
OSTRICH Documentation and User Guide

OSTRICH – An Optimization Software Toolkit

for Research Involving Computational Heuristics

Documentation and User’s Guide

Version 17.12.19

by

L. Shawn Matott, Ph.D.

State University of New York at Buffalo

Center for Computational Research

OSTRICH Documentation and User Guide

 2

Acknowledgements
Funding for the creation of this user manual was provided by Environment Canada under

contract number K3D35-14-0487R. The Dynamically Dimensioned Search (DDS) algorithm was

developed by Professor Bryan Tolson and implemented in C/C++ code by Professor James

Craig. Both James and Bryan are currently at the University of Waterloo. Professor Craig also

provided routines for generating normally distributed random variables. Other variants of the

DDS family of algorithms were ported to OSTRICH using C/C++ and FORTRAN

implementations provided by Professor Tolson’s research group. Hyper volume calculations

within the Pareto Archived DDS code have been adapted from original C++ source developed by

Nicola Beume at the University of Dortmund. The Shuffled Complex Evolution (SCE) algorithm

was ported from the original FORTRAN implementation of Dr. Qingyun Duan. All other

algorithm implementations are based on published descriptions and were coded primarily by L.

Shawn Matott. The basic object-oriented and model-independent structure of OSTRICH is based

off of a code known as MACT (Multi-Algorithm Calibration Tool) that was developed by

Vijaykumar Raghavan while at the University at Buffalo and under the supervision of Professor

Alan J. Rabideau. Portions of the genetic algorithm and simulated annealing implementations in

OSTRICH were ported from Mr. Raghavan’s MACT code.

Preface
OSTRICH is a model-independent and multi-algorithm optimization and calibration tool.

It can be used for weighted non-linear least-squares calibration of model parameters, or for

constrained optimization of a set of design variables according to a user-defined objective or cost

function. Both single and multi-objective optimization are supported along with multi-criteria

calibration. Parameters to be calibrated or optimized can be log-transformed or computed as

functions of other parameters. OSTRICH is also capable of computing an extensive set of post-

calibration statistics, include confidence intervals, parameter correlation, tests of normality and

non-linearity, and measures of observation influence and parameter sensitivity. OSTRICH can be

configured to operate with any modeling program that utilizes text-based input and output file

formats. Additional I/O formats that are supported include the MS Access database and netcdf

formats. Executable versions of OSTRICH are available for both Windows and Linux-based

computing environments. A parallel version of OSTRICH (OstrichMPI), utilizing the industry

standard MPI interface, is also available in both Windows and Linux. Linux builds of

OstrichMPI are available for both the OpenMPI and Intel-MPI implementations of the MPI

standard. The Windows-based OstrichMPI uses the MS-MPI implementation of the MPI

standard, which is distributed free of charge by Microsoft and can be downloaded from

https://msdn.microsoft.com.

https://msdn.microsoft.com/

OSTRICH Documentation and User Guide

 3

Release Notes

Version 17.12.19

 Bug fixes for using “OstrichWarmStart” with parallel algorithms

 Added support for “OstrichWarmStart” with the “ModelEvaluation” program

 Bug fixes for using the “extract” keyword with various algorithms --- See Section 2.7

Version 17.10.30

 Bug fixes for various edge cases

 Switched from file-based MPI implementation on Windows to MS-MPI

 Added forward declarations, required for building on MacOS

 Added support for “ModelOutputRedirectionFile” --- See Section 2.3

 Added support for preserving non-dominated solutions

 Updated the “PreserveModelOutput” option --- See Section 2.3

 Added “WriteResidualsEachIteration” option --- See Section 2.21

 More verbose output for Rejection Sampler results

 SCE algorithm now supports “PreserveBestModel” option

OSTRICH Documentation and User Guide

 4

Table of Contents
1. Introduction ... 7

1.1. Calibration and Optimization Algorithms .. 7

1.2. Regression Statistics and Diagnostics ... 11

2. ostIn.txt – the OSTRICH Input File .. 12

2.1. Comments ... 13

2.2. Case Sensitivity ... 14

2.3. ostIn – Basic Configuration .. 14

2.4. ostIn – File Pairs ... 19

2.5. ostIn – Extra Files ... 20

2.6. ostIn – Extra Directories ... 21

2.7. ostIn – Real-valued Parameters .. 21

2.8. ostIn – Integer Parameters .. 23

2.9. ostIn – Combinatorial Parameters ... 23

2.10. ostIn – Tied Parameters .. 24

2.11. ostIn – Special Parameters (pre-emption) ... 27

2.12. ostIn – Initial Parameters .. 29

2.13. ostIn – Parameter Correction .. 29

2.14. ostIn – Observations ... 31

2.15. ostIn – Response Variables ... 35

2.16. ostIn – Tied Response Variables... 36

2.17. ostIn – Type Conversion (MS Access, netcdf) ... 37

2.18. ostIn – Search Algorithms .. 39

2.18.1. Bisection Algorithm .. 39

2.18.2. Fletcher-Reeves... 40

2.18.3. Gauss-Marquardt-Levenberg .. 40

2.18.4. Multi-Start GML with Trajectory Repulsion .. 41

2.18.5. Grid-based Exhaustive Search .. 42

2.18.6. Powell's Algorithm ... 43

OSTRICH Documentation and User Guide

 5

2.18.7. Steepest Descent ... 43

2.18.8. Asynchronous Parallel Particle Swarm Optimization... 43

2.18.9. Particle Swarm Optimization (PSO) ... 45

2.18.10. PSO with GML Polishing ... 45

2.18.11. Balanced Exploration-Exploitation Random Search .. 45

2.18.12. Binary- and Real-coded Genetic Algorithms (BGA and RGA) 46

2.18.13. Combinatorial (Discrete) Simulated Annealing.. 46

2.18.14. Simulated Annealing ... 47

2.18.15. Vanderbilt-Louie Simulated Annealing .. 48

2.18.16. Discrete DDS .. 49

2.18.17. Dynamically Dimensioned Search (DDS) .. 50

2.18.18. Asynchronous Parallel DDS ... 50

2.18.19. Shuffled Complex Evolution (SCE) ... 52

2.18.20. Sampling Algorithm (Big Bang - Big Crunch) ... 53

2.19. ostIn – Uncertainty-based Search Algorithms .. 53

2.19.1. DDS for Approximation of Uncertainty ... 53

2.19.2. Generalized Likelihood Uncertainty Estimation (GLUE) 55

2.19.3. Metropolis-Hastings Markov Chain Monte Carlo (MCMC) 56

2.19.4. Rejection Sampling ... 57

2.20. ostIn – Multi-Objective Search Algorithms .. 58

2.20.1. Pareto Archived DDS (PADDS) ... 58

2.20.2. Asynchronous Parallel PADDS .. 59

2.20.3. Simple Multi-Objective Optimization Test Heuristic (SMOOTH) 59

2.21. ostIn – Math and Stats... 59

2.22. ostIn – Line Search ... 63

2.23. ostIn – General-purpose Constrained Optimization Platform (GCOP) 63

2.24. ostIn – Constraints .. 64

3. Running Ostrich .. 65

3.1.1. Using Weighted Sum of Squared Errors (WSSE) Calibration 66

OSTRICH Documentation and User Guide

 6

3.1.2. Using the General Constrained Optimization Platform (GCOP) 66

3.2. Serial (Single Processor) Execution .. 66

3.3. Multi-core Parallel Execution in Windows... 67

3.4. Distributed or Multi-core Parallel Execution in Linux ... 67

3.5. Aborting an Ostrich Run ... 68

3.6. Restarting an Ostrich Run ... 68

4. Ostrich Output Files .. 68

4.1. OstOutput – Main Output File .. 68

4.2. OstOutput – Statistical Output .. 69

4.2.1. Observation Residuals .. 69

4.2.2. Error Variance and Standard Error of the Regression .. 69

4.2.3. Parameter Variance-Covariance and Correlation ... 69

4.2.4. Confidence Intervals ... 69

4.2.5. Model Linearity .. 69

4.2.6. Normality of Residuals ... 69

4.2.7. Influential Observations ... 70

4.2.8. Parameter Sensitivities ... 70

4.2.9. Matrices .. 70

4.3. OstError – OSTRICH Error and Warning Messages .. 70

4.4. OstExeOut – Redirected Model Output .. 71

4.5. OstModel – Model Run Record .. 71

5. Examples ... 71

5.1. Demo #1 – Calibrating SPLIT Groundwater Flow Model ... 71

5.2. Demo #2 – Pump-and-Treat Optimization ... 72

5.3. Demo #3 – Optimizing a BIGFOOT Benchmark ... 72

5.4. Demo #4 – Calibrating a TUSWAMP Watershed Model .. 72

5.5. Demo #5 – Simple Pre-Emption Demonstration .. 73

5.6. Demo #6 – Cantilever Beam Multi-Objective Optimization .. 73

5.7. Demo #7 – Multi-Criteria MODFLOW Calibration ... 73

OSTRICH Documentation and User Guide

 7

5.8. Demo #8 – Warm Start Example .. 73

5.9. Demo #9 – Uncertainty-based Calibration Example .. 74

6. References ... 74

1. Introduction
OSTRICH is a model-independent program that automates the processes of model

calibration and design optimization without requiring the user to write any additional software.

Typically, users only need to fill out a few required portions of the OSTRICH input file (i.e.

ostIn.txt) and create template model input files. Users may also activate and configure a variety

of optional features, including: parallel processing, model pre-emption, algorithm restarts,

parameter statistics and regression diagnostics, telescoping parameter bounds, predictive

uncertainty, non-ASCII model I/O, and user-defined initial parameter sets. Finally, users with

skill in code or script development (e.g. C/C++, FORTRAN, Java, R, MATLAB, Python,

bash/bat, etc.) may also wish to take advantage of OSTRICH’s parameter correction feature. It

allows users to correct candidate parameter sets based on rules-of-thumb or expert judgment that

would otherwise be difficult to encapsulate as optimization constraints.

The remainder of this manual describes the configuration and usage of OSTRICH. Sections

1.1 and 1.2 provide brief summaries of the currently supported optimization and calibration

algorithms (Section 1.1), and regression statistics and diagnostics (Section 1.2). Sections 2

through 2.24 describe the OSTRICH input file and its various configuration sections. The

majority of these sections are optional and others will only be processed when a specific

algorithm, objective function (i.e. calibration vs. constrained optimization vs. multi-objective

optimization), or feature is activated. Section 3 provides guidance on running OSTRICH in serial

or parallel, and Section 4 describes various output files generated by OSTRICH. Finally, Section

5 reviews the set of examples that accompany the OSTRICH distribution and provides

instructions for running them on a Windows-based machine.

1.1. Calibration and Optimization Algorithms
OSTRICH implements numerous algorithms. Some of these algorithms are deterministic

local search methods, others are heuristic global search methods that incorporate elements of

structured randomness, and others act as samplers that seek to delineate parameter probability

distributions rather than just identifying a single optimal parameter set. While most of these

algorithms are suitable for both calibration and optimization problems, one deterministic

algorithm (i.e. Levenberg-Marquardt) is tailored to non-linear least-squares calibration problems.

Additionally, two algorithms (i.e. Pareto Archive Dynamically Dimensioned Search and the

Simple Multi-Objective Optimization Test Heuristic) are suitable for multi-objective

optimization or multi-criteria calibration. Finally, several sampling-based algorithms (i.e.

Generalized Likelihood Uncertainty Estimation, Rejection Sampling, and Metropolis-Hastings

OSTRICH Documentation and User Guide

 8

Markov Chain Monte Carlo) are suitable for uncertainty-based calibration. Overall, these

algorithms provide the user with a fair degree of flexibility and enable OSTRICH to tackle a

variety of linear and non-linear problems. Furthermore, these problems can have continuously

varying (i.e. real-valued) parameters, combinatorial parameters, integer parameters, or a mixture

of continuous, combinatorial and integer parameters.

Table 1 summarizes each algorithm implemented in OSTRICH along with appropriate

references for detailed descriptions. Algorithms where only contact information is provided are

unpublished experimental algorithms and should be used with caution. Some algorithms have

been validated against reference implementations. These algorithms include: DDS, PADDS,

PSO, GML, BGA, RGA, SA, FLRV, POWL, STPDSC, and SCE. C/C++ programmers will find

it straightforward to extend OSTRICH to include additional search algorithms. Doing so

involves extension of an abstract base class (AlgorithmABC) that defines a minimum set of

required search algorithm functions, including: Calbrate(), Optimize(), WriteMetrics(),

WarmStart(), and Destroy(). These functions typically utilize additional classes that encapsulate

parameters (i.e. ParameterGroup), models (i.e. ModelABC), and objective functions (i.e.

ObjectiveFunction) which are dynamically instantiated based on a user-supplied configuration

file.

As shown in Listing 5, OSTRICH supports a special ProgramType named

“ModelEvaluation”. OSTRICH will process the parameter sets listed in the “InitParams”

groups (see Section 2.12) when this program type is selected. In this way, users may request

evaluation of a specific set of parameters independent of any search algorithm embedded within

OSTRICH. For example, such parameter sets could be generated as part of a sensitivity or

uncertainty analysis procedure that is run using an external spreadsheet or statistical program.

Alternatively, these parameter sets could be generated by an external optimization algorithm. For

example, the PIGEON (Program for Interfacing Geoscience models with External Optimization

routInes) software package exploits this functionality to link optimizers written in MatLab and

Python with “back-box” geoscience models (Matott et al., 2011).

OSTRICH Documentation and User Guide

 9

Table 1: Catalog of Algorithms Implemented in OSTRICH

Acronym Algorithm

 # O
b

jective
s

Serial?*

P
arallel?

W
arm

 Start?

P
re-Em

p
tio

n
?

P
aram

eter C
o

rrectio
n

?

List o
f In

itial P
aram

eters?

M
ath

 an
d

 Stats?

Lin
e Search

? Reference or Contact Information

Deterministic (Local Search) Algorithms

BISECT Bisection Algorithm 1 (Corliss, 1977)

FLRV Fletcher-Reeves 1 (Fletcher and Reeves, 1964)

GML Gauss-Marquardt-Levenberg 1 * (Levenberg, 1944; Marquardt, 1963)

MSGML Multi-Start GML with Trajectory Repulsion 1 * (Skahill and Doherty, 2006)

GRID Grid-based Exhaustive Search 1 lsmatott@buffalo.edu

POWL Powell's Algorithm 1 (Powell, 1977)

STPDSC Steepest Descent 1 (Bertsekas, 2014)

Heuristic (Global Search) Algorithms

APPSO Asynchronous Parallel Particle Swarm Optimization 1 (Venter and Sobieszczanski-Sobieski, 2006)

BEERS Balanced Exploration-Exploitation Random Search 1 lsmatott@buffalo.edu

BGA Binary-coded Genetic Algorithm 1 (Yoon and Shoemaker, 1999)

CSA Combinatorial Simulated Annealing 1 (Kirkpatrick et al., 1983)

DDDS Discrete DDS 1 (Tolson et al., 2009)

DDS Dynamically Dimensioned Search 1 (Tolson and Shoemaker, 2007)

PDDS Asynchronous Parallel DDS 1 (Tolson et al., 2014)

PSO Particle Swarm Optimization 1
(Beielstein et al., 2002; Kennedy et al., 2001; Kennedy
and Eberhart, 1995)

mailto:lsmatott@buffalo.edu
mailto:lsmatott@buffalo.edu

OSTRICH Documentation and User Guide

 10

Acronym Algorithm

 # O
b

jective
s

Serial?*

P
arallel?

W
arm

 Start?

P
re-Em

p
tio

n
?

P
aram

eter C
o

rrectio
n

?

List o
f In

itial P
aram

eters?

M
ath

 an
d

 Stats?

Lin
e Search

? Reference or Contact Information

RGA Real-coded Genetic Algorithm 1 (Yoon and Shoemaker, 2001)

SA Simulated Annealing 1 (Dougherty and Marryott, 1991; Marryott et al., 1993)

SCE Shuffled Complex Evolution 1 (Duan et al., 1993; Duan et al., 1992)

SMPLR Sampling Algorithm (Big Bang - Big Crunch) 1 (Erol and Eksin, 2006)

VSA Vanderbilt-Louie Simulated Annealing 1 (Vanderbilt and Louie, 1984)

Multi-Objective Optimization and Multi-Criteria Calibration Algorithms

PADDS Pareto Archived DDS 2+ (Asadzadeh and Tolson, 2013; 2009)

ParaPADDS Asynchronous Parallel PADDS 2+ (Tolson et al., 2014)

SMOOTH Simple Multi-Objective Optimization Test Heuristic 2+ lsmatott@buffalo.edu

Hybrid (Heuristic + Deterministic) Algorithms

PSO-GML PSO with GML Polishing 1 * (Katare et al., 2004)

Sampling Algorithms (Uncertainty-based Optimization)

DDS-AU DDS for Approximation of Uncertainty 1 (Tolson and Shoemaker, 2008)

GLUE Generalized Likelihood Uncertainty Estimation 1 (Beven and Binley, 1992)

MCMC Metropolis-Hastings Markov Chain Monte Carlo 1 * (Hastings, 1970; Kuczera and Parent, 1998)

RJSMP Rejection Sampling 1 * (Chen, 2005)

* = WSSE objective function only

mailto:lsmatott@buffalo.edu

OSTRICH Documentation and User Guide

 11

1.2. Regression Statistics and Diagnostics
When used for model calibration via a weighted sum of squared errors approach,

OSTRICH can compute an extensive suite of post-calibration statistics. OSTRICH can also

compute a variety of diagnostic measures that test the validity of the underlying assumptions of

the aforementioned statistical measures. Table 2 summarizes the regression statistics and

diagnostics implemented in OSTRICH along with appropriate references containing more

detailed descriptions. The OSTRICH manual for version 1.6 also contains a detailed description

of many of the regression statistics and diagnostics listed in Table 2.

Table 2: Regression Statistics and Diagnostics Implemented in OSTRICH

Name of Statistic or Diagnostic Reference

Residuals

Autorun Function on Ordered Residuals (McKenzie, 1984)

Correlation of Multiple Determination (Ry) (Hill, 1998; Hill and Tiedeman, 2007)

Normal Probability Plot Correlation Coefficient (R2
N) (Filliben, 1975)

Normal Probability Plot Points (Filliben, 1975; Looney and Gulledge Jr, 1985)

List of Observation Residuals (Hill, 1998; Hill et al., 2007)

Runs Test on Ordered Residuals (Draper et al., 1966; Straume and Johnson, 2010)

Parameters

Estimated Parameter Values

(Hill, 1998; Hill et al., 2007; Seber and Wild, 1989)

Linear Confidence Intervals on Parameters

Parameter Correlation

Parameter Standard Deviation

Parameter Standard Error

Parameter Variance and Covariance

Local Sensitivity Analysis

1% Scaled Sensitivities of Parameters (1%SS)

(Hill, 1998; Hill et al., 2007)
Composite Scaled Sensitivity of Parameters (CSS)

Dimensionless Scaled Sensitivity of Parameters (DSS)

Jacobian Matrix (J)

Observation Influence

Cook's D Measure (Cook and Weisberg, 1982)

DFBETAS Measure (Belsley et al., 1980; 2005)

Observation Leverage (Chatterjee and Hadi, 1986)

Predictive Uncertainty Analysis

Linear Confidence Intervals on Predictions (Hill, 1998; Hill et al., 2007)

Model Ranking, Transformation, and Goodness-of-Fit

Akaike Information Criterion (AIC) (Akaike, 1974)

OSTRICH Documentation and User Guide

 12

Name of Statistic or Diagnostic Reference

Bayesian Information Criterion (BIC) (Schwarz, 1978)

Corrected Akaike Information Criterion (AICc) (Hurvich and Tsai, 1994; 1993)

Estimated Box-Cox Transformation (Carroll and Ruppert, 1988; Sakia, 1992)

Hannon-Quinn Information Criterion (HQ) (Hannan and Quinn, 1979)

Standard Error (s)
(Hill, 1998; Hill et al., 2007; Seber et al., 1989)

Variance (s2)

Tests of the Linearity Assumption

Beale's Linearity Measure (Beale, 1968)

Linssen's Linearity Measure (Linssen, 1975)

2. ostIn.txt – the OSTRICH Input File
This section summarizes the input file of the OSTRICH program. On case-sensitive Linux

systems, the input file must be named ostIn.txt. On Windows systems the file could also be

named OstIn.txt. OSTRICH is a command-line console driven tool and when launched it will

look for ostIn.txt in the working directory (i.e. the directory from which OSTRICH is launched).

