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Abstract. It is well known that three-dimensional inverse scattering problems are much
more difficult to solve than one-dimensional problems. For this reason, some authors have
considered cases where one may transform three-dimensional problems to one dimension,
in essence looking for three-dimensional probiems which allow a one-dimensional wave-
splitting. We show here that such a reduction can be carried out only in three specific
cases,

Consider the three-dimensional acoustic wave equation
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coupled with the boundary conditions
p(m,"t) = ppl.1) on S,
fﬁ(m,t) = oo(z,d)  on S

where S; is a two-dimensional smooth closed surface and the n-derivative is the
normal derivative to the surface S,. Here we assume p is a C? function and that
p and ¢ are continuous, We impose the quiescent condition, namely p = 0 for
t < 0. We also add the extra reasonable assumption that the function p(uy,-,-, %)
has compact support. In general, we assume ¢ = ¢(x) and p = p(x). If the functions
e, p and p; are given, a forward problem would be to solve for o. If p, and o, are
given, an inverse problem would be to solve for ¢ and p.

When the wave speed ¢ is constant, the problem may be transformed into the
Schrodinger equation. The inverse problem in this setting has received considerable
attention (see for example Newton [9] and Rose et ol [10]). If p is assumed to be
constant, (1) reduces to the classical wave equation

Vo, 6) = oo 2 p(ant). | ®
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Weston [13-16] has given much attention to this equation by applying wave-splitting
methods which identify ‘upward’ and ‘downward’ directions of the wave motion. This
was done in an attempt to extend the layer-stripping methods used succesfully in
solving one-dimensional inverse problems (see for example Bruckstein et al [1]), but
the application to inverse problems has not been thoroughly investigated.

Several authors consider problems with a three-dimensional equation with
undetermined coefficients which depend only on one dimension. The planar case
(¢ and p are fanctions of z) was considered by Weston [13] and Coen [2]. Taking
advantage of the geometry, Coen used the Radon transform to transform the problem
into a one-dimensional one. We note that while the one-dimensional inverse problems
yield only the ratio of p and ¢, Coen generates a family of one-dimensional problems
which allowed him to determine these two functions individually. Coen [3] also
considered the spherical case, and Kreider [7] and Weston [14] studied the circular
cylindrical case. The papers of Weston and Kreider obtain the Ricatti-type integro-
differential equation used by Corones er al [4].

In this paper we wish to find all the cases when a three-dimensional problem may
be reduced to a one-dimensional one. Weston [14] (who worked with the classical
wave equation) considered the situation where one has an orthogonal curvilinear
coordinate system (uy, uy, u3) (see [11] for an elaboration on curvilinear coordinates)
and ¢ = ¢(u,). We denote the correspondmg scale factors by hq, hy, by, Weston
claims a reduction to one dimension is realized when 3—111( hohy) and h,; are
functions of u; only. The planar case considered in [13] fits the stated criteria. Two
non-planar examples considered were the cases of spherical and circular cylindrical
geometry. We show that the conditions Weston imposes to obtain a one-dimensional
problem are not only sufficient, but they are also necessary to reduce such a three-
dimensional problem to one dimension. Secondly, only the planar, spherical and
circular cylindrical geometries satisfy these conditions.

A system will be considered reducible to one dimension if it may be written

3 9g \ _
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for then it may be replaced by the pair of equations

a(’“:) 94 ““—% 831; b(ul) | G

With the change to the travel-time coordinate

wy b
o

we may reduce (4) to the standard form

a=-20g p=-2O5 ®

where the impedance Z(&) is given by
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We require that the transformation from (1} to (3) be independent of the data p,, oy.
Weston's conditions are equivalent to

hy = hy{uy) hohg = fu)g(uy, ug). (6)

Define
q(ul,t)=j;g(uz,u3)p(u1,u2,u3,t)du2du3=/S§dA

where dA = hyhydu,dus is an element of the surface S, u, = constant. We will show
that, under Weston’s conditions (6), ¢(wu,,t) satisfies a one-dimensional equation of
the form (3). To do this we need a generalization of Leibniz’s Rule for differentiating
under the integral sign, due to Flanders [6], namely

o f wdA = / e (h hyw) dA : )

where again the integrals are taken over w; = constant.
. In orthogonal curvilinear coodinates

