi-definite and M positive definite, the eigenvalues are non-
negative. This means that when wi , wj correspond to adjacent sign graphs

wT
i (K − λM)wj = (+){(−) − (+)(+)}(−) = (+). (23)

All the arguments used to establish Theorems 1 and 2 proceed as before, withA
replaced byK − λM.
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