If this file does not exist or if it contains syntax errors, OSTRICH will quickly recognize this and

report an error message and close. Windows users will experience this behavior as a brief flash

of the DOS console window as it opens and then rapidly closes. In fact, the open-close sequence

may happen so fast that all a user notices is a brief flicker on the computer monitor. This does

not mean that OSTRICH is not installed correctly! It just means that you didn’t create a valid

input file prior to running OSTRICH. The output file named “OstErrors0.txt” will have details on

why OSTRICH failed to run.

For OSTRICH to work with a given modeling program, the modeling program must meet

the following requirements:

 The modeling program must use a text-based input/output file format. OSTRICH can

also work with modeling programs that use the MS Access or NetCDF file formats, but

users will need to configure an additional section of the OSTRICH input file. This

section is described in Section 2.17 (Type Conversions).

 The modeling program must be able to run without prompting for user intervention.

This means, for example, that the modeling program cannot prompt the user to enter the

name of an input file and the modeling program must not pause for user input at the end

of a simulation.

 The output of the modeling program must be in a consistent format that can be reliably

parsed. OSTRICH can also work with modeling programs that sometimes fail to write

consistently formatted output. In such cases users should configure the optional

“OnObsError” feature described in Section 2.3 (Basic Configuration).

OSTRICH Documentation and User Guide

 13

OSTRICH utilizes a text-based input file format which specifies that configuration variables be

organized on a line-by-line basis using loosely human-readable syntax. Users typically prepare

the OSTRICH input file using a text editor like Notepad, Wordpad, VIM, or Emacs. For some

sections (e.g. observations and response variables) it may also be helpful to use a spreadsheet

program like Excel or Calc and then copy the desired cells from the spreadsheet to the text-based

input file.

With a few exceptions (which will be explicitly noted in the following text) the basic

format for a line of input in the ostIn.txt file is:

<variable> <value>

Where <variable> is the name of the configuration variable (e.g. ProgramType) and <value> is

the user-selected value for the variable (e.g. ParticleSwarm). The whitespace separating

<variable> and <value> can be any number of spaces or tab characters. Inside ostIn.txt, the

OSTRICH configuration variables are organized into groups and each group is described below

in its own section.

Although the list of ostIn.txt configuration groups is rather extensive, most of the

groups do not need to be specified, as they are initialized within OSTRICH to reasonable

defaults if the user does not set a value for them. Furthermore, many of the configuration groups

relate to optional features within OSTRICH and may not be used in a given run of the program.

In fact, the only groups that must be configured by the user are: Basic Configuration, File Pairs,

and Parameters. You must also include an Observations group if calibrating using OSTRICH’s

internal weighted least squares objective function. Otherwise, if using OSTRICH’s general-

purpose constrained optimization platform (GCOP), you must include a Response Variables

group, a Costs group, and a Constraints group. Sections 2.3 through 2.24 discuss the particular

syntax and purpose of the various groups that may be included in the ostIn.txt file.

2.1. Comments
Comment lines in the OSTRICH input files have the ’#’ symbol as the first character.

These lines are ignored and allow the user to make the input file more readable and disable

configuration parameters or observations without completely deleting the corresponding lines. A

sample comment line is given below in Listing 1. More examples can be found in the

demonstration files distributed with the OSTRICH program and these are described in Section 5.

Listing 1: Example Comment Lines

These are some example comment lines. It’s a

good

idea to include comments in the input file to

describe the intent of your configuration

choices.

OSTRICH Documentation and User Guide

 14

2.2. Case Sensitivity
Variable names and group tags in the OSTRICH input file are case sensitive; e.g. using

beginfilepairs instead of BeginFilePairs will result in a parsing error. Meanwhile, values of

variables are case insensitive; e.g. GENETICALGORITHM, geneticalgorithm, and

GeneticAlgorithm will all correctly select the genetic algorithm ProgramType.

2.3. ostIn – Basic Configuration
The “Basic Configuration” variables describe the modeling program that is to be optimized

or calibrated and identify the optimization (or regression) algorithm that OSTRICH should use.

In addition, there are a number of optional basic configuration variables that effect various

aspects of the OSTRICH program. Listing 2 summarizes the syntax for the variables that make

up the basic configuration group. The third column of text is enclosed in brackets (i.e. “[]”) and

provides the default settings for each variable. Only the first two columns (i.e. variable and

desired value) should be included in an actual input file. An example syntactically correct

configuration of the basic group is given in Listing 4. Users can “cut-and-paste” Listing 4 and

edit as needed for their particular problem. Listing 3 and Listing 5 provide list of possible values

for the TelescopingStrategy and ProgramType variables, respectively. Users interested in the

details of the telescoping strategies are referred to the publication by Matott et al (2013).

Listing 2: Basic Configuration Group

essential variables

ProgramType see_listing_5 [Levenberg-Marquardt]

ModelExecutable name_of_model [no default]

ModelSubdir name_of_subdir [.]

ObjectiveFunction wsse/gcop [wsse]

useful optional variables

PreserveBestModel name_of_script [no default]

PreserveModelOutput yes/no/name_of_script [no]

OstrichWarmStart yes/no [no]

NumDigitsOfPrecision val_from_1_to_32 [6]

TelescopingStrategy see_listing_3 [none]

RandomSeed value [randomly assigned]

OnObsError quit/value [quit]

experimental or less common optional variables

CheckSensitivities yes/no [no]

SuperMUSE yes/no [no]

OstrichCaching yes/no [no]

BoxCoxTransformation value [1.00]

ModelOutputRedirectionFile filename [OstExeOut.txt]

OSTRICH Documentation and User Guide

 15

Values for the “ModelExecutable” and “PreserveBestModel” variables can include be fully

qualified paths or relative paths and should reference an executable file, batch file, or script file.

If a path or file contains spaces the value should be enclosed in double quotes (i.e. “ “).

Note: the basic configuration group is the only group in the OSTRICH input file that

does not have a corresponding “Begin…” and “End…” group tag. As such these variables can

be placed anywhere within the input file. However, since these are the first variable processed

by OSTRICH, a good convention to follow is to place these variables at the beginning of the

file and avoid mixing them in with the other groups.

ProgramType: This variable tells OSTRICH which algorithm should be used to perform the

optimization or calibration.

ModelExecutable: Specifies the model executable or driver program or script. If the executable

is in the same directory as the working directory from which the program is executed, then the

path information may be omitted.

ModelSubdir: When running in parallel, users must specify a working subdirectory to prevent

parallel runs from clobbering each other’s input and output files. If set to any value other than ’.’

(i.e. the default), the value of ModelSubdir will cause OSTRICH to create unique subdirectories

for the model runs of each parallel processor. The subdirectory names are created by

concatenating the ModelSubdir value with each processors MPI id number.

ObjectiveFunction: The objective function to be optimized, either WSSE (weighted sum of

squared error) calibration or GCOP (General-purpose Constrained Optimization Platform).

PreserveBestModel: A user-supplied script or executable that is run by OSTRICH every time a

new best parameter set is discovered.

PreserveModelOutput: If set to "yes" OSTRICH will make copies of files associated with each

model run and preserved files will be stored directories named "runNNN", when NNN is a

counter that is incremented after each model run. For example, the files for the first model run

will be copied into a directory named run1, and files from the second run copied into a directory

named run2, and so on. Alternatively, users can provide the name of a script or executable. This

script will be run after the completion of each model run and can be used, for example, to filter

results so that only model runs deemed important by the user are preserved (e.g. non-dominated

solutions in a multi-objective context). Note that the preservation script provided by the user

must take care of creating directories and copying any files that are to be saved. OSTRICH

will pass the following arguments to the user-defined script:

 rank – The zero-based processor id of the processor that invoked the script.

OSTRICH Documentation and User Guide

 16

 trial – For multi-start algorithms (i.e. DDSAU, MS-GML, and PSO-GML) the trial

argument indicates which multi-start trial is currently underway. For all other algorithms

the trial argument is set to 0.

 counter – The current count of model runs completed for the given rank and trial.

 objective function category (ofcat) – A text string that categorizes the objective

function value associated with the completed model run. User-defined model

preservation scripts may wish to take different actions depending on the ofcat setting.

Possible values are given below:

o best – For single-objective algorithms, an ofcat value of “best” indicates that the

completed model run is the best solution obtained so far.

o behavioral – For uncertainty-based algorithms, an ofcat value of “behavioral”

indicates that the completed model run is a behavioral solution.

o non-behavioral – For uncertainty-based algorithms, an ofcat value of “non-

behavioral” indicates that the completed model run is a non-behavioral solution.

o dominated – For multi-objective algorithms, an ofcat value of “dominated”

indicates that the completed model run is a dominated solution.

o non-dominated – For multi-objective algorithms, an ofcat value of “non-

dominated” indicates that the completed model run is a non-dominated solution

based on the model runs that have completed so far. Note that a non-dominated

solution may become dominated later in a search.

o other – An ofcat value of “other” indicates that the completed model run does not

fit into any of the previously listed categories. For example, in a single-objective

algorithm this would indicate that the completed model run is not the best solution

obtained so far.

OstrichWarmStart: If set to "yes" OSTRICH will read the contents of any previously created

"OstModel" output files and use the entries therein to restart an optimization or calibration

exercise.

NumDigitsOfPrecision: This specifies the precision of values written to OSTRICH output files.

TelescopingStrategy: If selected, this optional setting will cause parameter bounds to become

incrasingly smaller as an optimization or calibration proceeds.

OSTRICH Documentation and User Guide

 17

Listing 3: Supported Values for the Telescoping Strategy Option

RandomSeed: This variable can be used to control the random seed OSTRICH uses when

generating random numbers.

OnObsError: This variable controls how OSTRICH behaves when a model fails to generate all

of the expected output for a WSSE calibration. If set to "quit", OSTRICH will abort if it ever

fails to parse an observation from user-specified output files. If set to a value, OSTRICH will use

the value as a placeholder observation value if it can't read a given observation from model

output.

CheckSensitivities: If this variable is set to "yes", OSTRICH will perform a pre-calibration step

to calculate parameter sensitivities (i.e. changes in simulated equivalent observations with

respect to changes in parameters).

SuperMUSE: If set to "yes", OSTRICH will interface with EPA SuperMUSE tasker-client

approach to parallel computing.

OstrichCaching: If set to "yes", OSTRICH will examine "OstModel" output files prior to

running a given model configuration to see if the associated parameter set has already been

evaluated.

BoxCoxTransformation: If set to a value other than "1", OSTRICH will apply a Box-Cox

power transformation on each calibration residual. The user-supplied value is used as the

exponent for the transformation.

ModelOutputRedirectionFile: This variable allows users to override the default name (i.e.

OstExeOut.txt) of the file where OSTRICH will redirect model output that would normally be

displayed on a console screen (i.e. stderr and stdout). Bit buckets (e.g. /dev/null or NUL) are

supported, making it possible to discard console output entirely.

Options for TelescopingStrategy

===

#none

#convex-power

#convex

#linear

#concave

#delayed-concave

OSTRICH Documentation and User Guide

 18

Listing 4: Example of a Syntactically Correct Basic Configuration Group

(note: variables set to default values could be omitted or commented out)

essential variables

ProgramType ParticleSwarm

ModelExecutable “C:\My Folder\My_Model.exe”

ModelSubdir mod

ObjectiveFunction GCOP

useful optional variables

PreserveBestModel “C:\My Folder\Save_Best.bat”

PreserveModelOutput no

OstrichWarmStart yes

NumDigitsOfPrecision 8

TelescopingStrategy none

RandomSeed 100

OnObsError quit

experimental or less common optional variables

CheckSensitivities yes

SuperMUSE no

OstrichCaching no

BoxCoxTransformation 1.00

ModelOutputRedirectionFile ModelOutput.stdout

OSTRICH Documentation and User Guide

 19

Listing 5: Supported Values for the Program Type Option

2.4. ostIn – File Pairs
A file pair consists of a template file and a corresponding model input file. The contents of

the template file should be identical to the paired model input file except that values of

optimization (or calibration) parameters are replaced with unique parameter names defined in the

Parameters section. During optimization, OSTRICH uses the template files to create

syntactically correct model input files in preparation of running the model at different parameter

values. Section Error! Reference source not found. describes this process in detail. The general s

yntax for the File Pair group is given in Listing 6 along with a concrete example.

Options for ProgramType Algorithm Description

#============================ ===============================

GeneticAlgorithm See Table 1 (RGA)

BinaryGeneticAlgorithm See Table 1 (BGA)

ShuffledComplexEvolution See Table 1 (SCE)

BisectionAlgorithm See Table 1 (BIS)

SamplingAlgorithm See Table 1 (BBBC)

ParticleSwarm See Table 1 (PSO)

APPSO See Table 1 (APPSO)

PSO-GML See Table 1 (PSO-GML)

SimulatedAnnealing See Table 1 (CSA)

DiscreteSimulatedAnnealing See Table 1 (DSA)

VanderbiltSimulatedAnnealing See Table 1 (VSA)

Levenberg-Marquardt See Table 1 (GML)

GML-MS See Table 1 (MSGML)

Powell See Table 1 (POWL)

Steepest-Descent See Table 1 (STPDSC)

Fletcher-Reeves See Table 1 (FLRV)

RegressionStatistics Compute regression statistics

Jacobian Compute Jacobian matrix

Hessian Compute Hessian matrix

Gradient Compute Gradient information

ModelEvaluation Process InitParams group

GridAlgorithm See Table 1 (GRID)

DDS See Table 1 (DDS)

DDSAU See Table 1 (DDS-AU)

ParallelDDS See Table 1 (PDDS)

DiscreteDDS See Table 1 (DDDS)

GLUE See Table 1 (GLUE)

RejectionSampler See Table 1 (RJSMP)

MetropolisSampler See Table 1 (MCMC)

SMOOTH See Table 1 (SMOOTH)

PADDS See Table 1 (PADDS)

ParaPADDS See Table 1 (ParaPADDS)

BEERS See Table 1 (BEERS)

OSTRICH Documentation and User Guide

 20

Listing 6: General Format (left) and Example (right) for the File Pairs Group

As shown in Listing 6, BeginFilePairs and EndFilePairs are parsing tags that wrap a list

of file name pairs such that <template1> ... <templateN> are the names of the template files

corresponding to the <input1> ... <inputN> model input files, and <sep> is a separator that tells

OSTRICH when one filename ends and the next begins. Valid file name separators are the semi-

colon character ’;’ and the TAB character. Spaces are not valid separator characters because

OSTRICH allows spaces within file names.

2.5. ostIn – Extra Files
Extra files are model input files not used by OSTRICH, but required for proper execution

of the model. In parallel environments, OSTRICH needs to know about these extra input files so

that it can copy them to each processor’s working directory (see ModelSubdir in Section 2.3,

above). Sharing a working directory among parallel processors is not recommended because it

can result in multiple processors trying to write to the same file at the same time. The general

syntax for the Extra Files group is given in Listing 7 along with a concrete example.

Listing 7: General Format (left) and Example (right) for the Extra Files Group

As shown in Listing 7, BeginExtraFiles and EndExtraFiles are parsing tags that wrap a

list of extra model input files. Extra files must be identified if the model is to be executed in a

dynamically generated subdirectory (as specified by the ModelSubdir variable), so that

OSTRICH knows to copy them to the subdirectory. For serial algorithms, creation of a dynamic

subdirectory is unnecessary and specification of the extra files section is optional. However, this

section is required if running a parallel algorithm to avoid aforementioned processor I/O

conflicts.

BeginFilePairs

<template1><sep><input1>

<template2><sep><input2>

.

.

.

<templateN><sep><inputN>

EndFilePairs

BeginFilePairs

Wells.tpl ; Ledom.wel

kvalues.tpl ; Ledom.lpf

recharge.tpl ; Ledom.rch

EndFilePairs

BeginExtraFiles

<file1>

<file2>

.

.

.

<fileN>

EndExtraFiles

BeginExtraFiles

Ledom.nam

Ledom.bas

Ledom.dis

Ledom.pcg
EndExtraFiles

OSTRICH Documentation and User Guide

 21

2.6. ostIn – Extra Directories
Extra directories are directories containing model input files not used by OSTRICH, but

required for proper execution of the model. In parallel environments, OSTRICH needs to know

about these extra directories so that it can copy them (and all files and subdirectories contained

within) to store in each processors working directory (as specified by the ModelSubdir variable).

Sharing a working directory among parallel processors is not recommended because it can result

in multiple processors trying to write to the same file of the same directory at the same time.

Listing 8 contains the general syntax and a concrete example of the Extra Directories group. As

shown in Listing 8, BeginExtraDirs and EndExtraDirs are parsing tags that wrap a list of extra

model input directories.

Listing 8: General Format (left) and Example (right) of the Extra Directories Group

2.7. ostIn – Real-valued Parameters
This configuration group describes the parameters to be calibrated or optimized. Parameter

configuration variables include names, initial values, lower and upper bounds, input, output and

internal transformations, and (optionally) fixed format printing codes. Parameters in this section

are real and continuously varying. Listing 9 provides the general format for the parameters

group and Listing 10 gives a concrete example.

Listing 9: General Format for the Real-valued Parameters Group

In Listing 9, BeginParams and EndParams are parsing tags that wrap a list of N model

parameters made up of the following variables:

name: The name of the parameter, parameter names must be unique and correspond identically

to the names used in the template file(s) (see Section 2.4 and Section Error! Reference source n

ot found.).

BeginExtraDirs

<dir1>

<dir2>

.

.

.

<dirN>

EndExtraDirs

BeginExtraDirs

HUC_001

HUC_002

HUC_003

HUC_004

HUC_005

HUC_006

EndExtraDirs

BeginParams

<name1> <init1> <lwr1> <upr1> <txIn1> <txOst1> <txOut1> <fmt1>

<name2> <init2> <lwr2> <upr2> <txIn2> <txOst2> <txOut2> <fmt2>

. . .