o 1 8 (hyhy Bp
VP = T By ( hy Buy

)+t ®

where the transverse Laplacian is

LB = BRohy [Buy \ hy Buy) T Bug \ hy Buz /|

fsvﬂ"m = fg gl [au2 <h2 8u2) Y o (H;aus da

1 b a8
= fsm[gu—z(hsﬂ)—a;(hzﬂ)] dA—/Ser(VXF)dA

where

_ 1 9p 1 9p

F =055 B= hy duy F3—h23'u.2

and e; is the unit length normal to the surface S. If S is bounded, then it must
be diffeomorphic to a sphere. Let C be a curve which maps into a great circle on
the sphere. This curve separates the surface into two parts S; and S,. Thus Stokes’
theorem applied to 5, and S, separately gives

fo_pdA:elo/ F-ds—el-/ F.ds=0
s c Jo :

because C is traversed one way as the boundary of S, the other way as the boundary
of 5,.
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If the surface is unbounded then, since p(wq,-,-,¢) has compact support, there
is a Jordan curve C on the surface S such that C surrounds this support, and on it
F, = 0 = F;. Again the integral of the transverse Laplacian over S is zero.

Thus in any case equation (8) gives

1 & [hyhy Op
A 2 — 2ftg ]
I/SV pda /hzhs Ouy ( hy 3“1) a4
On account of Flanders’ Equation (7), this may be written
2, 94— 2 3p ) (f 1 d(gp) )
hlfsv pdA = (h1/ Bu; %) = 3uy \y Js Tphy 00y )
8 8 (f O
3“1 ( / hohs a“‘51 (h2h3f) dA) 3“1 <h1 3“1/ fdA)
_ 8 ([ 8¢
T Buy \hy Buy)
Integrating (2) over S we obtain

1 &8¢ _ 1 8 (i dq
Cz(’ul) o2 - h’lf 3u1 h‘l 8?1;1 ’

which has the required form (3).
To prove that equations (6) are necessary, assume a solution of the form

q(uq,t) :=jsg(ulau2au3)p(u17u2:u3st) duy dug

may be reduced to the form (3). Note the u,-dependence on the g term. Equation (3)
implies

8 [ o a%p
0= [, {a (samton) -5 e

= [l (, 2 .
- jS { = (a 8u1(gp)) by v p} duy dus ©
Putting
_ bctg
= hoh,

we examine the expression
/ bctgVipdu,du; = / rVipdA.
s 5

. We express the Laplacian as

h1h2h3 81.&1 h’l 3u1

f11h2h3 au2 hz 8'1!.2 3u3 hs 3u3 '
(10)

Vf"p = )+e1-V><F+



Three-dimensional inverse scattering 245
Since
Vx(rF)=r(VxF)+VrxF

we use Stokes’ theorem as before to obtain

8 [ hohy Bp
2 2f3
’/srv pda = / lihohg Suy ( fq 3‘“1) a4

1 Ths 8p 8r | hy Op Or
/ hyhsy [E;‘auz du, t h3 Bu, Sug da

+/ h1h2h3 [31&2 hz 3'u2 + 3%3 ha a'U3 dA'

Collecting the coefficients of 8p/8u, and 8p/8wu, and setting them equal to zero
yields

r r Ik —0 ar  r Ry __

SR L%y,

3?1,2 h‘I 8%2 8U3 hl 811.3

2 (1) oo i(
a'u.z hl - - 8U3

which implies

This gives

7::; = fuy)-

Continuing the calculation in (9), and letting the subscript 1 denote differentiation
with respect u,, we have

{2 (0@ o) — a2 (b3 P2
0= /s {3’”1 (a 3"1(gp)) f(ul)aul ( hy 3u1)}du2du3
= /5 {fag); + a39,} pdu,dug +./S{2agl + a9

8 [hyh i
_.fg,;l-( ;13)}P1dU2dﬂ3+L{Gg"f(ul)—;—:}pnduzdus.

Using the independence of the data, we have that the three coefficients must each
be zero:

g + a9, =0 - (11)

8 [hyh '
2ag, + arg — f'—u—' (—721—1) =0 (12
1 1

ag - fh2h3 13)
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Equation (13) gives

thus hy = hq(u,). We then rearrange (12) as

hqh d fag
0=2ag,+c —(—2—3)::20, +a,g— _._(..._)
g1t+aeg—F b g1+ a9 faul 7
=Z2ag, +ag—f (aq:g—}- %9 _ a§{1) =ag;+ ——a";fl
thus
a
51;—1(“#) =0..

