The total positivity interval

G.M.L. Gladwell a,*, K. Ghanbari b

aDepartment of Civil Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
bDepartment of Mathematics, Sahand University of Technology, Tabriz, Iran

Received 30 May 2003; accepted 7 February 2004
Submitted by S. Fallat

Abstract

If \(A \in M_n \) is totally positive (TP), we determine the maximum open interval \(\mathcal{I} \) around the origin such that, if \(\mu \in \mathcal{I} \), then \(A - \mu I \) is TP. If \(A \) is TP, \(\mu \in \mathcal{I} \) and \(A - \mu I = LU \), then \(B \) defined by \(B - \mu I = UL \) is TP, and has the same total positivity interval \(\mathcal{I} \). If \(A \) is merely nonsingular and totally nonnegative (TN), or oscillatory, there need be no such interval in which \(A - \mu I \) is TN.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A48

Keywords: Totally positive matrix; Totally non-negative matrix; Oscillatory matrix

1. Introduction

Totally positive, and the related terms totally nonnegative and oscillatory, are important descriptors in the characterization of matrices appearing in a variety of contexts, see Gantmakher and Krein [3], Gladwell [5].

A matrix \(A \in M_n \) is said to be totally positive (TP) (totally nonnegative (TN)) if every minor of \(A \) is positive (nonnegative). It is NTN if it is invertible and TN. It is oscillatory (O) if it is TN and a power of \(A, A^m \), is TP. If \(Z = \text{diag}(+1, -1, +1, \ldots) \) and \(ZAZ \) is O, then \(A \) is said to be sign oscillatory (SO); sign oscillatory is a particular case of sign regular.

* Corresponding author.
E-mail address: graham@gladwell.com (G.M.L. Gladwell).

0024-3795/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
Cryer [2] proved that if A is NTN, then it has a unique factorization LU with L lower triangular and having unit diagonal, U upper triangular, and $B = UL$ is also NTN. We may extend Cryer’s result to matrices that are TP, O or SO. If A is TP then so is B. If A is O then it is NTN, so B is NTN. A power of A is TP so that $A^m = (LU)^m$ is TP, and then $B^{m+1} = (UL)^m L$ is TP, B is O. Similarly if A is SO, so is B.

For symmetric A, i.e., $A \in S_n$, Gladwell [6] extended Cryer’s result as follows. Let P denote one of the properties TP, NTN, O or SO. If A has property P, μ is not an eigenvalue of A, $A - \mu I = QR$ where Q is orthogonal and R is upper triangular with diagonals chosen to be positive, and B is defined by $B - \mu I = RQ$, then B also has property P. This result depends on the fact that if $A \in S_n$ and is nonsingular, then its QR factorization may be effected by making two successive LU factorizations. This is not true for general $A \in M_n$.

The following counterexample, with $\mu = 0$, shows that Gladwell’s result can not be extended to general $A \in M_n$:

\[
A = \begin{bmatrix} 2 & a \\ 1 & 2 \end{bmatrix}, \quad Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \quad R = \sqrt{5} \begin{bmatrix} 1 & (2a + 2)/5 \\ 0 & (a - 4)/5 \end{bmatrix},
\]

\[
B = \frac{1}{5} \begin{bmatrix} 12 + 2a & 4a - 1 \\ 4 - a & 2(4 - a) \end{bmatrix}.
\]

If $a = 1/5$, then A is TP, but B is not even TN. In Section 2 we find a restricted version of Gladwell’s result that holds for $A \in M_n$.

2. The total positivity interval

The TP-interval of a TP matrix, denoted by \mathcal{T}_A, is the maximum open interval around zero such that $A - \mu I$ is TP for $\mu \in \mathcal{T}_A$. We seek this interval.

Following Ando [1] we let $Q_{p, n}$ denote the set of strictly increasing sequences of p integers taken from $\{1, 2, \ldots, n\}$. If $\alpha = (\alpha_1, \ldots, \alpha_p) \in Q_{p, n}$ and $\beta = (\beta_1, \ldots, \beta_q) \in Q_{q, n}$, we denote the submatrix of A lying in rows indexed by α and columns indexed by β, by $A[\alpha|\beta]$.

When $\alpha \in Q_{p, n}$ and $\beta \in Q_{q, n}$, and $\alpha \cap \beta = \phi$, then $\alpha \cup \beta$ is rearranged increasingly to become a member of $Q_{p+q, n}$.

We use Sylvester’s identity on bordered determinants:

If $\alpha, \beta \in Q_{p, n}$ let $C = (c_{ij})$ where $c_{ij} = \det A[\alpha \cup i|\beta \cup j]$, and $\gamma, \delta \in Q_{q, n}$, then

\[
\det C[\gamma|\delta] = (\det A[\alpha|\beta])^{q-1} \det A[\alpha \cup \gamma|\beta \cup \delta].
\]

This states that if the minors of A are positive, then the minors of C are positive also. This matrix C is bordered about the submatrix $A[\alpha|\beta]$.
Theorem 1. Suppose \(A \in M_n \) is TP. Then \(\mathcal{J}_A = (a, b) \) where \(a \) and \(b \) are defined in (5).