<nameN> <initN> <lwrN> <uprN> <txInN> <txOstN> <txOutN> <fmtN>

EndParams

OSTRICH Documentation and User Guide

 22

init: Initial value of the parameter, in units specified by the txIn variable. Alternatively, the

keywords “random” or “extract” may be used instead of specifying a value. OSTRICH will

assign a randomly generated initial value if the “random” keyword is used. OSTRICH will

extract the initial value from existing model input files if the “extract” keyword is used.

lwr: Lower bound (i.e. minimum value) of the parameter, in units specified by the txIn variable.

upr: Upper bound (i.e.. maximum value) of the parameter, in units specified by the txIn

variable.

txIn, txOst, and txOut: These specify the type of transformation units that OSTRICH should

use. Transformations allow the user to take advantage of any linearity relationships that exist

between a transformed parameter value (e.g. log10 or loge) and the underlying model. Three

kinds of transformations are provided so that the user can work with input and output

transformations that are different than the internal transformation. Typically, the user will request

no input and output transformation (so that input and output values are the native units of the

parameter), while instructing OSTRICH to perform a transformation internally. This approach

allows the algorithm to take advantage of a transformed relationship without requiring manual

conversion of input and output values. However, it should be noted that some statistical output is

reported in terms of txOst units, regardless of the value of txOut; namely (a) parameter

variance-covariance, (b) observation influence, (c)parameter sensitivity, (d) model linearity, and

(e) matrices. OSTRICH supports the following transformation values:

– none: no transformation.

– log10: log base 10 transformation.

– ln: natural logarithm transformation.

fmt: A format code that OSTRICH will use when writing model input files. This is provided so

that OSTRICH can support modeling programs which expect fixed format inputs (i.e. when

values in the input file are expected to take up an exact number of characters). For example,

many programs written in legacy FORTRAN (e.g. F77) expect fixed format. Use a fmt value of

“free” if using a modeling program that is not bound by fixed format requirements. Otherwise,

use a format code of “Fw.d” for decimal values (e.g. 3.4567) where “w” is the total number of

characters and “d” is the number of characters following the decimal. For example, to represent

the value of Pi to 6 significant digits you would use a format code of F8.6, resulting in a value of

“3.141593”. Use a format code of “Ew.d” or “Dw.d” for scientific notation, where “w” is the

total number of characters and “d” is the number of significant digits. For example, applying a

format code of E10.3 to the value of 1/12 would result in “ 8.333E-02”. For fixed decimal

notation “w” should be at least equal to “d”+2 and for fixed scientific notation “w” should be at

least equal to “d”+7.

OSTRICH Documentation and User Guide

 23

Listing 10: Example of the Real-valued Parameters Group

2.8. ostIn – Integer Parameters
This configuration group describes those parameters to be calibrated or optimized which

can take on only integer values. Like their real-parameter counterparts, integer parameter

configuration variables include names, initial values, and lower and upper bounds. However,

format codes and unit transformations are not supported for integer parameters. Listing 11

provides the general syntax and a concrete example of the integer parameters group.

Listing 11: General Format (left) and Example (right) for the Integer Parameters Group

2.9. ostIn – Combinatorial Parameters
This configuration group describes those parameters to be calibrated or optimized which

can take on a discrete set of values, which can be in the form of real, integer or string (text)

values. Like integer and real parameters, combinatorial parameter configuration variables include

names and initial values; but instead of lower and upper bounds, the user must supply a complete

list of the discrete values that may be assigned to the parameter. Furthermore, format codes and

unit transformations are not supported for combinatorial parameters. Listing 12 provides the

general syntax of the combinatorial parameters group.

Listing 12: General Format for the Combinatorial Parameters Group

In Listing 12, the “type” field should be either “real”, “integer”, or “string” and should

correspond to the type of values in the subsequent combinatorial list. Furthermore, the “N1”

through “NM” values specify the number of entries in the combinatorial list, which is generically

represented in Listing 12 as vm,n for the nth discrete value that can be taken on by the mth

parameter. Listing 13 provides a concrete example of the combinatorial parameters group.

BeginParams

DIAM random 10.0 50.0 none none none free

LEN random 200.0 1000.0 none none none free

EndParams

BeginIntegerParams

<name1> <init1> <lwr1> <upr1>

<name2> <init2> <lwr2> <upr2>

. . .

<nameN> <initN> <lwrN> <uprN>

EndIntegerParams

BeginIntegerParams

N_INJ_WELLS 2 0 20

N_EXT_WELLS 6 0 50

EndIntegerParams

BeginCombinatorialParams

<name1> <type1> <init1> <N1> <v1,1> <v1,2> ... <v1,N1>

<name2> <type2> <init2> <N2> <v2,1> <v2,2> ... <v2,N2>

. . .

<nameM> <typeM> <initM> <NM> <vM,1> <vM,2> ... <vM,NM>

EndCombinatorialParams

OSTRICH Documentation and User Guide

 24

Listing 13: Example of the Combinatorial Parameters Group

2.10. ostIn – Tied Parameters
Tied parameters are parameters which are computed as a function of integer, real or

combinatorial parameter values. They may also be functions of other tied parameters.

),...,,,,...,,(2121 mntiedtied cccXXXfX  (1)

Where, Xtied is the tied parameter value which is a function of n non-tied parameters (X1,X2,...Xn)

and a set of m coefficients (c1,c2,...cm), which depend on the functional form of ftied(). Tied

parameter configuration variables include: the name of the tied parameter; a list of the names of

tied or non-tied parameters used in the computation of the tied-parameter value; a specification

of the functional form of ftied(); and a list of coefficients used in the evaluation of ftied(). Listing

14 provides the general syntax for the tied parameters group.

Listing 14: General Format for the Tied Parameters Group

In Listing 14, BeginTiedParams and EndTiedParams are parsing tags that wrap a list of tied

model parameters made up of the following variables:

name: The name of the tied parameter, parameter names must be unique and correspond

identically to the corresponding name used in the template file(s).

np : The number of non-tied parameters used in the calculation of the tied parameter value. Valid

values for np depend on the choice of functional relationship, specified in the type field.

pname1 … pnamenp: A list of parameter names that are used in the computation of the tied-

parameter.

type: The type of functional relationship ,ftied(), between the tied parameter and the list of named

parameters (i.e. pname1 … pnamenp). Valid values for type are:

linear: Selects a linear relationship for ftied(). If this choice is selected, the value of np

must be either 1 or 2.

BeginCombinatorialParams

COLOR string blue 5 red orange yellow green blue

BOLTS real 0.25 4 0.0625 0.125 0.25 0.5

PRIME integer 1 10 1 3 5 7 11 13 17 19 23 29

EndCombinatorialParams

BeginTiedParams

<name1> <np1> <pname1,1> <pname1,2> ... <pname1,np1> <type1> <type_data1>

<name2> <np2> <pname2,1> <pname2,2> ... <pname2,np2> <type2> <type_data2>

. . .

<nameN> <npN> <pnameN,1> <pnameN,2> ... <pnameN,npN> <typeN> <type_dataN>

EndTiedParams

OSTRICH Documentation and User Guide

 25

exp: Selects an exponential relationship for ftied(). If this choice is selected, the value of

np must be 1.

log: Selects a log relationship for ftied(). If selected, the value of np must be 1.

dist: The tied parameter is the distance between two (x,y) coordinates, where these

coordinates are parameters of the optimization/calibration. If selected, the value of np

must be 4 and the ordering of parameter names should correspond to (x1,y1),(x2,y2).

wsum: The tied parameter is the weighted sum of the listed parameters.

ratio: The tied parameter is the ratio of a linear combination of parameters. If selected,

the value of np must be 2 or 3.

constant: The tied parameter is a constant. If selected, the value of np must be 0.

type_data: Depending on the choice of type, the syntax of this field varies, as described below.

The syntax for type_data includes a format specifier – see the description of the fmt variable in

Section 2.7.

If type = ”linear” and np = "1": The functional relationship is linear and has the form:

Xtied = (c1 × X) + c0

Where Xtied is the tied-parameter value, c0 and c1 are coefficients, X is the non-tied

parameter value, and type_data should be replaced with the following syntax:

<c1> <c0> <fmt>

If type = ”linear” and np = "2": The functional relationship has the form:

Xtied = (c3 × X1 × X2) + (c2 × X2) + (c1 × X1) + c0

Where Xtied is the tied-parameter value, c0, c1, c2, and c3 are coefficients, X1 and X2 are

the non-tied parameter values, and type_data should be replaced with the following

syntax:

<c3> <c2> <c1> <c0> <fmt>

If type = ”exp”: The functional relationship has the form:

Xtied = c2 × b(c1 × X) + c0

Where Xtied is the tied-parameter value, c0, c1 and c2 are coefficients, b is the exponent

base, X is the non-tied parameter value, and type_data should be replaced with:

<base> <c2> <c1> <c0> <fmt>

Where base can be a numerical value, or “exp” if the natural base is to be used.

OSTRICH Documentation and User Guide

 26

If type = ”log”: The functional relationship has the form:

Xtied = c3 × loga(c2 × X + c1) + c0

Where Xtied is the tied-parameter value, c0, c1, c2 and c3 are coefficients, a is the

logarithm base, X is the non-tied parameter, and type_data should be replaced with the

following syntax:

<base> <c3> <c2> <c1> <c0> <fmt>

Where base can be a numerical value, or “ln” if the natural logarithm is to be used.

If type = ”dist”: The type_data field should contain the desired fmt specification.

If type = ”wsum”: The type_data field should list the values of each weight, using the

same ordering as the named list of parameters, followed by the desired fmt specification.

If type = ”ratio” and np = “2”: The functional relationship has the form:

Xtied = (c3 × X1 + c2) / (c1 × X2 + c0)

Where Xtied is the tied-parameter value, c3, c2, c1 and c0 are coefficients, X1 and X2 are

non-tied parameters, and type_data should be replaced with the following syntax:

<c3> <c2> <c1> <c0> <fmt>

If type = ”ratio” and np = “3”: The functional relationship has the form:

Xtied = [(n7 × X1 × X2 × X3) + (n6 × X1 × X2) + (n5 × X1 × X3) +

 (n4 × X2 × X3) + (n3 × X1) + (n2 × X2) + (n1 × X3) + n0] /

 [(d7× X1 × X2 × X3) + (d6 × X1 × X2) + (d5 × X1 × X3) +

 (d4 × X2 × X3) + (d3 × X1) + (d2 × X2) + (d1 × X3) + d0]

Where Xtied is the tied-parameter value, n7 … n0 and d7 … d0 are coefficients, X1 … X3

are non-tied parameters, and type_data should be replaced with the following syntax:

n7 n6 n5 n4 n3 n2 n1 n0 d7 d6 d5 d4 d3 d2 d1 d0 fmt

If np = “0”: The tied parameter is assigned a constant value. No type field is required and

the type_data field must contain the parameter value followed by a format specifier

(fmt).

Listing 15 provides concrete examples of the different tied parameter types.

OSTRICH Documentation and User Guide

 27

Listing 15: Example of the Tied Parameters Group

2.11. ostIn – Special Parameters (pre-emption)
Certain models are capable of monitoring the progress of a simulation and aborting further

processing if some threshold cost or constraint is exceeded. OSTRICH provides the

“SpecialParams” group to support such models. Special parameters are cost and constraint

thresholds that are tracked by selected algorithms in OSTRICH (see the relevant column in Table

1, above) and written to input files using the same template mechanism as regular

calibration/optimization parameters. In this way OSTRICH can pass the most up to date

threshold values on to the pre-emptive model. Pre-emption is described in detail by Razavi et al

(2010). The general syntax for the SpecialParams group is given below in Listing 16 and a

concrete example is given in Listing 17.

Listing 16: General Format of the Special Parameters Group

BeginTiedParams

1-parameter linear (TLIN = 2*XVAL)

TLIN 1 XVAL linear 2.00 0.00 free

2-parameter linear (TLN2 = 2*XVAL + YVAL)

TLN2 2 XVAL YVAL linear 0.00 2.00 1.00 0.00 free

exponent, base e (TEXP = exp(-XVAL))

TEXP 1 XVAL exp exp 1.00 -1.00 0.00 free

exponent, base 10 (TX2P = 10^(-XVAL))

TXP2 1 XVAL exp 10.0 1.00 -1.00 0.00 free

logarithm, natural log (TLOG = 2*LN(XVAL))

TLOG 1 XVAL log ln 2.00 -1.00 0.00 0.00 free

logarithm, base 2 (TLG2 = log2(XVAL/2)+1)

TLG2 1 XVAL log 2.00 1.00 0.50 0.00 1.00 free

distance

TDST 4 X1VAL Y1VAL X2VAL Y2VAL dist free

weighted sum (TSUM = (1/3)*(XVAL+YVAL+ZVAL))

TSUM 3 XVAL YVAL ZVAL wsum 0.33 0.33 0.33 free

2-parameter ratio (TRAT = (XVAL / YVAL))

TRAT 2 XVAL YVAL ratio 1.00 0.00 1.00 0.00 free

3-parameter ratio (TRT3 = (XVAL*YVAL)/(ZVAL+1))

TRT3 3 XVAL YVAL ZVAL ratio 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 free

constant (Pi)

TPI 0 3.1415 free

EndTiedParams

BeginSpecialParams

 <name1> <init1> <type1> <con_type1> <con_name1>

 <name1> <init1> <type1> <con_type1> <con_name1>

 .

 .

 .

 <name1> <init1> <type1> <con_type1> <con_name1>

EndSpecialParams

OSTRICH Documentation and User Guide

 28

In Listing 16, BeginSpecialParams and EndSpecialParams are parsing tags that wrap a list of

model pre-emption parameters made up of the following variables:

name: The name of the pre-emption parameter, parameter names must be unique and correspond

identically to the corresponding name used in the template file(s).

init: The initial value of the pre-emption parameter. This should be set to a value that will NOT

trigger pre-emption.

type: The type of pre-emption parameter. This should be set to either “BestCost” or

“BestConstraint” depending on the nature of pre-emption (i.e. model pre-emption based on

exceeding the cost function or model pre-emption based on violation of a constraint threshold).

con_type: For “BestConstraint” pre-emption parameters the “con_type” value should be either

“upper” or “lower”. Set the value to “upper” if the model should pre-empt if it’s internally

computed constraint exceeds the value of the constraint specified by “con_name”. Set the value

to “lower” if the model should pre-empt if it’s internally computed constraint is less than the

value of the constraint specified by “con_name”. For “BestCost” pre-emption parameters, the

“con_type” and “con_name” fields are ignored and should be set to “n/a”.

con_name: The name of the constraint whose violation should trigger pre-emption. Constraints

are defined in the Constraints group which, in turn, require specification of a Response Variable

group --- see Sections 2.15 and 2.24, below.

Listing 17: A Concrete Example of the Special Parameters Group

(for completeness, example Constraint and Response Variable groups are also provided)

BeginSpecialParams

initial special upper or cons-

#name value parameter lower? traint

OST_COST 1E60 BestCost n/a n/a

pre-emption based on violation of MyPen

OST_MASS 1E60 BestConstraint upper MyPen

EndSpecialParams

BeginConstraints

require -9E99 < (PenRV*100) < 10

#name type conv.fact lower upper resp.var

MyPen general 100 -9E99 10.00 PenRV

EndConstraints

BeginResponseVars

tells OSTRICH how to extract values of PenRV from model output

#name filename keyword line col token

PenRV Simple.out ; OST_NULL 0 3 ' '

EndResponseVars

OSTRICH Documentation and User Guide

 29

2.12. ostIn – Initial Parameters
As indicated in Table 1, users of certain algorithms can optionally seed some or all of the

initial search entries with predefined parameter sets. This allows the user to incorporate prior

information (such as previous optimization results or expert judgement) into the optimization,

and may enhance the efficiency and/or effectiveness of the algorithm. To use this option, insert

an “InitParams” group, which uses the general syntax given in Listing 18.

Listing 18: General Format of the Initial Parameters Group

Where “BeginInitParams” and “EndInitParams” are parsing tags that wrap a list of initial

parameters, and n is the number of parameters, m is the number of entries in the initial

parameters group, and pi,j is the j-th initial value of the i-th parameter (ordered according to the

order of the parameters section(s)). A concrete example of the “InitParams” group is given in

Listing 19.

Listing 19: Example of the Initial Parameters Group

(with parameters group included for completeness)

2.13. ostIn – Parameter Correction
The “ParameterCorrection” group and corresponding “Corrections” sub-group allows

users to interface OSTRICH with an external program or script that makes adjustments to a

candidate parameter set that has been calculated by an OSTRICH search algorithm but not yet

evaluated. These corrections allows users to incorporate expert judgment or other information

BeginInitParams

p1,1 p2,1 p3,1 . . . pn,1

p1,2 p2,2 p3,2 . . . pn,2

. . .

. . .

p1,m p2,m p3,m . . . pn,m

EndInitParams

BeginParams

xval 0 -20.0 +20.0 none none none

yval 0 -20.0 +20.0 none none none

zval 0 -20.0 +20.0 none none none

EndParams

BeginInitParams

#xval yval zval

0.0 0.0 0.0

0.0 0.0 10.0

0.0 10.0 0.0

10.0 0.0 0.0

20.0 20.0 20.0

EndInitParams

OSTRICH Documentation and User Guide

 30

into the search procedure while still using one of the algorithms already implemented within

OSTRICH. As an example, consider an optimization problem that seeks to install a well in an

optimal location for extracting contaminated groundwater. Parameter correction can be used to

adjust candidate well locations if they are found to be outside the boundaries of the contaminated

plume. To use this option, insert a “ParameterCorrection” group, which uses the general syntax

given in Listing 20 and which includes a “Corrections” sub-group.

Listing 20: General Syntax for the Parameters Correction

Group and Corrections Sub-Group

Where “BeginParameterCorrection” and “EndParameterCorrection” are parsing tags

that wrap the configuration variables of the “ParameterCorrection” group and

“BeginCorrections” and “EndCorrections” are parsing tags that wrap the “Corrections” sub-

group. Configuration variables are described below:

name_of_exe: The name (including path, if desired) of the external correction program or script

that implements user-defined parameter corrections.

tpl_name: The name of the template file that mimics the input file used by the external

parameter correction program (i.e. “name_of_exe”). The template file must contain the names of

all parameters that are to be subjected to possible correction by the external program.

inp_name: The name of the input file read by the “name_of_exe” parameter. OSTRICH will

create this file by replacing the parameter names listed in the “tpl_name” template file with

actual candidate values under consideration by the search algorithm.

name: The name of a correctable parameter listed in the template file (i.e. “tpl_name”). Each

correctable parameter must be included in the Corrections sub-group.

outfile: The name of the file that will be created by the external correction program and which

will contain the possibly corrected value of the parameter specified by the corresponding

“name” field.

BeginParameterCorrection

Executable <name_of_exe>

Template <tpl_name> ; <inp_name>

BeginCorrections

<name1> <outfile1> ; <keyword1> <line1> <col1> '<sep1>'

<name2> <outfile2> ; <keyword2> <line2> <col2> '<sep2>'

.

.

.

<nameN> <outfileN> ; <keywordN> <lineN> <colN> '<sepN>'

EndCorrections

EndParameterCorrection

OSTRICH Documentation and User Guide

 31

keyword: A keyword that is search for within “outfile” prior to extracting the possibly corrected

value of the parameter specified by the corresponding “name” field. If no keyword search is

desired, set the value of this variable to “OST_NULL”.

line: The line number to advance to within “outfile” prior to extracting the possibly corrected

value of the parameter specified by the corresponding “name” field. If “keyword” is set to

“OST_NULL” the line number is relative to the beginning of the file, otherwise the line number

is relative to the first line containing the specified keyword. A line number of “0” indicates the

same line as the keyword, a line number of “1” indicates the first line after the keyword, a line

number of “2” indicates the second line after the keyword, and so on.

col: The column number within the specified line of the “outfile” that will contain the possibly

corrected value of the parameter specified by the corresponding “name” field. A column number

of “1” indicates the first column, a column number of “2” indicates the second column, and so

on, where each column is separated by the separator character given in the “sep” field.

sep: A character that separates each column. This variable should be enclosed in single quotes

(e.g. ' ' for space-separated, ',' for comma-separated, etc.).