Writing ¢ f = d(u,, u;), we have

bctg ( bcz)
hohy = =2 = (2 d(u,,
23 fhl fghl ( 2 'Lt,3)

and hence h,hy has the desired form, This shows that Weston’s conditions are
necessary for a reduction to one dimension.

We now show that only three geometries satisfy these conditions. Weston noted
that the two conditions imply the mean curvature is a function of »; only. Indeed,
the mean curvature H satisfies (see [12, pp 200-202])

1 8h, 1 Ohy

1 8
=53 lﬂ(hzh3) (15)
1
R

kl(ﬂq) Sfluy)
The Gaussian curvature K may be written (see [8, p 137]) as

. =1 ] 1 8 a4 @ (1 8 .4
k= 2hyhsy [3’&2 (hzhs 3u2h3) * Bug (hzhs Bug hz)l an
-1 [ &8 [(18h, 8 (1 8h,
= = — . 1
i [ () + o ()| 9
Since the system is orthogonal, the scale factors must satisfy certain compatibility

conditions. These are embodied in the Gauss-Codazzi equations [5], which are
equivalent to the eguarions of Lamé:

8y _ 108k, 8k 18k Ok, )
au‘kaui N hv}c 81!:] 8’&;‘:' h] 3uk au,,

g (10h a {1 8k 1 8h; 8hy _

Ou; (h_s 3’“5) * By, (h_;: ‘9%) T h} Bu; EP =0 (20)
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where ¢, & and { take the values 1, 2 and 3in cyclic order,
Setting ¢ = 2 in (20) yields

o (1o, 0 (1oh), 1omah
8u2 hz 8%2 aﬂs h3 8'”'3 h-;lz aul 3'&1 -

Comparing this to (18}, we obtain

_ 1 ahz 3]2-3
" h3hyhg Oug Buy

K

Comparing this with (15), we note that this implies the principal curvatures k&, and
ks may be written as

1 8h,

ky = __"?h_z Bu, (21)
by = —ﬁg% - (22)
Setting ¢ = 1 in (20) implies

8 (_1__%) ~0.

Auy \ hy Sy
Defining

B = [ hi)de
we obtain

Py, vy, ug) = Hy(1eg)gm(ug, uz) + gnlt, u3) - (23)
Similarly, setting ¢ = 3 in (20) gives

hg(ug, uy, ug) = Hy(wy gz (g, ug) + g32(ug, ug) - (24)
Putting these together gives

hohy = rHi?n1 + Hyngy + 1y 7 23
where -

Ry = 9ngn ny = ;?21932 + 9ngs g = gngs - (26)

Since the expression

a
3, In(hyhs)
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is a function of u, only, we use (25) to obtain

an_? 8?’1.;

where 7, =1,2,3 and k =2,3.
If ny # 0, (27) may be used to give

np

2’
n_x = () ;% = c3(uq) -

Expanding these expressions using (26) yields

g g
22 = mo(u,) and == ma(uy}.

9 931
Substituting (23) into (21) gives

ko = —9n
27 Hygy +9n

If g,, = 0 at a point, k, = 0 at that point. If g,, # 0, we write &, as

-1
]\az—-m.

Thus k, is a function of ; only. Similarly, %, is also a function of u, only,

Now fix u, so that we consider an individual surface which has constant principal
curvatures. If both curvatures are zero, then it is well known that the surface must
be a plane. Suppose that both curvatures are non-zero. We then have a Weingarten
surface, that is, a surface for which each of the principal curvatures is a function
of the other. Suppose further that the principal curvatures are not equal. Such
Weingarten surfaces have the property (see [5, p 292]) that there exists a parameter
s and a fonction ¢ = ¢(s) such that the principal curvatures may be written as

-’:— = ¢(s) and —!:— = ¢(s} — s¢'(s).

2 3

Since our principal curvatures ate constant, ¢(s) i8 a constant function, hence the
principal curvatures must be equal, which contradicts our last supposition. Thus the
principal curvatures must be equal.

Up to a rigid body motion, at most one surface may have specified principal
curvatures. Since the sphere, circular cylinder and plane correspond to surfaces
having constant principal curvatures with exactly two, one and no principal curvatures
being zero respectively, these are the only three surfaces one has for «; = constant.
Since h; = h;(u,), the surfaces must be nested in a symmetric way as one varies u,.

Finally we note that the three-dimensional acoustical equation (1) may be reduced
to a one-dimensional Schr&dinger equation under precisely the same conditions
(equation (6)).
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