Proof. The corner minors of \(A \) are \(\det A[1, 2, \ldots, p|n - p + 1, \ldots, n] \) and \(\det A[n - p + 1, \ldots, n|1, 2, \ldots, p] \) for \(p = 1, 2, \ldots, n \). It is known (Gasca and Pena [4], Gladwell [6]) that if \(A \) is TN and its corner minors are strictly positive, then \(A \) is TP. We may use this result to narrow the search for the total positivity interval. Consider what happens to the minors of \(A - \mu I \) as \(\mu \) increases (decreases) from zero. Suppose if possible that one or more non-corner minors are the first to become zero, at \(\mu = \mu_0 \). At \(\mu_0 \), \(A - \mu I \) is TN but its corner minors are strictly positive; \(A \) is TP, contradicting the assumption that a minor is zero. Thus we may seek the interval in which the corner minors are positive. We examine these corner minors. Let \(m = \lfloor n/2 \rfloor \), the integral part of \(n/2 \). Consider the corner minors taken from the top right corner; these are \(\det (A - \mu I) \) for \(p = 1, 2, \ldots, m \) the corner minors are independent of \(\mu \); for \(p = m + 1, \ldots, n \) the variable \(\mu \) appears in the diagonal terms \(a_{i,i} - \mu \). We may partition the \(p \)th order submatrix, and write its determinant as follows:

\[
\Delta_p(\mu) = \begin{vmatrix}
 a_{q,q+1} & \cdots & q_{1,p} & q_{1,p+1} & \cdots & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 a_{q,q+1} & \cdots & a_{q,p} & a_{q,p+1} & \cdots & a_{q,n} \\
 a_{q+1,q+1} - \mu & a_{q+1,q+1} & \cdots & a_{q+1,p+1} & \cdots & a_{q+1,n} \\
 \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 a_{p,p-\mu} & a_{p,p+1} & \cdots & a_{p,n} \\
\end{vmatrix}
\]

(1)

Here \(q = n - p \). Now use Sylvester’s identity. If \(C_p = (c_{ij}) \).

\[
c_p = \det A[1, 2, \ldots, q|p + 1, \ldots, n] \\
c_{ij} = \det A[1, 2, \ldots, q, i|j, p + 1, \ldots, n], \quad i, j = q + 1, \ldots, p
\]

then, after taking account of the change of sign arising from the column interchanges, we find

\[
c_p c_{p+q-1} \Delta_p(\mu) = \det (C_p + (-)^{q-1}c_{p} \mu I_{p-q}).
\]

(2)

Sylvester’s identity shows that \(C_p \in M_{p-q} \) is TP, so that all the eigenvalues of \(C_p \) are positive. If \(q \) is odd then (2) shows that

\[
\Delta_p(\mu) > 0 \quad \text{if} \quad c_{p} \mu > -\lambda_{p, \lim, R}
\]

(3)

where \(\lambda_{p, \lim, R} \) is the least eigenvalue of \(C_p \); \(R \) denotes the fact that we are considering right-hand corner minors. If \(q \) is even then (2) shows that

\[
\Delta_p(\mu) > 0 \quad \text{if} \quad c_{p} \mu < \lambda_{p, \lim, R}.
\]

(4)

For each odd \(q \), (3) gives a lower bound for \(\mu \); for each even \(q \), (4) gives an upper bound for \(\mu \). The TP interval \(\mathcal{J}_A = (-a, b) \) is bounded by the least of these upper bounds and the greatest of the lower bounds. Thus
where L denotes the eigenvalues derived from the left-hand corner minors. □

Numerical experiments indicated that there was no particular ordering among the eigenvalues $\lambda_{p,\text{min}}$ for different values of p. It proved to be difficult to find a TP matrix A such that $A - \mu I$ loses its total positivity for a positive value of μ less than that λ_1, the lowest eigenvalue of A. However, for the TP matrix

$$
A = \begin{bmatrix}
1.8756 & 0.7300 & 1.2706 & 11.7002 & 8.1829 \\
1.8747 & 0.7513 & 1.3534 & 12.5589 & 8.9982 \\
1.8003 & 0.7433 & 1.3884 & 12.9948 & 9.5591 \\
1.6674 & 0.7070 & 1.3636 & 12.8930 & 9.7773 \\
1.4929 & 0.6492 & 1.2889 & 12.3143 & 9.6265
\end{bmatrix}
$$

the top right 3×3 minor of $A - \mu I$ becomes zero at $\mu = 4.1190e^{-5}$, which is less than $\lambda_1 = 0.0001$, the lowest eigenvalue of A; this shows that $A - \mu I$ can lose its total positivity for values of μ such that $0 < \mu < \lambda_1$.

Corollary 2.1. If $\mathcal{A} = (-a, b)$ is the TP interval for A, then $A - \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)$ is TP provided that $\mu_i \in \mathcal{A}$, $i = 1, 2, \ldots, n$.