A concrete example of the “ParameterCorrection” group and accompanying “Corrections”

sub-group is given in Listing 21.

Listing 21: Example of the Parameters Correction Group and Corrections Sub-Group

2.14. ostIn – Observations
For calibration problems that use the internal OSTRICH weighted sum of squared errors

(WSSE) objective function, the Observations group is used to list the observation names, values,

and weights, along with parsing instructions for reading simulated equivalent observations from

#===

interface with an external program that will make corrections to

the candidate parameter sets generated by the search algorithm.

Executable --- the external program

Template --- the template pair for creating the input file

Corrections --- instructions for parsing the output file

#===

BeginParameterCorrection

 Executable "C:\Program Files\MakeWellCorrections.bat"

 Template Corrector.tpl ; input.csv

 BeginCorrections

 XQ01 output.csv ; OST_NULL 0 1 ','

 YQ01 output.csv ; OST_NULL 0 2 ','

 RQ01 output.csv ; OST_NULL 0 3 ','

 EndCorrections

EndParameterCorrection

OSTRICH Documentation and User Guide

 32

model output files. The general syntax for the Observations group is given in Listing 22 and a

concrete example is given in Listing 23.

Listing 22: General Format of the Observations Group

Listing 23: An Example of the Observations Group

In Listing 22 and Listing 23, BeginObservations and EndObservations are parsing tags that

wrap a list of observations, which are made up of the following variables:

name: The name of the observation, each observation should have a unique name.

value: The field-measured value of the observation.

wgt: The weight assigned to the observation. See Hill (1998) and Hill and Tiedeman (2007) for

guidelines to assigning observation weights.

file: The model output file where the simulated value of the observation will be stored following

execution of the modeling program.

sep: This variable is a filename separator (i.e. a tab or semi-colon). See also the File Pairs section

(Section 2.4).

key, line, col, and, tok: These variables tell OSTRICH how to extract model simulated

observation values from the model output file. First, OSTRICH positions the output file parser at

the first line in file containing key(word). If OSTRICH should begin parsing at the beginning of

the file, then the value of key should be OST_NULL. Next, the parser uses the line and col

values to locate the position of the desired observation value. This value is then extracted and

converted to a double precision number. The parsing process is repeated until all observation

BeginObservations

<name1><value1><wgt1><file1><sep1><key1><line1><col1><tok1><aug1><grp1>

<name2><value2><wgt2><file2><sep2><key2><line2><col2><tok2><aug2><grp2>

.

.

.

<nameN><valueN><wgtN><fileN><sepN><keyN><lineN><colN><tokN><augN><grpN>

EndObservations

BeginObservations

#name val wgt filenamee ; keyword line col tok aug? group

MW1 68 1.00 headerr.dat ; computed 2 3 ' ' no mw

MW2 70 1.00 headerr.dat ; computed 3 3 ' ' no mw

MW3 65 1.00 headerr.dat ; computed 4 3 ' ' no mw

EndObservations

OSTRICH Documentation and User Guide

 33

values are read. The line variable tells OSTRICH how many lines must be skipped, starting from

the line containing key, before the line containing the desired observation value is reached.

Therefore, if the observation value is on the same line as key, then line should be equal to 0; if

the observation value is on the line immediately following key, then line should be equal to 1,

and so on. The col variable tells OSTRICH which column in the line contains the desired

observation value; where column numbering begins at 1 and the tok variable specifies the

column separator. Note that values for the tok variable should be enclosed in single quotes (e.g.

‘,’ for a comma token). Furthermore, providing a whitespace token (e.g. ‘ ‘) will cause any

sequence of space or TAB characters to be treated as a single column separator token. Figure 1

illustrates the parse procedure using an example observation list (Listing 23) and model output

file (Figure 2).

aug: Setting the value of the aug (i.e. augmented output) variable to yes will cause OSTRICH to

include the simulated values of the selected observation(s) in the OstModel output file (see

Section 4.5). This can be useful, for example, when assembling samples for a predictive

uncertainty analysis.

grp: Use the grp variable to partition observations into meaningful groups (e.g. high- vs. low-

flow observations, groundwater head vs. flow observations, nitrate vs. trichloroethylene

concentrations, etc.). When performing multi-criteria calibration, OSTRICH will compute

multiple WSSR objectives corresponding to each unique observation group.

OSTRICH Documentation and User Guide

 34

Figure 1: General Parse Procedure for Extracting Simulated Equivalents

with Application to Example Output in Figure 2 using Instructions in Listing 23

Figure 2: Example Model Output for Illustrating Extraction of Simulated Equivalent Observations

OSTRICH Documentation and User Guide

 35

2.15. ostIn – Response Variables
When performing optimization (as opposed to calibration), this group specifies the

response variables that OSTRICH should read from model output files prior to evaluating costs

and constraints. The syntax is very similar to the observations group used in model calibration,

and includes variable name, output file name (from which the value of the variable is read), and

parsing instructions for retrieving the value of the variable from the given model output file. The

Constraints and GCOP sections (see below) build upon the Response and Tied Response

Variable groups by associating response variables with a constraint or cost variable. The general

syntax for the “ResponseVars” group is given in Listing 24 and a concrete example is given in

Listing 25.

Listing 24: General Format of the ResponseVariable Group

Listing 25: An Example of the ResponseVariable Group

Where BeginResponseVars and EndResponseVars are parsing tags that wrap a list of response

variables, which are made up of the following variables:

name: The name of the response variable, each should have a unique name.

file: The model output file where the simulated value of the response variable will be stored

following execution of the modeling program.

sep: This variable is a filename separator (i.e. a tab or semi-colon). See also the File Pairs section

(Section 2.4).

key, line, col, and tok: These variables tell OSTRICH how to extract model simulated response

variable values from the model output file. The parsing procedure is identical to that used in

extracting Observation group data (see Section 2.14 for details).

BeginResponseVars

<name1><file1><sep1><key1><line1><col1><tok1><aug1>

<name2><file2><sep2><key2><line2><col2><tok2><aug2>

.

.

.

<nameN><fileN><sepN><keyN><lineN><colN><tokN><augN>

EndResponseVars

BeginResponseVars

#name filename key line col token augmented?

F1 CanBeam.out ; F1 0 2 '=' yes

F2 CanBeam.out ; F2 1 2 '=' yes

EndResponseVars

OSTRICH Documentation and User Guide

 36

aug: Setting the value of the aug (i.e. augmented output) variable to yes will cause OSTRICH to

include the simulated values of the selected response variable(s) in the OstModel output file (see

Section 4.5). For multi-objective problems, there should be a one-to-one correspondence

between cost functions (see Section 2.23) and augmented response variables.

2.16. ostIn – Tied Response Variables
This group specifies ’tied’ response variables; variables whose values are computed by

OSTRICH as functions of one or more response variables and/or parameters. The general syntax

for the “TiedRespVars” group is given in Listing 26 and a concrete example is given in Listing

27.

Listing 26: General Format of the Tied Response Variable Group

Listing 27: An Example of the Tied Response Variable Group

In Listing 26 and Listing 27, BeginTiedRespVars and EndTiedRespVars are parsing tags that

wrap a list of tied response variables. The parameters in this section are identical to those in the

Tied Parameters (see Section 2.10), except fewer functional relationships are supported and the

list of non-tied items (used in the calculation of the tied response variable) may be parameters,

response variables, and/or other tied response variables.

name: The name of the tied response variable, each should have a unique name.

np: The number of parameters, response variables and/or other tied response variables used in

the calculation of the named tied response variable. Valid values for np depend on the choice of

functional relationship, specified in the type field.

BeginTiedRespVars

<name1> <np1> <pname1,1> <pname1,2> ... <pname1,np1> <type1> <type_data1>

<name2> <np2> <pname2,1> <pname2,2> ... <pname2,np2> <type2> <type_data2>

. . .

<nameN> <npN> <pnameN,1> <pnameN,2> ... <pnameN,npN> <typeN> <type_dataN>

EndTiedRespVars

BeginTiedRespVars

#negative Nash-Sutcliffe Efficiency

NegNS 1 NSE wsum -1.00

#W = (Y1 + Y2 + Y3 +Y4)/4

W 4 Y1 Y2 Y3 Y4 wsum 0.25 0.25 0.25 0.25

#Y = 2*Y1 + 3

Y 1 Y1 linear 2 3

#Z = X1*Y1 + 10

Z 2 X1 Y1 linear 1 0 0 10

EndTiedRespVars

OSTRICH Documentation and User Guide

 37

pname1 … pnamenp: A list of the names of parameters, response variables, and other tied

response variables that are used in the computation of the named tied response variable.

type: The type of functional relationship ,ftied(), between the tied response variable and the list of

non-tied variables (i.e. pname1 … pnamenp). Valid values for type are:

linear: Selects a linear relationship for ftied(). If this choice is selected, the value of np

must be either 1 or 2.

wsum: The tied response variable is the weighted sum of the listed non-tied variables.

type_data: Depending on the choice of type, the syntax of this field varies, as described below.

If type = ”linear” and np = "1": The functional relationship is linear and has the form:

Ytied = (c1 × Y) + c0

Where Ytied is the tied response variable, c0 and c1 are coefficients, Y is the non-tied

variable, and type_data should be replaced with the following syntax:

<c1> <c0>

If type = ”linear” and np = "2": The functional relationship has the form:

Ytied = (c3 × Y1 × Y2) + (c2 × Y2) + (c1 × Y1) + c0

Where Ytied is the tied response variable, c0, c1, c2, and c3 are coefficients, Y1 and Y2

are the non-tied variables, and type_data should be replaced with the following syntax:

<c3> <c2> <c1> <c0>

If type = ”wsum”: The type_data field should list the values of each weight, using the

same ordering as the named list of non-tied variables.

2.17. ostIn – Type Conversion (MS Access, netcdf)
Models that generate input or output files in MS Access or netcdf format can be

interfaced with OSTRICH via specification of a corresponding “TypeConversion” group.

Outputs specified in the TypeConversion group are extracted into text-based files that can then

be processed into Observations (see Section 2.14) or ResponseVariables (see Section 2.15). As

such, incorporating these types of output data into OSTRICH is a two-step process that requires

entries the TypeConversion group and corresponding entries in the ResponseVariable or

Observation group. Inputs specified in the TypeConversion group provide a mapping between

parameters (see Sections 2.7 through 2.10) and corresponding non-text input files. This mapping

allows OSTRICH to adjust parameter values in these non-text input files in lieu of the template

file mechanism described in Section 2.4. Listing 28 provides the general syntax for filling out

the TypeConversion group in the ostIn.txt input file. Listing 29 provides a concrete example for

converting MS Access files. Listing 30 provides a concrete example for converting NetCDF

files.

OSTRICH Documentation and User Guide

 38

Listing 28: General Format of the Type Conversion Group

(the keycol and key fields are only required if the type field is “Access”)

Listing 29: An Example of the Type Conversion Group Applied to an MS Access Database

Listing 30: An Example of the Type Conversion Group Applied to a NetCDF File

Where “BeginTypeConversion” and “EndTypeConversion” are parsing tags that wrap a list of

conversion instructions for converting the inputs and outputs of a given file that uses a non-text

format. Except where noted, each entry consists of the following fields:

type: This variable specifies the file format to be converted. Supported values are “NetCDF“

(for .netcdf files) and Access (for MS Access databases).

fname: The formatted file containing the data to be converted (e.g. MyAccessDbase.mdb or

MyNetCDF.ncd). Outputs read from this file will be written to a text-based file. The text-based

file will have the same file name prefix as fname but will be given a “.txt” extension (e.g.

MyAccessDbase.txt or MyNetCDF.txt). File names for this field must not contain any spaces.

rw: This variable specifies the conversion to be performed. Supported values are “Read” and

“Write”. A “Read” conversion will extract data from the formatted file and write the result to a

text-based file that can be processed by the Observations or ResponseVars groups. A “Write”

conversion instructs OSTRICH adjust the contents of the formatted file according to the value of

the named parameter.

BeginTypeConversion

<type1> <fname1> <rw1> <table1> <keycol1> <key1> <col1> <name1>

<type2> <fname2> <rw2> <table2> <keycol2> <key2> <col2> <name2>

.

.

.

<typeN> <fnameN> <rwN> <tableN> <keycolN> <keyN> <colN> <nameN>

EndTypeConversion

BeginTypeConversion

_IBU_C0_ = initial upstream loading of ibuprofen

Access PhateGR.mdb Write Loadings Chemical Ibuprofen C0 _IBU_C0_

_IBU_CX_ = final loading of ibuprofen at watershed pour point

Access PhateGR.mdb Read Loadings Chemical Ibuprofen Cexit _IBU_CX_

EndTypeConversion

BeginTypeConversion

_HG_C0_ = initial upstream loading of mercury

NetCDF WASP_APES.ncdf Write Loads 0 _HG_C0_

_IBU_CX_ = final loading of mercury at watershed pour point

NetCDF WASP_APES.ncdf Read Loads 250 _HG_CX_

EndTypeConversion

OSTRICH Documentation and User Guide

 39

table: The name of the MS Access table or NetCDF array in the formatted file that contains the

desired input or output.

keycol (Access only): The column in the MS Access table that contains an index key suitable for

uniquely identifying the database entry for the desired input or output (e.g. OBS_ID). This field

should be provided if the type field is “Access” but should be omitted if the type field is

“NetCDF”.

key (Access only): A unique index key for the desired input or output. This key will be searched

for in the corresponding keycol column (e.g. MW_01) to locate the tuple containing the desired

observation or parameter value. This field should be provided if the type field is “Access” but

should be omitted if the type field is “NetCDF”.

col: This field identifies the column in the Access database table or the array position in the

NetCDF array that contains the actual value of the corresponding parameter, response variable,

or observation.

name: This field specifies the name of an OSTRICH parameter, response variable, or

observation that corresponds to the previously listed file format conversion information. The

name field must reference an observation or response variable if the rw field is set to “Read”.

Conversely, the name field must reference a parameter or tied parameter if the rw field is set to

“Write”.

2.18. ostIn – Search Algorithms
Each algorithm has its own configuration group, wherein the user can specify the values for

various algorithm control variables. Additional optional configuration variables and groups (i.e.

Warm Start, Pre-Emption, Parameter Correction, a List of Initial Parameters, Math and Stats, and

Line Search) may also be available for a given algorithm, as indicated in Table 1.

2.18.1. Bisection Algorithm
The following optional group will configure the bisection algorithm and will be processed if

ProgramType is set to “BisectionAlgorithm”.

Listing 31: General Format (left) and Example (right) of the Bisection Group

Where BeginBisectionAlg and EndBisectionAlg are parsing tags that wrap the following set of

algorithm configuration variables:

BeginBisectionAlg

MaxOuterIterations <max_outer>

MaxInnerIterations <max_inner>

EndBisectionAlg

BeginBisectionAlg

MaxOuterIterations 50

MaxInnerIterations 20

EndBisectionAlg

OSTRICH Documentation and User Guide

 40

MaxOuterIterations: The maximum number of outer iterations of the algorithm. One outer

iteration corresponds to application of the bisection method to a randomly chosen initial

parameter set. The default value is 50.

MaxInnerIterations: The maximum number of inner iterations of the algorithm. Each inner

iteration reduces the searchable parameter range by 50%. Default value is 20.

2.18.2. Fletcher-Reeves
The following optional group will configure the Fletcher-Reeves algorithm and will be processed

if ProgramType is set to “Fletcher-Reeves”.

Listing 32: General Format (left) and Example (right) of the Fletcher-Reeves Group

Where BeginFletchReevesAlg and EndFletchReevesAlg are parsing tags that wrap the

following set of algorithm configuration variables:

ConvergenceVal and MaxStalls: These variables control the convergence termination criterion

for the algorithm. The algorithm will stop when the relative reduction in the objective function

over max_stalls iterations is less than conv_val. The default value for conv_val is 1.00E-6 and

the default value for max_stalls is 3.

MaxIterations: The maximum number of iterations of the algorithm. The default value is 20.

2.18.3. Gauss-Marquardt-Levenberg
The following optional group will configure the Gauss-Marquardt-Levenberg algorithm and will

be processed if ProgramType is set to “Levenberg-Marquardt”.

Listing 33: General Format of the Gauss-Marquardt-Levenberg Group

BeginFletchReevesAlg

ConvergenceVal <conv_val>

MaxStalls <max_stalls>

MaxIterations <max_iter>

EndFletchReevesAlg

BeginFletchReevesAlg

ConvergenceVal 1.00E-6

MaxStalls 3

MaxIterations 20

EndFletchReevesAlg

BeginLevMar

InitialLambda <init_lambda>

LambdaScaleFactor <lambda_sf>

MoveLimit <move_limit>

AlgorithmConvergenceValue <conv_val>

LambdaPhiRatio <phi_ratio>

LambdaRelReduction <rel_reduce>

MaxLambdas <max_lambda>

MaxIterations <max_iters>

EndLevMar

OSTRICH Documentation and User Guide

 41

Where BeginLevMar and EndLevMar are parsing tags that wrap the following set of algorithm

configuration variables:

InitialLambda: The initial Marquardt λ. The λ variable controls the algorithm’s transition from

using a Steepest-Descent approach to using a Taylor Series approximation. The default is 10.00.

LambdaScaleFactor: The Marquardt λ scale factor – this is the factor by which λ is multiplied

or divided during λ adjustment. The default is 1.10.

MoveLimit: Parameter move limits – the maximum adjustment of a parameter (relative to the

range of the parameter) that is allowed in a single iteration. The default is 0.10, or 10%.

AlgorithmConvergenceValue: The algorithm convergence value – regression will stop when

the relative reduction in the objective function (i.e. phi, Φ) over two iterations is less than this

value. The default value is 1.00E-4.

LambdaPhiRatio: This is the reduction criteria for deciding on optimal adjustments of the λ

term. Adjustments for the given iteration are complete when the relative reduction in Φ is greater

than this value. The default value is 0.30.

LambdaRelReduction: This is the reduction criteria for abandoning λ adjustment. Adjustments

for the given iteration are halted when the relative reduction in Φ is less than this value. The

default value is 0.01.

MaxLambdas: The maximum number of λ adjustments per iteration. The default value is 10.

MaxIterations: The maximum iterations in the overall method. The default value is 30.

2.18.4. Multi-Start GML with Trajectory Repulsion
The following optional group will configure the Multi-Start Trajectory Repulsion Gauss-

Marquardt-Levenberg algorithm and will be processed if ProgramType is set to “GML-MS”.

OSTRICH Documentation and User Guide

 42

Listing 34: General Format of the Multi-Start GML Group

Where BeginLevMar and EndLevMar are parsing tags that wrap a set of algorithm

configuration variables. Most of these variables are described above in Section 2.18.3 (Gauss-

Marquardt-Levenberg). Additional variables related to multi-start capabilities are described

below:

NumMultiStarts: The number of times the GML algorithm will be run using a different initial

set of parameter values. The default value is 1 (i.e. no multi-starts).

2.18.5. Grid-based Exhaustive Search
The following optional group will configure the Grid-based exhaustive search algorithm

and will be processed if ProgramType is set to “GridAlgorithm”.

Listing 35: General Format (left) and Example (right) of the Grid-based Search Group

Where BeginGridAlg and EndGridAlg are parsing tags that wrap the following set of algorithm

configuration variables:

Dimensions: This variable describes a full-factorial sampling grid over which the exhaustive

search will be applied. The sequence <d1 d2 … dn> should contain a space-separated list of

“dimension” values for each parameter. The order of the values should correspond to the order in

which parameters are listed in the Parameters group (see Section 2.7). The values represent the

number of equally spaced samples that will be evaluated for each parameter. For example,

consider if there were two parameters of interest: p1, with limits of -10 and +10, and p2, with

limits of 0 and 100. A Dimensions entry of “Dimensions 5 3” would result in the evaluation of

the following [p1, p2] parameter combinations:

p1 -10 -10 -10 -5 -5 -5 0 0 0 +5 +5 +5 +10 +10 +10

p2 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

BeginLevMar

InitialLambda <init_lambda>

LambdaScaleFactor <lambda_sf>

MoveLimit <move_limit>

AlgorithmConvergenceValue <conv_val>

LambdaPhiRatio <phi_ratio>

LambdaRelReduction <rel_reduce>

MaxLambdas <max_lambda>

MaxIterations <max_iters>

NumMultiStarts <num_starts>

EndLevMar

BeginGridAlg

Dimensions <d1 d2 ... dn>

EvalsPerIter <eval_per_itr>

EndGridAlg

BeginGridAlg

Dimensions 100 100 100

EvalsPerIter 1000

EndGridAlg

OSTRICH Documentation and User Guide

 43

EvalsPerIter: This variable controls the frequency of output within the OSTRICH run record

(OstOutput0.txt, see Section 4.1). The current best solution will be reported after every

EvalsPerIter model evaluations.

2.18.6. Powell's Algorithm
The following optional group will configure Powell’s derivative-free deterministic

algorithm and will be processed if ProgramType is set to “Powell”.

Listing 36: General Format (left) and Example (right) of the Powell Algorithm Group

Where BeginPowellAlg and EndPowellAlg are parsing tags that wrap the following set of

algorithm configuration variables:

ConvergenceVal: This is the algorithm convergence value – searches will halt when the relative

reduction over three successive iterations is less that this value. The default value is 1E-6.

MaxIterations: The maximum iterations in the overall method. The default value is 20.

2.18.7. Steepest Descent
The following optional group will configure the gradient-based Steepest-Descent

algorithm and will be processed if ProgramType is set to “Steepest-Descent”.

Listing 37: General Format (left) and Example (right) of the Steepest-Descent Group

Where BeginSteepDescAlg and EndSteepDescAlg are parsing tags that wrap a set of algorithm

configuration variables. These variables are described above in Section 2.18.6 (Powell’s

Algorithm).

2.18.8. Asynchronous Parallel Particle Swarm Optimization
The following optional group will configure the asynchronous parallel PSO algorithm

and will be processed if ProgramType is set to “APPSO”.

BeginPowellAlg

ConvergenceVal <conv_val>

MaxIterations <max_iter>

EndPowellAlg

BeginPowellAlg

ConvergenceVal 1.00E-6

MaxIterations 20

EndPowellAlg

BeginSteepDescAlg

ConvergenceVal <conv_val>

MaxIterations <max_iter>

EndSteepDescAlg

BeginSteepDescAlg

ConvergenceVal 1.00E-6

MaxIterations 20

EndSteepDescAlg

OSTRICH Documentation and User Guide

 44

Listing 38: General Format (left) and Example (right) of the APPSO Algorithm Group

Where BeginAPPSO and EndAPPSO are parsing tags that wrap a set of algorithm

configuration variables. These variables are described below:

SwarmSize: The size of the particle swarm. The default value is 20.

NumGenerations: The number of generations in the PSO. The default value is 50.

ConstrictionFactor: The value of χ in the PSO algorithm. Setting less than 1.00 will restrict the

searchable design space after each iteration and accelerate convergence, but can lead to

entrapment in local minima. The default value is 1.00.

CognitiveParam: The weight given to the local knowledge of each particle. High values

(relative to the SocialParam) will cause particles to bias their search to the area surrounding

each particles local best. The default value is 2.00.

SocialParam: The weight given to the global (social) knowledge of each particle. High values

(relative to the CognitiveParam) will cause particles to bias their search to the area surrounding

the global best. The default value is 2.00.

InertiaWeight: The initial weight given to the velocity used in each particle’s previous

generation of movement. High values tend to cause particles to ’overshoot’ their destination,

which is desirable in initial generations because it allows for more complete exploration of the

design space. The default is 1.2.

InertiaReductionRate: Relative reduction rate for the inertia weight. As the optimization

proceeds, the inertia weight is reduced by InertiaReductionRate × 100% of its current value.

This reduces overshoot over successive generations such that late-generation searches are

clustered around the global best solution. If this value is set to linear, the inertia weight will be

linearly reduced from its initial value to a final value (i.e. at the last generation) of zero. The

default value is 0.10.

BeginAPPSO

SwarmSize <swarm>

NumGenerations <ngen>

ConstrictionFactor <cfact>

CognitiveParam <cwght>

SocialParam <swght>

InertiaWeight <iwght>

InertiaReductionRate <irate>

EndAPPSO

BeginAPPSO

SwarmSize 20

NumGenerations 50

ConstrictionFactor 1.00

CognitiveParam 2.00

SocialParam 2.00

InertiaWeight 1.20

InertiaReductionRate 0.10

EndAPPSO

OSTRICH Documentation and User Guide

 45

2.18.9. Particle Swarm Optimization (PSO)
The following optional group will configure the PSO algorithm and will be processed if

ProgramType is set to “ParticleSwarm”.

Listing 39: General Format (left) and Example (right) of the PSO Algorithm Group

Where BeginParticleSwarm and EndParticleSwarm are parsing tags that wrap a set of

algorithm configuration variables. Most of these variables are described in Section 2.18.8. The

remaining variables are described below:

InitPopulationMethod: This variable controls how the algorithm configures the initial swarm of

candidate solutions. Supported values are: “random”, “LHS” (Latin Hypercube Sampling), and

“QuadTree”. The default value is “random”.

ConvergenceVal: This is the convergence value for the algorithm. If the relative difference

between the current minimum and the median of the latest generation is less than or equal to this

value, the algorithm will halt. The default value is 1.00E-4.

2.18.10. PSO with GML Polishing
This hybrid algorithm will be selected if ProgramType is set to “PSO-GML” and will

trigger an initial PSO optimization followed by a GML regression. To configure this algorithm,

the user should include both the PSO algorithm group (see Section 2.18.9) and the Gauss-

Marquardt-Levenberg group (see Section 2.18.3).

2.18.11. Balanced Exploration-Exploitation Random Search
The following optional group will configure the experimental BEERS algorithm and will

be processed if ProgramType is set to “BEERS”.

Listing 40: General Format (left) and Example (right) of the BEERS Algorithm Group

BeginParticleSwarm

SwarmSize <swarm>

NumGenerations <ngen>

ConstrictionFactor <cfact>

CognitiveParam <cwght>

SocialParam <swght>

InertiaWeight <iwght>

InertiaReductionRate <irate>

InitPopulationMethod <imethod>

ConvergenceVal <conv_val>

EndParticleSwarm

BeginParticleSwarm

SwarmSize 20

NumGenerations 50

ConstrictionFactor 1.00

CognitiveParam 2.00

SocialParam 2.00

InertiaWeight 1.20

InertiaReductionRate 0.10

InitPopulationMethod Random

ConvergenceVal 1.00E-4

EndParticleSwarm

BeginBEERS

NumSamples <nsamp>

EndBEERS

BeginBEERS

NumSamples 25

EndBEERS

OSTRICH Documentation and User Guide

 46

Where BeginBEERS and EndBEERS are parsing tags that wrap a single algorithm

configuration variable, namely NumSamples – the number of samples evaluated by the

algorithm (i.e. computational budget).

2.18.12. Binary- and Real-coded Genetic Algorithms (BGA and RGA)
The following optional group will configure either the binary- or real-coded genetic

algorithm and will be processed if ProgramType is set to “BinaryGeneticAlgorithm” (i.e.

BGA) or “GeneticAlgorithm” (i.e. RGA).

Listing 41: General Format (left) and Example (right)

of the Binary- and Real-coded Genetic Algorithm Groups

Where BeginGeneticAlg and EndGeneticAlg are parsing tags that wrap a set of algorithm

configuration variables. These variables are described below:

ParallelMethod: This variable controls how the algorithm is to be run if parallel computing is

used. Supported values are “synchronous” and “asynchronous”. The default value is

“synchronous”.

InitPopulationMethod: This variable controls how the algorithm configures the initial

population of candidate solutions. Supported values are: “random”, “LHS” (Latin Hypercube

Sampling), and “QuadTree”. The default value is “random”.

PopulationSize: The population size. The default value is 50.

MutationRate: The mutation rate for child members. The default value is 0.05 (i.e. 5%).

Survivors: The number of elites who pass unchanged to next generation. The default value is 1.

NumGenerations: The number of generations in the search algorithm. The default value is 10.

ConvergenceVal: This is the convergence value for the algorithm. If the relative difference

between the current minimum and the median of the latest generation is less than or equal to this

value, the algorithm will halt. The default value is 1.00E-4.

2.18.13. Combinatorial (Discrete) Simulated Annealing

BeginGeneticAlg

ParallelMethod <pmethod>

PopulationSize <pop_size>

MutationRate <mut_rate>

Survivors <nelites>

NumGenerations <numgens>

InitPopulationMethod <imethod>

ConvergenceVal <conv_val>

EndGeneticAlg

BeginGeneticAlg

ParallelMethod synchronous

PopulationSize 50

MutationRate 0.05

Survivors 1

NumGenerations 10

InitPopulationMethod random

ConvergenceVal 1.00E-4

EndGeneticAlg

OSTRICH Documentation and User Guide

 47

The following optional group will configure the combinatorial Simulated Annealing

algorithm and will be processed if ProgramType is set to “DiscreteSimulatedAnnealing”.

Listing 42: General Format (left) and Example (right)

of the Discrete Simulated Annealing Group

Where BeginSimulatedAlg and EndSimulatedAlg are parsing tags that wrap a set of algorithm

configuration variables. These variables are described below:

NumInitialTrials: This is the number of uphill moves that are attempted in the melting process.

Larger values will result in more accurate estimates of the initial temperature, but at the expense

of additional model runs. The default value is 100.

TemperatureScaleFactor: After each (outer) iteration, the temperature is reduced by

multiplying by this value. This value should be less than 1.00. The default value is 0.90.

OuterIterations: This is the number of iterations in the overall algorithm, where one outer

iteration corresponds to one temperature reduction. The default value is 20.

InnerIterations: This is the number of iterations in each temperature equilibration, where one

inner iteration corresponds to a single transitional move. The default value is 10.

ConvergenceVal: This is the convergence value for the algorithm. If the relative difference

between the current minimum and the median of the latest series of equilibration moves is less

than or equal to this value, the algorithm will halt. The default value is 0.001.

2.18.14. Simulated Annealing
The following optional group will configure the continuous variable Simulated Annealing

algorithm and will be processed if ProgramType is set to “SimulatedAnnealing”.

BeginSimulatedAlg

NumInitialTrials <n_init>

TemperatureScaleFactor <tscale>

OuterIterations <nouter>

InnerIterations <ninner>

ConvergenceVal <conval>

EndSimulatedAlg

BeginSimulatedAlg

NumInitialTrials 100

TemperatureScaleFactor 0.9

OuterIterations 20

InnerIterations 10

ConvergenceVal 1.00E-3

EndSimulatedAlg

OSTRICH Documentation and User Guide

 48

Listing 43: General Format (left) and Example (right)

of the Continuous Variable Simulated Annealing Group

Where BeginSimulatedAlg and EndSimulatedAlg are parsing tags that wrap a set of algorithm

configuration variables. Most of these variables are described in Section 2.18.13. The remaining

variables are described below:

FinalTemperature: This variable can be used to set a specific value for the final temperature in

the SA algorithm. The temperature scale factor will be adjusted to achieve the desired

temperature. Alternatively, OSTRICH supports two options for dynamically pre-computing the

final temperature. These dynamic options are based on the methods of Vanderbilt and Louie

(1984) and Ben-Ameur (2004), respectively. Set the FinalTemperature to “computed-

vanderbilt” to select the Vanderbilt-Louie approach. Set the FinalTemperature to “compute-

ben-ameur” to select the Ben-Ameur approach. If a final temperature option or value is not

specified, the final temperature will be determined from the initial temperature, temperature scale

factor, and number of outer iterations.

TransitionMethod: This variable selects the method used to compute randomized parameter

perturbations during the transition phase of the SA algorithm. Set this variable to “Uniform” to

sample from a uniform distribution, or use a value of “Gauss” to select a Gaussian (i.e. normal)

distribution. The default value is “Gauss”.

2.18.15. Vanderbilt-Louie Simulated Annealing
The following optional group will configure the continuous variable Vanderbilt-Louie

variant of the Simulated Annealing algorithm and will be processed if ProgramType is set to

“VanderbiltSimulatedAnnealing”.

BeginSimulatedAlg

NumInitialTrials <n_init>

TemperatureScaleFactor <tscale>

OuterIterations <nouter>

InnerIterations <ninner>

ConvergenceVal <conval>

FinalTemperature <tfinal>

TransitionMethod <tmethd>

EndSimulatedAlg

BeginSimulatedAlg

NumInitialTrials 100

TemperatureScaleFactor 0.9

OuterIterations 20

InnerIterations 10

ConvergenceVal 1.00E-3

FinalTemperature 10.0

TransitionMethod Gauss

EndSimulatedAlg

OSTRICH Documentation and User Guide

 49

Listing 44: General Format (left) and Example (right)

of the Vanderbilt-Louie Simulated Annealing Group

Where BeginSimulatedAlg and EndSimulatedAlg are parsing tags that wrap a set of algorithm

configuration variables. Most of these variables are described in Section 2.18.13. The remaining

variables are described below:

FinalTemperature: This variable can be used to set a specific value for the final temperature in

the SA algorithm. The temperature scale factor will be adjusted to achieve the desired

temperature. If a final temperature option or value is not specified, the final temperature will be

determined from the initial melting phase using a procedure described by Vanderbilt and Louie

(1984).

TransitionMethod: This variable selects the method used to compute randomized parameter

perturbations during the transition phase of the SA algorithm. Set this variable to “Vanderbilt”

to sample according to the procedure outlined by Vanderbilt and Louie (1984). Use a value of

“Gauss” to select a Gaussian (i.e. normal) distribution. The default value is “Gauss”.

2.18.16. Discrete DDS
The following optional group will configure the discrete DDS algorithm and will be

processed if ProgramType is set to “DiscreteDDS”.

Listing 45: General Format (left) and Example (right) of the Discrete DDS Group

Where BeginDiscreteDDSAlg and EndDiscreteDDSAlg are parsing tags that wrap a set of

algorithm configuration variables. These variables are described below:

PerturbationValue: This parameter defines the standard deviation of the decision variable

perturbations as follows: PerturbationValue = StdDev / DV_Range. The allowable range is 0 to

BeginSimulatedAlg

NumInitialTrials <n_init>

TemperatureScaleFactor <tscale>

OuterIterations <nouter>

InnerIterations <ninner>

ConvergenceVal <conval>

FinalTemperature <tfinal>

TransitionMethod <tmethd>

EndSimulatedAlg

BeginSimulatedAlg

NumInitialTrials 100

TemperatureScaleFactor 0.9

OuterIterations 20

InnerIterations 10

ConvergenceVal 1.00E-3

FinalTemperature 10.0

TransitionMethod Gauss

EndSimulatedAlg

BeginDiscreteDDSAlg

PerturbationValue <r_val>

MaxIterations <budget>

UseInitialParamValues

UseRandomParamValues

EndDiscreteDDSAlg

BeginDiscreteDDSAlg

PerturbationValue 0.2

MaxIterations 100

UseRandomParamValues

EndDiscreteDDSAlg

OSTRICH Documentation and User Guide

 50

1. As the value increases, the sampling becomes more and more spread out from the current best

value of the decision variable. The default and recommended value is 0.2.

MaxIterations: The computational budget in terms of the number of objective function

evaluations. Users need to set this input for each problem according to how long each objective

function evaluation takes and how quickly an answer is needed. The more objective functions

you use, the better your estimate of the globally optimal solution will be. The default value is

100.

UseInitialParamValues: The algorithm will be initiated from the initial values specified in the

parameter group (see Sections 2.7 through 2.9) if this line is included. This variable is mutually

exclusive with the “UseRandomParamValues” variable – only one should be included. If

neither are included the algorithm will default to “UseRandomParamValues”.

UseRandomParamValues: If this line is included the algorithm will be initiated from a

randomly generated location. This variable is mutually exclusive with the

“UseInitialParamValues” variable – only one should be included. If neither are included the

algorithm will default to “UseRandomParamValues”.

2.18.17. Dynamically Dimensioned Search (DDS)
The following optional group will configure the DDS algorithm and will be processed if

ProgramType is set to “DDS”.

Listing 46: General Format (left) and Example (right) of the DDS Group

Where BeginDDSAlg and EndDDSAlg are parsing tags that wrap a set of algorithm

configuration variables. Alternatively, BeginDDS and EndDDS may be used as parsing tags.

The various DDS configuration variables are described in Section 2.18.16.

2.18.18. Asynchronous Parallel DDS
The following optional group will configure the asynchronous parallel implementation of

the DDS algorithm and will be processed if ProgramType is set to “ParallelDDS”.

BeginDDSAlg

PerturbationValue <r_val>

MaxIterations <budget>

UseInitialParamValues

UseRandomParamValues

EndDDSAlg

BeginDDSAlg

PerturbationValue 0.2

MaxIterations 100

UseRandomParamValues

EndDDSAlg

OSTRICH Documentation and User Guide

 51

Listing 47: General Format (left) and Example (right) of the parallel DDS Group

Where BeginParallelDDSAlg and EndParallelDDSAlg are parsing tags that wrap a set of

algorithm configuration variables. Other acceptable parsing tags are:

 BeginParallelDDS and EndParallelDDS

 BeginParaDDSAlg and EndParaDDSAlg

 BeginParaDDS and EndParaDDS

 BeginDDSAlg and EndDDSAlg

 BeginDDS and EndDDS

Several of the parallel DDS configuration variables (i.e. PerturbationValue,

MaxIterations, UseInitialParamValues, and UseRandomParamValues) are described in

Section 2.18.16. The remaining variables are described below:

UseOpt: Users wanting to apply the original DDS algorithm can ignore specifying this

option. This option is used by OSTRICH and DDS developers to compare the DDS

algorithm implemented in different programming languages. It is an experimental developer

option that controls the calculation of parameter adjustments within the parallel DDS

algorithm. Three values are acceptable: “no-rand-num”, “try-int-solution”, and

“standard”. The default and recommended value is “standard”. The “Alpha” and “Beta”

values will be used by the algorithm if “no-rand-num” is selected. Otherwise, these

variables are ignored (i.e. if either “try-int-solution” or “standard” are selected).

AlphaValue and BetaValue: These parameters control the parallel DDS perturbation scheme

if the UseOpt variable is set to “no-rand-num”. Otherwise, these variables are ignored. Both

variables have a default value of 0.5.

EnableDebugging: The parallel DDS algorithm will report additional development-level

debugging information if this variable is included. The default behavior of the algorithm is to

not report debugging information.