Proof. Let

$$
\mu_r = \max_{i=1,2,\ldots,n} \mu_i, \quad \mu_s = \min_{i=1,2,\ldots,n} \mu_i.
$$

Consider the minor $\Delta_p(\mu_1, \mu_2, \ldots, \mu_n)$ obtained by replacing μI_{p-q} by $\text{diag}(\mu_{q+1}, \ldots, \mu_p)$ in (1). If q has even parity

$$
c_p^{p-q-1} \Delta_p(\mu_1, \mu_2, \ldots, \mu_n) = \det(C_p - c_p \text{diag}(\mu_{q+1}, \ldots, \mu_p))
= \det(C_p - c_p \mu_r I_{p-q} + c_p \text{diag}((\mu_r - \mu_{q+1}), \ldots, (\mu_r - \mu_p)))
\geq \det(C_p - c_p \mu_r I_{p-q}) = c_p^{p-q+1} \Delta_p(\mu_r) > 0
$$

because all the minors of $C_p - c_p \mu_r I_{p-q}$ are positive. Similarly, if q has odd parity, then

$$
\Delta_p(\mu_1, \mu_2, \ldots, \mu_n) \geq \Delta_p(\mu_s) > 0. \quad \square
$$

Theorem 2. If $A \in M_n$ is TP and A has LU factorization $A = LU$ where L has unit diagonal, then $B = UL$ has the same TP interval \mathcal{A} as $A : \mathcal{A} = \mathcal{A}_B$.

Proof. For given p, denote the matrix C_p and scalar c_p for B by D_p, d_p respectively

$$
c_p = \det A[1, 2, \ldots, q|p + 1, \ldots, n] = \det U[1, 2, \ldots, q|p + 1, \ldots, n]
= \det B[1, 2, \ldots, q|p + 1, \ldots, n] = d_p
$$
and
\[C_p = L[q + 1, \ldots, p]V[q + 1, \ldots, p] \]
where
\[v_{ij} = \det U[1, 2, \ldots, q, i | j, p + 1, \ldots, n], \quad i, j = 1 + 1, \ldots, p \]
while the corresponding matrix obtained from \(B \) is
\[D_p = V[q + 1, \ldots, p]L[q + 1, \ldots, p]. \]
But \(C_p \) and \(D_p \) have the same eigenvalues, so that each upper (lower) bound appearing in (5) for \(A \) appears also in the corresponding bound for \(B \), and vice versa. Hence \(B \) has TP interval \(\mathcal{I}_A \).

Corollary 2.2. Suppose \(A \in M_n \) is TP, \(v \in \mathcal{I}_A \), \(A - vI = LU, \ B - vI = UL \), then \(B \) is TP with TP interval \(\mathcal{I}_A \).

Proof. If \(A \) has TP interval \(\mathcal{I}_A = (-a, b) \), then \(A - vI \) has TP interval \((-a - v, b - v) \); \(B - vI \) has TP interval \((-a - v, b - v) \); \(B \) has TP interval \((-a, b) \).

It appears that it is not possible to extend Theorem 1 to matrices that are merely TN or NTN, as the following examples show. The matrix
\[
A = \begin{bmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
is TN, but \(A - \mu I \) is not TN for any \(\mu \neq 0 \).

Now we seek \(A \in M_n \) that is NTN but which has no interval around zero in which it is NTN. Take \(n = 5 \), so that
\[
A - \mu I = \begin{bmatrix}
a_{11} - \mu & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} - \mu & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} - \mu & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} - \mu & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} - \mu
\end{bmatrix}
\]
Write \(G = A - \mu I \). Consider the two corner minors \(\det G[1, 2, 3|3, 4, 5] \) and \(\det G[2, 3, 4, 5|1, 2, 3, 4] \). We neek to make the former negative for all positive \(\mu \), and the latter negative for all negative \(\mu \). To do this, we need to make
\[
\det A[1, 2, 3|3, 4, 5] = 0, \quad \det A[1, 2|4, 5] > 0
\]
\[
\det A[2, 3, 4, 5|1, 2, 3, 4] = 0, \quad a_{51} > 0.
\]
Factorize \(A = LU \); these conditions will be satisfied if we can find \(L, U \), both NTN, such that
\[
\det U[1, 2, 3|3, 4, 5] = 0, \quad \det U[1, 2|4, 5] > 0
\]
\[
\det L[2, 3, 4, 5|1, 2, 3, 4] = 0, \quad l_{51} > 0.
\]
These conditions are satisfied by
\[
L = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}, \quad U = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 4 & 8 & 12 \\
0 & 0 & 1 & 3 & 5 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\]
\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 5 & 9 & 13 \\
1 & 2 & 6 & 12 & 18 \\
1 & 2 & 6 & 13 & 21 \\
1 & 2 & 6 & 13 & 22
\end{bmatrix}.
\]

Now we have
\[
\det G[1, 2, 3|3, 4, 5] = -4\mu, \quad \det G[2, 3, 4|1, 2, 3, 4] = \mu^3.
\]

Note that \(A\) is not just NTN, it is O. This counterexample shows that even an oscillatory matrix need not have an interval \(I_A\) in which it is TN.

References