BeginParallelDDSAlg

PerturbationValue <r_val>

MaxIterations <budget>

UseInitialParamValues

UseRandomParamValues

UseOpt <option>

AlphaValue <alpha>

BetaValue <beta>

EnableDebugging

EndParallelDDSAlg

BeginParallelDDSAlg

PerturbationValue 0.2

MaxIterations 100

UseRandomParamValues

UseOpt standard

EndParallelDDSAlg

OSTRICH Documentation and User Guide

 52

2.18.19. Shuffled Complex Evolution (SCE)
The following optional group will configure the shuffled complex evolution (SCE)

algorithm and will be processed if ProgramType is set to “ShuffledComplexEvolution”.

Listing 48: General Format (left) and Example (right) of the SCE Group

Where BeginSCEUA and EndSCEUA are parsing tags that wrap a set of algorithm

configuration variables. These variables are described below and descriptions are based on

comments within the FORTRAN implementation provided by Duan et al. (1993). The

corresponding variable names used in the FORTRAN implementation are provided in brackets

(‘<’ and ‘>’) in the general format of Listing 48.

Budget (MAXN): Maximum number of trials allowed before optimization is terminated. The

purpose of MAXN is to stop an optimization search before too much computer time is expended.

MAXN should be set large enough so that optimization is generally completed before MAXN

trials are performed. Recommended value is 10,000 (increase or decrease as necessary).

LoopStagnationCriteria (KSTOP): Number of shuffling loops in which the optimization

criterion must improve by the specified percentage or else optimization will be restarted.

PctChangeCriteria (PCENTO): Percentage by which the optimization criterion value must

change in the specified number of shuffling loops or else optimization is restarted. Use decimal

equivalent: Percentage/100. Recommended value: 0.01.

PopConvCriteria (PEPS): The optimization will be restarted if the shuffling and/or evolution

process results in a population that is entirely within PEPS×100 percent of the feasible space.

The default value is 0.001.

NumComplexes (NGS): Number of complexes used for optimization search. Minimum value is

1. Recommended value is between 2 and 20 depending on the number of parameters to be

optimized and on the degree of difficulty of the problem. If not specified OSTRICH will use the

following calculation: NGS = sqrt(np) , where np is the number of parameters.

BeginSCEUA

Budget <MAXN>

LoopStagnationCriteria <KSTOP>

PctChangeCriteria <PCENTO>

PopConvCriteria <PEPS>

NumComplexes <NGS>

NumPointsPerComplex <NPG>

NumPointsPerSubComplex <NPS>

NumEvolutionSteps <NSPL>

MinNumberOfCOmplexes <MINGS>

UseInitialPoint <INIFLG>

EndSCEUA

BeginSCEUA

Budget 10000

LoopStagnationCriteria 5

PctChangeCriteria 0.01

PopConvCriteria 0.001

NumComplexes 3

NumPointsPerComplex 19

NumPointsPerSubComplex 10

NumEvolutionSteps 19

MinNumberOfCOmplexes 3

UseInitialPoint no

EndSCEUA

OSTRICH Documentation and User Guide

 53

NumPointsPerComplex (NPG): The number of points in each complex. NPG should be greater

than or equal to 2. The default value is: NPG = 2 × np + 1.

NumPointsPerSubComplex (NPS): The number of points in each sub-complex. NPS should be

greater than or equal to 2 and less than NPG. The default value is: NPS = np + 1.

NumEvolutionSteps (NSPL): The number of evolution steps taken by each complex before next

shuffling. The default value is: NSPL = 2 × np +1.

MinNumberOfComplexes (MINGS): Minimum number of complexes required for optimization

search, if the number of complexes is allowed to reduce as the optimization search proceeds.

The default value is: MINGS = sqrt(np).

UseInitialPoint (INIFLG): Flag on whether to include an initial point in the starting population.

Enter “yes” if the initial point is to be included. The default value is “no”.

2.18.20. Sampling Algorithm (Big Bang - Big Crunch)
The following optional group will configure the Big Bang – Big Crunch (BB-BC)

algorithm and will be processed if ProgramType is set to “SamplingAlgorithm”.

Listing 49: General Format (left) and Example (right) of the BB-BC Group

Where BeginSamplingAlg and EndSamplingAlg are parsing tags that wrap a single algorithm

configuration variable, namely the computational budget (i.e. MaxEvaluations). The default

value for this variable is 100.

2.19. ostIn – Uncertainty-based Search Algorithms
Several of the search algorithms implemented in OSTRICH are designed to enumerate

parameter probability distributions or behavioral parameter sets. Such algorithms are referred to

as being “uncertainty-based” since they are not just concerned with identifying a single globally

optimal parameter set. The configuration groups for these algorithms are described below.

2.19.1. DDS for Approximation of Uncertainty
This algorithm seeks to identify behavioral parameters set by repeatedly applying a DDS

search from alternative starting points in the parameter space. The following optional group will

configure the DDS for Approximation of Uncertainty (DDS-AU) algorithm and will be

processed if ProgramType is set to “DDSAU”.

BeginSamplingAlg

MaxEvaluations <nevals>

EndSamplingAlg

BeginSamplingAlg

MaxEvaluations 100

EndSamplingAlg

OSTRICH Documentation and User Guide

 54

Listing 50: General Format (left) and Example (right) of the DDS-AU Group

Where Begin_DDSAU_Alg and End_DDSAU_Alg are parsing tags that wrap a set of algorithm

configuration variables. These variables are described below:

PerturbationValue: This parameter defines the standard deviation of the decision variable

perturbations as follows: PerturbationValue = StdDev / DV_Range. The allowable range is 0 to

1. As the value increases, the sampling becomes more and more spread out from the current best

value of the decision variable. The default and recommended value is 0.2.

NumSearches: The number of independent DDS searches to perform as part of the overall DDS-

AU uncertainty approximation algorithm. The default value is 25. Each search will be run using

either the DDS algorithm (Section 2.18.17) or the asynchronous parallel DDS algorithm (Section

2.18.18), depending on the value assigned to the ParallelSearches variable. Results for each

search will be stored in output files named OstModel[N]_DDS[M].txt and

OstOutput[N]_DDS[M].txt, where [N] is the processor number and [M] is the DDS search

number. A DDS-AU summary file named OstOutputDDSAU.txt will be created when all DDS

searches are complete. This file will contain results of the various optimization trials as well as a

summary of the behavioral parameter sets that were discovered.

MinItersPerSearch and MaxItersPerSearch: The minimum and maximum computational

budget for each independent DDS search. If the same budget is desired for each search, assign

the desired value to both MinItersPerSearch and MaxItersPerSearch. If different values are

assigned to these variables, the DDS-AU algorithm will randomly generate a different budget for

each search. The randomly generated budget will fall within the range specified by

MinItersPerSearch and MaxItersPerSearch. The default value for MinItersPerSearch is 30.

The default value for MaxItersPerSearch is 70.

ParallelSearches: Each independent search will be run using the asynchronous parallel DDS

algorithm if this variable is set to “yes”. Otherwise, each independent search will be run using a

serial implementation of the DDS algorithm. The default value is “no”.

Begin_DDSAU_Alg

PerturbationValue <r_val>

NumSearches <nsols>

MinItersPerSearch <imin>

MaxItersPerSearch <imax>

ParallelSearches yes|no

Threshold <fmax>

Randomize yes|no

ReviseAU yes|no

End_DDSAU_Alg

Begin_DDSAU_Alg

PerturbationValue 0.2

NumSearches 25

MinItersPerSearch 30

MaxItersPerSearch 70

ParallelSearches no

Threshold 1000

Randomize no

ReviseAU yes

End_DDSAU_Alg

OSTRICH Documentation and User Guide

 55

Threshold: The behavioral threshold for approximating uncertainty. Parameter sets with

corresponding objective function values less than the threshold will be considered behavioral.

The default value is 1000.

Randomize: The DDS-AU algorithm will randomly select a behavioral parameter set from each

independent trial if this variable is set to “yes”. Otherwise, the DDS-AU algorithm will select the

best behavioral parameter set from each independent trial. Random selection can help prevent

clustering problems in the approximation of uncertainty. The default value is “no”.

ReviseAU: Set this variable to “yes” to re-run a DDS-AU analysis without re-running previously

completed independent DDS searches. This allows for DDS-AU to consider a different threshold

value or randomization setting without repeating the required independent DDS searches. Results

from previous searches will be read from corresponding “OstModel[N]_DDS[M].txt” output

files. A given independent search will be re-run if corresponding output files are missing or

unreadable. All existing “OstModel[N]_DDS[M].txt” and “OstOutput[N]_DDS[M].txt” files

found in the OSTRICH launch directory will be deleted as part of DDS-AU initialization if this

variable is set to “no”. The default value for this variable is “no”.

2.19.2. Generalized Likelihood Uncertainty Estimation (GLUE)
This algorithm seeks to identify behavioral parameters set by randomly sampling and

evaluating alternative parameter sets. The following optional group will configure the GLUE

algorithm and will be processed if ProgramType is set to “GLUE”.

Listing 51: General Format (left) and Example (right) of the GLUE Group

Where BeginGLUE and EndGLUE are parsing tags that wrap a set of algorithm configuration

variables. These variables are described below:

SamplesPerIter: This variable controls the frequency of output within the OSTRICH run record

(OstOutput0.txt, see Section 4.1). The current best solution will be reported after every

SamplesPerIter model evaluations. The current number of behavioral solutions that have been

discovered will also be reported. The default value is 10.

NumBehavioral: The desired number of behavioral solutions. The GLUE algorithm will halt if

the desired number of behavioral solutions has been found or if the computational budget (i.e.

MaxSamples) has been exhausted. The default value is 10.

BeginGLUE

SamplesPerIter <nper>

NumBehavioral <nsols>

MaxSamples <nevals>

Threshold <fmax>

EndGLUE

BeginGLUE

SamplesPerIter 10

NumBehavioral 10

MaxSamples 100

Threshold 1000

EndGLUE

OSTRICH Documentation and User Guide

 56

MaxSamples: The maximum number of model evaluations allowed before the GLUE search is

terminated. The default value is 100. However, studies have shown that GLUE can require

100,000 or more evaluations to discover a sufficiently representative number of behavioral

samples.

Threshold: The threshold for separating behavioral and non-behavioral parameter sets.

Parameter sets with corresponding objective function values less than the threshold will be

considered behavioral. The default value is 1000.

2.19.3. Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
This algorithm seeks to identify parameter probability distributions using a Bayesian

Markov Chain Monte Carlo (MCMC) sampler. It is based on the Metropolis-Hastings algorithm

described by Kuczera and Parent (1998). The sampler seeks to evolve an initial set of truncated

uniform distributions into the correct posterior probability distribution for each parameter. The

following optional group will configure the Metropolis-Hastings MCMC algorithm and will be

processed if ProgramType is set to “MetropolisSampler”.

Listing 52: General Format (left) and Example (right) of the MCMC Group

Where BeginMetropolisSampler and EndMetropolisSampler are parsing tags that wrap a set

of algorithm configuration variables. These variables are described below:

SamplesPerIter: This variable controls the frequency of output within the OSTRICH run record

(OstOutput0.txt, see Section 4.1). The current best solution will be reported after every

SamplesPerIter model evaluations. The current number of accepted solutions will also be

reported. Samples that are accepted after the burn-in period is complete are understood to come

from a posterior distribution. The default value is 10.

NumDesired: The desired number of post burn-in samples (i.e. the number of samples that are

desired from the posterior parameter distributions). The default value is 10.

BurnInSamples: The number of accepted samples that should be discarded before assuming

accepted samples are representative of a posterior distribution. The default value is 0 (i.e. no

burn-in).

BeginMetropolisSampler

SamplesPerIter <nper>

NumDesired <nsols>

BurnInSamples <nburn>

MaxSamples <nmax>

LikelihoodType <ltype>

ShapingFactor <shape>

TelescopeRate <trate>

EndMetropolisSampler

BeginMetropolisSampler

SamplesPerIter 10

NumDesired 10

BurnInSamples 0

MaxSamples 100

LikelihoodType Stedinger

ShapingFactor 0.5

TelescopeRate 0

EndMetropolisSampler

OSTRICH Documentation and User Guide

 57

MaxSamples: The maximum number of model evaluations that will be performed as part of the

MCMC search. The default value is 100.

LikelihoodType: Use this variable to select alternative formulations for computing the

likelihood ratio. Two options are available, namely “Beven” and “Stedinger”. The Beven

likelihood type is a pseudo-likelihood described by Beven and Binley (1992). The “Stedinger”

likelihood type is a formal likelihood function described by Stedinger et al. (2008). If “Beven” is

selected, the ShapingFactor (see below) will also be processed. The default setting is Stedinger.

ShapingFactor: This variable is a correction exponent for the Beven pseudo-likelihood function.

As described by Stedinger et al. (2008), adjusting the ShapingFactor can help remove bias when

using the “Beven” approach to computing likelihood ratios. The default value is 0.5,

corresponding to a root-mean-squared-error type of likelihood function.

TelescopeRate: This variable is the fraction by which to constrict parameter bounds after each

iteration. It can increase the acceptance rate by focusing the sampler on high-probability regions

of the parameter space. The default value is 0 (i.e. no telescoping).

2.19.4. Rejection Sampling
This algorithm seeks to identify parameter probability distributions using a rejection

sampling procedure. It is based on the procedure described by Chen (2005). The algorithm

samples from a set of truncated uniform distributions in search of parameter sets that are

representative of the “true” posterior probability distribution. It represents a middle ground

between informal GLUE-like procedures, including DDS-AU, and formal MCMC procedures.

The following optional group will configure the Rejection Sampling algorithm and will be

processed if ProgramType is set to “RejectionSampler”.

Listing 53: General Format (left) and Example (right) of the Rejection Sampler Group

Where BeginRejectionSampler and EndRejectionSampler are parsing tags that wrap a set of

algorithm configuration variables. Except for MinWSSE, these variables are described in

Section 2.19.3. The MinWSSE variable is the calibrated (i.e. minimized) weighted sum of

squared error objective function for the model. The default value is 1.00E308 (i.e. infinity).

BeginRejectionSampler

SamplesPerIter <nper>

NumDesired <nsols>

BurnInSamples <nburn>

MaxSamples <nmax>

LikelihoodType <ltype>

ShapingFactor <shape>

TelescopeRate <trate>

MinWSSE <wsse>

EndRejectionSampler

BeginRejectionSampler

SamplesPerIter 10

NumDesired 10

BurnInSamples 0

MaxSamples 100

LikelihoodType Stedinger

ShapingFactor 0.5

TelescopeRate 0

MinWSSE 1.00E308

EndRejectionSampler

OSTRICH Documentation and User Guide

 58

Users should replace this value with the results of a calibration algorithm, such as those

described in Sections 2.18.1 to 2.18.20.

2.20. ostIn – Multi-Objective Search Algorithms
The algorithms described below seek to identify non-dominated solutions representing

the tradeoff curve (i.e. pareto front) among conflicting objectives. These objectives can reflect a

multi-criteria calibration exercise or a multi-objective optimization problem.

2.20.1. Pareto Archived DDS (PADDS)
The following optional group will configure the multi-objective Pareto Archived DDS

algorithm and will be processed if ProgramType is set to “PADDS”.

Listing 54: General Format (left) and Example (right) of the PADDS Group

Where BeginPADDSAlg and EndPADDSAlg are parsing tags that wrap a set of algorithm

configuration variables. Alternatively, BeginPADDS and EndPADDS may be used as the

parsing tags. PADDS configuration variables are described below:

PerturbationValue: This parameter defines the standard deviation of the decision variable

perturbations as follows: PerturbationValue = StdDev / DV_Range. The allowable range is 0 to

1. As the value increases, the sampling becomes more and more spread out from the current best

value of the decision variable. The default and recommended value is 0.2.

MaxIterations: The computational budget in terms of the number of objective function

evaluations. Users need to set this input for each problem according to how long each objective

function evaluation takes and how quickly an answer is needed. The more objective functions

you use, the better your estimate of the globally optimal solution will be. The default value is 50.

SelectionMetric: This metric for scoring non-dominated solutions when seeding DDS trials

within the overall PADDS algorithm. Values currently supported are listed below:

 Random

 CrowdingDistance

 EstimatedHyperVolumeContribution

 ExactHyperVolumeContribution

The default selection metric value is “ExactHyperVolumeContribution”. For a discussion on

choosing the appropriate selection metric see Asadzadeh and Tolson (2013).

BeginPADDSAlg

PerturbationValue <r_val>

MaxIterations <budget>

SelectionMetric <metric>

EndPADDSAlg

BeginPADDSAlg

PerturbationValue 0.2

MaxIterations 50

SelectionMetric Random

EndPADDSAlg

OSTRICH Documentation and User Guide

 59

2.20.2. Asynchronous Parallel PADDS
The following optional group will configure a parallelized version of the PADDS

algorithm and will be processed if ProgramType is set to “ParaPADDS”.

Listing 55: General Format (left) and Example (right) of the parallel PADDS Group

Where BeginParallelPADDSAlg and EndParallelPADDSAlg are parsing tags that wrap a set

of algorithm configuration variables. These variables are described in Section 2.20.1. Other

acceptable parsing tags are:

 BeginParallelPADDS and EndParallelPADDS

 BeginParaPADDSAlg and EndParaPADDSAlg

 BeginParaPADDS and EndParaPADDS

 BeginPADDSAlg and EndPADDSAlg

 BeginPADDS and EndPADDS

2.20.3. Simple Multi-Objective Optimization Test Heuristic (SMOOTH)
The following optional group will configure an experimental multi-objective algorithm

known as SMOOTH and will be processed if ProgramType is set to “SMOOTH”.

Listing 56: General Format (left) and Example (right) of the SMOOTH Group

SamplesPerIter: The number of model evaluations per iteration of the algorithm.

NumIterations: The number of iterations in the algorithm.

2.21. ostIn – Math and Stats
This group describes the finite difference method employed by algorithms in Table 1 with

shaded entries in the “Math and Stats?” column. If calibration is being performed, additional

variables in this group are used to request various statistical and diagnostic output. The general

format of the MathAndStats group is given in Listing 58 and Listing 58 is a concrete example.

BeginParallelPADDSAlg

PerturbationValue <r_val>

MaxIterations <budget>

SelectionMetric <metric>

EndParallelPADDSAlg

BeginParallelPADDSAlg

PerturbationValue 0.2

MaxIterations 50

SelectionMetric Random

EndParallelPADDSAlg

BeginSMOOTH

SamplesPerIter <nsamp>

NumIterations <niter>

EndSMOOTH

BeginSMOOTH

SamplesPerIter 20

NumIterations 50

EndSMOOTH

OSTRICH Documentation and User Guide

 60

Listing 57: General Format of the Math and Stats Group

As shown in Listing 57, a “Predictions” sub-group can be used to instruct OSTRICH to

compute confidence limits on predicted quantities of a calibrated model. The format of the

Predictions sub-group is identical to the Response Variables group (see Section 2.15).

Listing 58: Example of the Math and Stats Group

Variables in the Math and Stats group are described below:

DiffType: This variable selects the type of finite-difference approach to use for approximating

derivatives (i.e. ∂Y/∂p, where Y is some model output and p is a parameter). Options are

“forward” (forward differences), “outside” (outside central differences), “parabolic” (parabolic

central differences), and “best-fit” (linear central differences). Central differences require twice

as much computation as forward differences but can be more accurate. The default value is

“forward”.

BeginMathAndStats

 DiffType <dtype>

 DiffIncType <ditype>

 DiffRelIncrement <drinc>

 DIffIncrement <dinc>

 DiffMinIncrement <dmin>

 CI_Pct <cipct>

 <Stat1>

 . . .

 <StatN>

 BeginPredictions

 --- see section 2.15

 EndPredictions

EndMathAndStats

BeginMathAndStats

 DiffType forward

 DiffIncType value-relative

 DIffIncrement 0.01

 DiffMinIncrement 1.00E-6

 CI_Pct 0.95

 AllStats

 ExcludeInsensitiveParameters

 ExcludeInsensitiveObservations

 WriteResidualsEachIteration

 BeginPredictions

 #name filename key line col token augmented?

 MinDef CanBeam.out ; Umin 2 2 '=' no

 MaxDef CanBeam.out ; Umax 3 2 '=' no

 EndPredictions

EndMathAndStats

OSTRICH Documentation and User Guide

 61

DiffIncType: The type of increment used in the selected finite-difference approach. Supported

values for this variable are described below, and the default is “range-relative”:

range-relative: Increments will be computed by multiplying the range of a given

parameter by the value of the“DiffIncrement” or “DiffRelIncrement” variable.

value-relative: Increments will be computed by multiplying the current value of a given

parameter by the value of the “DiffIncrement” variable.

absolute: Increments will be directly specified by the value of the “DiffIncrement”

variable.

optimal: Finite-difference increments will be computed according to the iterative

procedure outlined by Yager (2004).

DiffRelIncrement: When this variable is assigned the program will use a range-relative finite-

difference increment, irrespective of the value of DiffIncType. The value of this variable can be

a single value that will be applied to each parameter, or a space-separated list of values

corresponding to each parameter listed in the parameters group (see Section 2.7). The default

value is 0.001 for all parameters.

DiffIncrement: The value used in computing a finite-difference for each parameter. The value of

this variable can be a single value that will be applied to each parameter, or a space-separated list

of values corresponding to each parameter listed in the parameters group (see Section 2.7). The

default value is 0.001 for all parameters.

DiffMinIncrement: The minimum increment that will be used irrespective of the compute

valued. The default value is 1.00E-20.

CI_Pct: The desired confidence level for computing linear confidence intervals on parameters

and predictions. The default value is 95.

Stat1 .. StatN: These entries serve as flags to select various statistical output. Options are

described below. The default flags are “NoStats”, “ExcludeInsensitiveParameters”, and

“ExcludeInsensitiveObservations”:

Default: Selects a default list of parameter statistics, including correlation, standard error,

and linear confidence intervals.

AllStats: Enables all available statistical output.

NoStats: Disables all statistical output.

BestBoxCox: Instructs OSTRICH to compute an estimate of the best Box-Cox power

transformation for obtaining normalized residuals.

OSTRICH Documentation and User Guide

 62

StdDev: Selects standard deviation of the regression (i.e. root mean squared error,

RMSE).

StdErr: Selects parameter standard error.

CorrCoeff: Selects parameter correlation matrix.

NormPlot: Selects plot points for a normal probability plot along with corresponding R2
N

value.

Beale: Selects Beale’s linearity measure.

Linssen: Selects Linssen’s linearity measure.

CooksD: Selects the Cook’s D measure of observation influence.

DFBETAS: Selects the DFBETAS measure of observation influence.

Matrices: Selects non-linear regression matrices, including the Jacobian, normal and

inverse normal matrices.

Confidence: Selects linear confidence intervals on estimated parameters.

Sensitivity: Selects measures of parameter sensitivity, including composite and

dimensionless scaled sensitivites.

RunsTest: Selects the runs test for serial correlation among residuals.

AutorunFunction: Selects the autorun function for serial correlation among residuals.

MMRI: Selects various information-theoretic measures for assessing multi-model

ranking and inference.

ExcludeInsensitiveParameters: If present, insensitive parameters will be excluded from

statistical calculations. This can help avoid problems with singular matrices.

IncludeInsensitiveParameters: If present, insensitive parameters will be included in

statistical calculations.

ExcludeInsensitiveObservations: If present, insensitive observations will be excluded

from statistical calculations. This can help avoid problems with singular matrices.

IncludeInsensitiveObservations: If present, insensitive observations will be included in

statistical calculations.

WriteResidualsEachIteration: If present, a residuals file will be created for each

iteration or step of the algorithm and named OstResiduals_P*_S*.txt. The P* portion of

OSTRICH Documentation and User Guide

 63

the filename will identify the processor (i.e. rank) and the S* portion of the filename will

identify the iteration (i.e. step). The file will list the residuals associated with the best-fit

parameter set discovered by the algorithm up to the indicated algorithm iteration (i.e.

step). This option only applies to the WSSE objective function and is not available for

the following algorithms: DDSAU, GLUE, MCMC, PADDS, ParaPADDS, RJSMP,

BEERS, and SMOOTH.

2.22. ostIn – Line Search
This group is used for configuration of the one-dimensional search algorithm (Brent or

Golden-Section) that underlies an unconstrained numerical optimization procedure. Such

algorithms are identified in Table 1 above by the shaded entries in the “Line Search?” column.

The general format (left side) and example (right side) of the Line Search group is given in

Listing 59.

Listing 59: Format (left) and Example (right) of the Line Search Group

Where Begin1dSearch and Begin1dSearch are parsing tags that wrap two configuration

variables – 1dSearchConvergeVal specifies the convergence value for the line search, and

1dSearchMethod selects the line search algorithm. The default convergence value is 0.0001 and

the default search method is GoldenSection.

2.23. ostIn – General-purpose Constrained Optimization Platform (GCOP)
In this group users can specify the response variable (or variables if performing multi-

objective optimization or multi-criteria calibration) that will serve as the cost function (or

functions) for the general constrained optimization platform. Each “Cost Function” identifies a

single response variable or tied response variable that represents a system cost (CSYS) to be

minimized by the optimizer. The overall GCOP objective function (FSYS) is a combination of the

system cost (CSYS) and a penalty function, PTOTAL, which accounts for the cost of all constraint

violations.

Note: To use GCOP, the model executable or script specified by the user must generate

response variables that are suitable for computation of the CSYS and PTOTAL values. Furthermore,

this executable should return a terrible CSYS value or grossly infeasible PTOTAL value in the event a

model run fails or crashes.

The OSTRICH GCOP module offers several techniques for combining CSYS and PTOTAL to

form the objective function; namely the additive penalty method (APM), the multiplicative

Begin1dSearch

 1dSearchConvergeVal <cval>

 1dSearchMethod Brent|GoldenSection

End1dSearch

Begin1dSearch

 1dSearchConvergeVal 0.0001

 1dSearchMethod GoldenSection

End1dSearch

OSTRICH Documentation and User Guide

 64

penalty method (MPM), and the exponential penalty method (EPM). The mathematics of these

techniques are given below and they are described in detail by Chan-Hilton and Culver (2000):

FAPM(X) = CSYS + PTOTAL

FMPM(X) = max(CSYS, PTOTAL) ×(1 + PTOTAL)

FEPM(X) = max(CSYS, PTOTAL) × exp(PTOTAL)

Where, FAPM is the objective function using APM; FMPM is the objective function using MPM;

FEPM is the objective function using EPM; and X is a vector of design parameters. The general

format and a concrete example of the GCOP section is given in Listing 60.

Listing 60: Format (left) and Example (right) of the GCOP Group

Where BeginGCOP and EndGCOP are parsing tags that wrap a list of GCOP configuration

variables:

CostFunction: The value of this variable must be the name of a response variable (or tied

response variable) and corresponds to the system cost (CSYS). For multi-objective problems, users

should list one cost function entry for each objective. Only the first objective listed will appear in

OSTRICH run record reports unless the additional costs are marked as augmented response

variables (see Section 2.15).

PenaltyFunction: The three options for this variable are “APM”, “MPM” and “EPM”,

corresponding to desired penalty function method. The default value is “MPM”.

2.24. ostIn – Constraints
In the Constraints group, the user supplies information about the various constraints that

are to be placed on a general constrained optimization problem. Any number and combination of

constraints are supported. As shown in Listing 61, the configuration syntax for constraints

consists of: constraint name, constraint type, conversion factor, and names of relevant response

(or tied-response) variables.

BeginGCOP

 CostFunction <cost_1>

 CostFunction <cost_2>

 .

 .

 CostFunction <cost_N>

 PenaltyFunction APM|EPM|MPM

EndGCOP

BeginGCOP

 CostFunction QTOTAL

 PenaltyFunction APM

EndGCOP

OSTRICH Documentation and User Guide

 65

Listing 61: Format (left) and Example (right) of the Constraints Group

Where BeginConstraints and EndConstraints are parsing tags that wrap a list of general

constraints made up of the following variables:

name: A unique name for the constraint.

type: The type of constraint – the only supported value is “general”.

CF: A cost factor that is multiplied by the amount of constraint violation. This converts a

constraint violation into a penalty cost.

lwr: The lower constraint limit (gmin). If the actual constraint value (g) is less than gmin, a

penalty of P = CF × (g − gmin) will be added to PTOTAL.

upr: The upper constraint limit (gmax). If the actual constraint value (g) is greater than gmax,

a penalty of P = CF × (gmax − g) will be added to PTOTAL.

resp: The name of the response variable (tied or non-tied) used to evaluate the constraint.

3. Running Ostrich
This chapter describes the execution of OSTRICH from the command line and parallel

computing environments. Four OSTRICH executables are available: a serial version which runs

on Windows, a multi-core parallel version that runs on Windows, a serial version which runs on

Linux, and a parallel version which runs on Linux-based parallel clusters. Regardless of which

version of OSTRICH is used, the following components must be created and stored in a working

directory before running OSTRICH:

ostIn.txt: This is the main configuration file which should be created using the syntax described

in Sections 2.3 through 2.24. Different groups should be filled out depending on the objective

function (GCOP or WSSE) – see Sections 3.1.1 and 3.1.2.

Template File(s): These are file(s) that OSTRICH uses to create a syntactically correct model

input file(s), so as to evaluate some set of model parameters (X).

(a) Create a template file by making a copy of the corresponding model input file.

BeginConstraints

 Name1 type1 CF1 lwr1 upr1 resp1

 Name2 type2 CF2 lwr2 upr2 resp2

 .

 .

 NameN typeN CFN lwrN uprN respN

EndConstraints

BeginConstraints

 MaxC general 1E6 0.00 1E-6 Cexit

 MinQ general 100 1.00 1E99 Qtot

EndConstraints

OSTRICH Documentation and User Guide

 66

(b) Edit the template file by replacing parameter values with the corresponding parameter

names.

(c) Check that template file has been listed in the FilePairs section of ostIn.txt.

(d) Check that parameter names in Params section of ostIn.txt are consistent with those

used in template file.

(e) [optional] If including a ParameterCorrections group, prepare and include

appropriate template files for parameter corrections (see Section 2.13)

(f) [optional] If including a ParameterCorrections group, check that parameter names

listed in the Corrections sub-group are consistent with the Params section as well as the

template files for parameter corrections.

Extra Model Input Files: Any model input files not required by OSTRICH (i.e. there is no

corresponding template file), but needed by the model.

3.1.1. Using Weighted Sum of Squared Errors (WSSE) Calibration
Several groups and variables of the ostIn.txt input file should be filled out if calibration is

desired. These include the ObjectiveFunction (set to WSSE), ProgramType (select desired

search algorithm), ModelExecutable (specify executable or batch/script file), FilePairs (Section

2.4), Parameters (Sections 2.7 to 2.10), Observations (Section 2.14), and Math and Stats

(Section 2.21).

3.1.2. Using the General Constrained Optimization Platform (GCOP)
Several groups and variables of the ostIn.txt input file should be filled to use the general

constrained optimization platform. These include the ObjectiveFunction (set to GCOP),

ProgramType (select desired search algorithm), ModelExecutable (specify executable or

batch/script file), FilePairs (Section 2.4), Parameters (Sections 2.7 to 2.10), Response

Variables (Section 2.15 and 2.16), GCOP (Section 2.23), and Constraints (Section 2.24).

3.2. Serial (Single Processor) Execution
Once all files have been created and placed in the working directory, serial execution of

OSTRICH is straightforward: open a command line prompt, change directory (cd) to the working

directory, and run OSTRICH by typing:

/<path>/Ostrich (if using Linux)

or

<path>\Ostrich.exe (if using Windows),

OSTRICH Documentation and User Guide

 67

Where <path> is the path to the location of the OSTRICH executable (e.g. “C:\Program

Files\Ostrich” or /home/usr/bin). When run in serial, an optimization run record is printed for

each iteration of the chosen algorithm.

3.3. Multi-core Parallel Execution in Windows
Prior to running OSTRICH in parallel, the ostIn.txt file must be adjusted to include

appropriate ExtraFiles (Section 2.5), ExtraDirs (Section 2.6), and ModelSubdir (Section 2.3)

entries as needed for your project.

OSTRICH can be launched in parallel on a single Windows machine using Microsoft’s

MS-MPI implementation. Note that MS-MPI must be installed before OSTRICH can be run in

parallel on a Windows machine. Consistent with other MPI implementations, the Windows-

based parallel version of OSTRICH is launched using a program named mpiexec. For example,

to run OSTRICH in parallel on an 8-core Windows desktop you would type the following from a

DOS command line (or in a batch file):

mpiexec -n 8 OstrichMPI.exe

3.4. Distributed or Multi-core Parallel Execution in Linux
Prior to running OSTRICH in parallel, the ostIn.txt file must be adjusted to include

appropriate ExtraFiles (Section 2.5), ExtraDirs (Section 2.6), and ModelSubdir (Section 2.3)

entries as needed for your project.

To run OSTRICH in parallel on a Linux machine or Linux-based cluster of machines, the

Linux environment must provide MPI (Message Passing Interface) libraries. Any MPI

implementation will suffice and pre-compiled RedHat/CentOS OSTRICH binaries compatible

with various versions of OpenMPI and Intel-MPI are provided with the OSTRICH distribution.

For systems not supported by the pre-compiled binaries it is necessary to re-compile OSTRICH

source so that it can link with a supported MPI implementation. Please contact L. Shawn Matott

via e-mail (lsmatott@buffalo.edu) to obtain the source code.

Currently supported parallel algorithms implemented in OSTRICH are listed in Table 1.

While any of the other algorithms can be successfully run in a parallel environment, doing so

will not result in any performance improvement. Launching an MPI program requires the use of

a compatible launcher, such that one cannot simply invoke the OSTRICH binary and expect

parallel calculations (i.e. running /<path>/OstrichMPI won’t work). Rather, a typical command

line for launching OSTRICH in parallel on a Linux machine or cluster is given below:

mpirun –n 12 /home/user/bin/OstrichMPI

Where “mpirun” is a launcher provided with many implementations of MPI – other common

launchers include “mpiexec” and “mpiexec.hydra”. On clusters managed using SLURM

(Simple Linux Utility for Resource Management) an alternative launcher named “srun” may

also be used. With respect to “mpirun”, the “-n 12” argument requests OSTRICH to be run on

12 processors. A “-hostfile” and/or “-rankfile” argument may also be required if running

mailto:lsmatott@buffalo.edu

OSTRICH Documentation and User Guide

 68

OSTRICH across multiple nodes is desired. Users should consult the documentation and man

pages of a given launcher for details on using these and other command-line arguments.

3.5. Aborting an Ostrich Run
An OSTRICH run can be aborted by creating a file named OstQuit.txt and placing it in

the working directory where the corresponding ostIn.txt file is located. OSTRICH will detect the

presence of the OstQuit.txt file during the next iteration of search and will exit gracefully.

3.6. Restarting an Ostrich Run
Some OSTRICH search algorithms can be restarted from previous runs of a potentially

different algorithm. These algorithms are indicated by the shaded entries in the “Warm Start?”

column of Table 1. Users should include a line containing “OstrichWarmStart yes” in the

ostIn.txt input file to activate an OSTRICH restart. OSTRICH will then read in the contents of

previous output files (see Section 4) to configure the restart state of the selected search

algorithm.

4. Ostrich Output Files
Upon completion, OSTRICH will have generated various output files. The name of each file

will contain the id of the corresponding processor N, where N=0 is the supervisor/master

processor responsible for gathering and reporting the majority of the output. Output files

generated by subordinate processors are generally only useful for troubleshooting.

 OstOutputN.txt: The main output file, it contains an optimization (or regression) record

along with statistical output (if applicable).

 OstErrorsN.txt: Any errors or warnings encountered by processor N are stored in this file.

 OstModelN.txt: A sequential record of every model run evaluated by processor N is stored

in this file.

 OstExeOut.txt: The standard output and standard error of Model runs are redirected to this

file. For a given processor, only the output from the most recent evaluation is retained.

 OstStatusN.txt: This file is periodically updated with the current progress (i.e. percent

complete and number of model evaluations) of the selected search algorithm.

 OstGcopOut: This file keeps track of the cost and constraint information for each model

evaluation when the General-purpose Constrained Optimization Platform (GCOP) is used.

 OstNonDomSolutions: When a multi-objective search is performed, this file is periodically

updated with the current list of non-dominated solutions that have been discovered by the

selected search algorithm.

The following sub-sections describe selected OSTRICH output files in more detail.

4.1. OstOutput – Main Output File

OSTRICH Documentation and User Guide

 69

The main output file always contains the following elements (i) a GNU Public License

disclaimer; (ii) a summary of the basic configuration variables; (iii) an OSTRICH run record

detailing each iteration of the optimization algorithm; and (iv) the resulting optimal parameter

set(s) and objective function value. The run record contains the parameter and objective function

values at each iteration along with an algorithm-dependent value that indicates progress of the

algorithm toward convergence. For most algorithms, the parameter and objective function values

for the current best solution are reported.

4.2. OstOutput – Statistical Output
Various statistical measures may be reported if calibration using the WSSE objective

function is being performed. See Table 2 for a summary of the supported measures. The statistics

that are reported will depend on whether or not they were selected in the input file (see the “Math

and Stats” group described in Section 2.21). The following sub-sections describe the output of

these statistics.

4.2.1. Observation Residuals
Observations residuals are reported automatically at the end of every WSSE calibration.

Also included in the observation residual output is the correlation between measured and

simulated observations (Ry).

4.2.2. Error Variance and Standard Error of the Regression
Including the StdDev option in the MathAndStats group will cause the error variance (s2)

and standard error of the regression (s) to be reported.

4.2.3. Parameter Variance-Covariance and Correlation
Including StdErr in the MathAndStats group will cause OSTRICH to output the

parameter variance-covariance matrix along with the standard error of each parameter.

Furthermore, including CorrCoeff in the MathAndStats group will cause OSTRICH to output

the parameter correlation matrix.

4.2.4. Confidence Intervals
Including Confidence in the MathAndStats groups triggers the reporting of linear

confidence intervals (CI) for each parameter. OSTRICH will use the value of the CI_PCT

variable as the corresponding confidence level (e.g. CI_PCT = 0.95 selects a 95% confidence

interval).

4.2.5. Model Linearity
Including either Beale or Linssen in the MathAndStats group will trigger reporting of the

corresponding non-linearity measures and linearity thresholds.

4.2.6. Normality of Residuals

OSTRICH Documentation and User Guide

 70

Inclusion of the NormPlot variable will cause OSTRICH to report a list of normalized

residuals and the corresponding normal probability correlation coefficient (R2
N).

4.2.7. Influential Observations
When either the CooksD or DFBETAS variable (or both) is set, OSTRICH will generate

and output the corresponding measures of observation influence, along with an assessment of

which observations are influential, based on influence thresholds suggested in the literature.

4.2.8. Parameter Sensitivities
Including the Sensitivity variable in the MathAndStats group causes OSTRICH to report

parameter sensitivity measures. These are measures of local parameter sensitivity and are

centered on the optimal parameter set.

4.2.9. Matrices
OSTRICH can be configured to output matrices used for various statistical calculations

by including the Matrices variable in the MathAndStats group.

4.3. OstError – OSTRICH Error and Warning Messages
During execution, OSTRICH logs errors and warnings to the file ostErrorsN.txt, where N

corresponds to the processor number. Some errors are severe and will cause OSTRICH to abort

while others serve as warnings that the results may not be optimal even though OSTRICH is able

to proceed. Error codes and brief descriptions are given in Table 3.

Table 3: OSTRICH Error Codes
Error Message Description

NO ERROR No errors were reported.

BAD ARGUMENTS A variable in the ostIn.txt file was assigned an invalid value.

FILE I/O ERROR A file could not be opened for reading or writing.

MODEL EXECUTION ERROR The model executable reported an error.

ARRAY OUT OF BOUNDS An array index got assigned a value outside the bounds of the array.

PARAMETER MISMATCH The search engine lost track of the number of parameters.

SINGULAR MATRIX Matrix inversion failed because of a singular matrix.

GRID SIZE IS TOO LARGE The exhaustive search grid is too large.

INITIAL SA TEMPERATURE There was a problem with the final simulated annealing temperature.

PARAMETER BOUNDS The upper or lower bound of a parameter value was exceeded.

COULDN'T BOUND

MINIMUM
A line search failed to bound the minimum.

UNKNOWN BOUND

CONDITION
A line search lost track of its state.

COULDN'T PARSE INPUT Failed to parse a line of input in the ostIn.txt file.

MALLOC/NEW FAILED Dynamic memory allocation failed.

JACOBIAN ERROR
Insensitivity of parameters or simulated observations while computing

the Jacobian matrix.

OSTRICH Documentation and User Guide

 71

USER ABORT User requested the program abort via OstQuit.txt file.

BINARY CODED GA The range of a parameter can’t be encoded into a 32-bit string.

OBSERVATION WEIGHTS An observation weight less than or equal to zero was detected.

INSENSITIVE PARAMETER A parameter had no influence on any simulated observation.

INSENSITIVE OBSERVATION A simulated observation was insensitive to changes in parameters.

SUPERMUSE A SuperMUSE operation failed or timed out.

OVERFLOW (DIV-BY-ZERO?) A computed value is larger than can be represented by the system.

NULL POINTER A subroutine returned NULL unexpectedly.

ALGORITHM STALLED The selected algorithm appears to have stalled.

FILE CLEANUP This is message alerts users to the deletion of temporary files.

NON-UNIQUE PARAMETER

NAME

A parameter or tied parameter was assigned a non-unique name or a

name that is a sub-string of the name of another parameter.

FIXED FORMAT

PARAMETERS
A fixed format specification contains bad values.

DEGREES OF FREEDOM A statistic could not be calculated due to too few degrees of freedom.

4.4. OstExeOut – Redirected Model Output
OSTRICH redirects the standard error and standard output of each model run to a file

named ’OstExeOut.txt’. The output of each new model run will overwrite the output of the

previous model run so that OstExeOut.txt always contains the standard error and standard output

of the most recent model run.

4.5. OstModel – Model Run Record
OSTRICH maintains a file named ’OstModelN.txt’, where N is the processor number,

containing the parameter set and objective function of each model run. This list of model runs is

numbered in increasing sequential order, with the highest value corresponding to the most recent

model run.

5. Examples
The examples below demonstrate various, but not all, aspects of OSTRICH. Required input

files and model executables are provided with the OSTRICH download in directories named

“Demo1”, “Demo2”, and so on. For some of the examples, users may need to edit batch files

(e.g. mpirun.bat or OSTRICH.bat) to adjust the path for OSTRICH.exe to reflect the location of

their OSTRICH installation.

5.1. Demo #1 – Calibrating SPLIT Groundwater Flow Model
This example demonstrates groundwater model calibration (i.e. minimization of the

WSSE objective function) using the GML algorithm. The groundwater model is known as SPLIT

and is an implementation of the high-order analytic element approach to groundwater modeling.

See www.groundwater.buffalo.edu for links to download SPLIT executables, examples, and

http://www.groundwater.buffalo.edu/

OSTRICH Documentation and User Guide

 72

documentation. The goal of the calibration is to estimate three hydraulic conductivity

parameters: the background hydraulic conductivity (Kback), and two circular zones of

inhomogeneity (K1 and K2). Running the example using OSTRICH.bat will launch the

Levenberg-Marquardt (GML, see Section 2.18.3) algorithm in serial (i.e. on a single processor).

Running the example using mpirun.bat will launch the GML algorithm in parallel.

5.2. Demo #2 – Pump-and-Treat Optimization
This example demonstrates pump-and-treat optimization using the DDS algorithm. The

objective of the pump-and-treat optimization is to determine the optimal location and extraction

rates of a field of wells. The wells must prevent further migration of two plumes of contaminated

groundwater. The cost function to be minimized is the total extraction rate of the well field and

the Bluebird groundwater model is used to evaluate the containment performance constraint. See

www.civil.waterloo.ca/jrcraig for links to download Bluebird and the accompanying VisualAEM

graphical interface. Running the example using OSTRICH.bat will launch DDS in serial (i.e. on

a single processor, see Section 2.18.17). Running the example using mpirun.bat will launch DDS

in parallel (see Section 2.18.18).

5.3. Demo #3 – Optimizing a BIGFOOT Benchmark
This example demonstrates the PSO algorithm to solve a benchmark problem that is part

of the BIGFOOT (Benchmarking Interface for Global Function Optimizers and Optimization

Toolkits) toolkit. The benchmark problem is known as DCS2 (Deflected Corrugated Spring with

2 Weights) and involves determining the resting positions of a pair of weights that are anchored

to a series of connected springs. Running the example using OSTRICH.bat will launch the

particle swarm optimization (PSO, see Section 2.18.9) algorithm in serial (i.e. on a single

processor). Running the example using mpirun.bat will launch the PSO algorithm in parallel.

5.4. Demo #4 – Calibrating a TUSWAMP Watershed Model
This example demonstrates the use of GCOP to calibrate rainfall-runoff behavior in a

watershed that is modeled using TUSWAMP (Tufts University Simple Watershed Modeling

Program) – an implementation of the watershed model described by Vogel et al. (2005). The

example also illustrates the “PreserveBestModel” feature – a batch file named “SaveBest.bat”

will be run each time a new optimal parameter set is discovered. This batch script copies various

model input and output files to a “safe” location that will not be overwritten by OSTRICH.

Running the example using OSTRICH.bat will launch the DDS algorithm in serial (i.e. on a

single processor, see Section 2.18.17). Running the example using mpirun.bat will launch DDS

in parallel (see Section 2.18.18).

http://www.civil.waterloo.ca/jrcraig

OSTRICH Documentation and User Guide

 73

5.5. Demo #5 – Simple Pre-Emption Demonstration
This is a simple example to demonstrate the use of pre-emption in OSTRICH. The

optimization problem is given below and the model input file and underlying model are

configured to utilize pre-emption:

MINIMIZE
F(x,y) = (x-5)2 + (y-8)2

SUBJECT TO

x > 0

y < 10

The objective function is computed in a series of 1000 steps with a delay of 100

milliseconds in between steps. This makes the model computationally expensive (100 seconds

per run) so that the benefits of pre-emption can be observed. Running the example using

OSTRICH.bat will launch the particle swarm optimization (PSO, see Section 2.18.9) algorithm

in serial (i.e. on a single processor). Running the example using mpirun.bat will launch the PSO

algorithm in parallel.

5.6. Demo #6 – Cantilever Beam Multi-Objective Optimization
This is a simple example to demonstrate the PADDS and parallel PADDS algorithms for

multi-objective optimization. It uses the cantilever beam example from Deb's textbook (Deb,

2001). Running the example using OSTRICH.bat will launch the PADDS (see Section 2.20.1)

algorithm in serial (i.e. on a single processor). Running the example using mpirun.bat will launch

the parallel PADDS algorithm (ParaPADDS, see Section 2.20.2).

5.7. Demo #7 – Multi-Criteria MODFLOW Calibration
This example demonstrates the PADDS and parallel PADDS algorithms for multi-criteria

calibration of a MODFLOW groundwater model. The aquifer is for a hypothetical “Lodem”

watershed and is from a geology course taught by Prof. Chris Lowry at the University at Buffalo.

Running the example using OSTRICH.bat will launch the PADDS (see Section 2.20.1)

algorithm in serial (i.e. on a single processor). Running the example using mpirun.bat will launch

the parallel PADDS algorithm (ParaPADDS, see Section 2.20.2).

5.8. Demo #8 – Warm Start Example
This example demonstrates the “Warm Start” features of OSTRICH – where an OSTRICH

algorithm can be resumed from where a previous optimization left off. The optimization task is

to identify the least-cost design of a sorptive landfill liner (Matott et al., 2012). Model

evaluations from a previous optimization are stored in the “OstModelN.txt” files, where N is the

processor id. When warm starts are enabled these files are pre-processed by OSTRICH prior to

launching the selected search algorithm.

OSTRICH Documentation and User Guide

 74

5.9. Demo #9 – Uncertainty-based Calibration Example
This example demonstrates the DDS-AU uncertainty-based calibration algorithm. The

optimization task is to identify behavioral configurations of a groundwater flow model. The

search for behavioral solutions is performed using independent DDS trials..

6. References
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on

Automatic Control 19, 716-723.

Asadzadeh, M.,Tolson, B. A. Year. "A new multi-objective algorithm, Pareto archived DDS."

Paper presented at the Proceedings of the 11th Annual Conference Companion on Genetic and

Evolutionary Computation Conference: Late Breaking Papers, 2009.

Asadzadeh, M.,Tolson, B. 2013. Pareto archived dynamically dimensioned search with

hypervolume-based selection for multi-objective optimization. Engineering Optimization 45,

1489-1509.

Beale, E. M. 1968. Confidence Regions in Non-linear Estimation. Journal of the Royal Statistical

Society, Series B 22, 41-88.

Beielstein, T., Parsopoulos, K. E.,Vrahatis, M. N. 2002. Tuning PSO parameters through

sensitivity analysis. Technical Report, Reihe Computational Intelligence CI 124\/02.

Collaborative Research Center, Department of Computer Science, University of Dortmund

(available online at http://ls11-www.cs.uni-dortmund.de/people/tom/).

Belsley, D., Kuh, E.,Welsch, R. 1980. Regression Diagnostics: Identifying Influential Data and

Sources of Colinearity. John Wiley & Sons, New York (NY).

Belsley, D. A., Kuh, E.,Welsch, R. E. 2005. Regression diagnostics: Identifying influential data

and sources of collinearity. John Wiley & Sons.

Ben-Ameur, W. 2004. Computing the Initial Temperature of Simulated Annealing.

Computational Optimization and Applications 29, 369-385.

Bertsekas, D. P. 2014. Constrained optimization and Lagrange multiplier methods. Academic

press.

http://ls11-www.cs.uni-dortmund.de/people/tom/)

OSTRICH Documentation and User Guide

 75

Beven, K.,Binley, A. 1992. The future of distributed models: model calibration and uncertainty

prediction. Hydrological Processes 6, 279-298.

Carroll, R. J.,Ruppert, D. 1988. Transformation and weighting in regression. CRC Press.

Chan Hilton, A. B.,Culver, T. B. 2000. Constraint handling for genetic algorithms in optimal

remediation design. Journal of Water Resources Planning and Management 126, 128-137.

Chatterjee, S.,Hadi, A. S. 1986. Influential observations, high leverage points, and outliers in

linear regression. Statistical Science 379-393.

Chen, Y. 2005. Another look at rejection sampling through importance sampling. Statistics &

Probability Letters 72, 277-283.

Cook, R.,Weisberg, S. 1982. Residuals and Influence in Regression. Chapman and Hall, New

York (NY).

Corliss, G. 1977. Which root does the bisection algorithm find? Siam Review 19, 325-327.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,

Chichester, UK.

Dougherty, D. E.,Marryott, R. A. 1991. Optimal groundwater management: 1. Simulated

annealing. Water Resources Research 27, 2493-2508.

Draper, N. R., Smith, H.,Pownell, E. 1966. Applied regression analysis. Wiley New York.

Duan, Q., Sorooshian, S.,Gupta, V. K. 1992. Effective and efficient global optimization for

conceptual rainfall-runoff models. Water Resources Research 28, 1015– 1031.

Duan, Q., Gupta, V. K.,Sorooshian, S. 1993. A shuffled complex evolution approach for

effective and efficient global minimization. Journal of Optimization Theory and Applications 76,

501– 521.

OSTRICH Documentation and User Guide

 76

Erol, O. K.,Eksin, I. 2006. A new optimization method: Big Bang-Big Crunch. Advances in

Engineering Software 37, 106-111.

Filliben, J. J. 1975. The Probability Plot Correlation Coefficient Test for Normality.

Technometrics 17, 111-117.

Fletcher, R.,Reeves, C. M. 1964. Function minimization by conjugate gradients. The computer

journal 7, 149-154.

Hannan, E.,Quinn, B. 1979. The determination of the order of an autoregression. Journal of the

Royal Statistical Society, Series B 41, 190–195.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57, 97-109.

Hill, M. C. 1998. Methods and guidelines for effective model calibration (Report Number USGS

WRI 98-4005). USGS.

Hill, M. C.,Tiedeman, C. R. 2007. Effective Groundwater Model Calibration: With Analysis of

Data, Sensitivities, Predictions, and Uncertainty. John Wiley & Sons, Inc., Hoboken, NJ.

Hurvich, C. M.,Tsai, C. L. 1993. A corrected Akaike information criterion for vector

autoregressive model selection. Journal of time series analysis 14, 271-279.

Hurvich, C. M.,Tsai, C.-L. 1994. Autoregressive model selection in small samples using a bias-

corrected version of AIC. Kluwer Academic Publishers, Dordrecht, Netherlands.

Katare, S., Kalos, A.,West, D. Year. "A hybrid swarm optimizer for efficient parameter

estimation." Paper presented at the Proceedings of the IEEE Congress on Evolutionary

Computation (CEC2004), vol. 1, 2004.

Kennedy, J.,Eberhart, R. C. 1995. Particle swarm optimization, Piscataway, NJ.

Kennedy, J., Eberhardt, R. C.,Shi, Y. 2001. Swarm Intelligence. Morgan Kaufmann, San

Francisco(CA).

OSTRICH Documentation and User Guide

 77

Kirkpatrick, S., Gelatt, C. D., Jr.,Vecchi, M. P. 1983. Optimization by Simulated Annealing.

Science 220, 671-680.

Kuczera, G.,Parent, E. 1998. Monte Carlo assessment of parameter uncertainty in conceptual

catchment models: the Metropolis algorithm. Journal of Hydrology 211, 69-85.

Levenberg, K. 1944. A Method for the Solution of Certain Problems in Least Squares. Quarterly

of Applied Mathematics 2, 164-168.

Linssen, H. N. 1975. Nonlinearity measures: A case study. Statistica Neerlandica 29, 93-99.

Looney, S. W.,Gulledge Jr, T. R. 1985. Use of the correlation coefficient with normal probability

plots. The American Statistician 39, 75-79.

Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters.

SIAM Journal on Applied Mathematics 11, 431-441.

Marryott, R. A., Dougherty, D. E.,Stollar, R. L. 1993. Optimal groundwater management: 2.

Application of simulated annealing to a field‐scale contamination site. Water Resources

Research 29, 847-860.

Matott, L. S., Leung, K.,Sim, J. 2011. Application of MATLAB and Python optimizers to two

case studies involving groundwater flow and contaminant transport modeling. Computers &

Geosciences 37, 1894-1899.

Matott, L. S., Tolson, B. A.,Asadzadeh, M. 2012. A benchmarking framework for simulation-

based optimization of environmental models. Environmental Modelling & Software 35, 19-30.

Matott, L. S., Hymiak, B., Reslink, C., Baxter, C.,Aziz, S. 2013. Telescoping strategies for

improved parameter estimation of environmental simulation models. Computers & Geosciences

60, 156-167.

McKenzie, E. 1984. The autorun function: A non-parametric autocorrelation function. Journal of

Hydrology 67, 45-53.

OSTRICH Documentation and User Guide

 78

Powell, M. J. D. 1977. Restart Procedures for the Conjugate Gradient Method. Mathematical

Programming 12, 241-254.

Razavi, S., Tolson, B. A., Matott, L. S., Thomson, N. R., MacLean, A.,Seglenieks, F. R. 2010.

Reducing the computational cost of automatic calibration through model preemption. Water

Resources Research 46, n/a-n/a.

Sakia, R. 1992. The Box-Cox transformation technique: a review. The statistician 169-178.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6, 461–464.

Seber, G. A.,Wild, C. J. 1989. Nonlinear Regression. John Wiley and Sons, New York (NY).

Skahill, B. E.,Doherty, J. 2006. Efficient accommodation of local minima in watershed model

calibration. Journal of Hydrology 329, 122-139.

Stedinger, J. R., Vogel, R. M., Lee, S. U.,Batchelder, R. 2008. Appraisal of the generalized

likelihood uncertainty estimation (GLUE) method. Water Resources Research 44,

Straume, M.,Johnson, M. L. 2010. Analysis of residuals: criteria for determining goodness-of-fit.

Essential Numerical Computer Methods 37.

Tolson, B. A.,Shoemaker, C. A. 2007. Dynamically dimensioned search algorithm for

computationally efficient watershed model calibration. Water Resources Research 43(1):

W01413, doi:10.1029/2005WR004723,

Tolson, B. A.,Shoemaker, C. A. 2008. Efficient prediction uncertainty approximation in the

calibration of environmental simulation models. Water Resources Research 44, W04411.

Tolson, B. A., Asadzadeh, M., Maier, H. R.,Zecchin, A. 2009. Hybrid discrete dynamically

dimensioned search (HD‐DDS) algorithm for water distribution system design optimization.

Water Resources Research 45,

Tolson, B. A., Sharma, V.,Swayne, D. A. 2014. Parallel Implementations of the Dynamically

Dimensioned Search (DDS) Algorithm. ENVIRONMENTAL SOFTWARE SYSTEMS 573.

OSTRICH Documentation and User Guide

 79

Vanderbilt, D.,Louie, S. G. 1984. A Monte carlo simulated annealing approach to optimization

over continuous variables. Journal of Computational Physics 56, 259-271.

Venter, G.,Sobieszczanski-Sobieski, J. 2006. Parallel particle swarm optimization algorithm

accelerated by asynchronous evaluations. Journal of Aerospace Computing, Information, and

Communication 3, 123-137.

Vogel, R. M., Chapra, S. C.,Limbrunner, J. F. 2005. A Parsimonious Watershed Model. In

Watershed Models (Frevert, D. K., and Singh, V. P., eds.), pp. 549-567. CRC Press, Boca Raton,

FL.

Yager, R. M. 2004. Effects of Model Sensitivity and Nonlinearity on Nonlinear Regression of

Ground Water Flow. Ground Water 42, 390-400.

Yoon, J.-H.,Shoemaker, C. A. 1999. Comparison of optimization methods for ground-water

bioremediation. Journal of Water Resources Planning and Management

Yoon, J.-H.,Shoemaker, C. A. 2001. Improved real-coded GA for groundwater bioremediation.

Journal of Computing in Civil Engineering 15, 224-231.

