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Worked Cantilever Beam and Shear Flow Example 
(Designed to accompany the Shear in Beams model) 

 

Problem Statement:  

A cantilever beam, as shown below, is 32” long and it carries a downwards point load of 412 lb 
on its unsupported end. (The dimensions and force were chosen to produce simple calculations, 
and the units can be changed to centimetres and Newtons (N) or kN without changing the 
calculations.) 

a) Determine the shear and moment in the beam as a function of position.  

b) Calculate the bending stress at x=1” and x=2” (as measured from the end where the 
point load acts).  

c) Calculate the shear flow acting on the beam cross section at x=1”. 
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Solution: 

a) Determine the shear and moment in the beam as a function of position.  

 
Below, is a free-body diagram of the left segment of the beam, cut at position x. 

 
It allows us to calculate that 

�𝐹𝐹𝑦𝑦 = 0 =  −412− 𝑉𝑉 ⇒  𝑉𝑉 = −412𝑙𝑙𝑙𝑙     

and 

�𝑀𝑀𝐴𝐴 = 0 = 𝑀𝑀 + 412 𝑥𝑥 ⇒  𝑀𝑀 = −412𝑥𝑥 
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b) Calculate the bending stress at x=1” and x=2” (as measured from the end where the point 
load acts).  

 

For this beam, cross section, 

 
 

 

The bending stress at position x is equal to 

𝜎𝜎 =
𝑀𝑀𝑀𝑀
𝐼𝐼

=  
(412𝑥𝑥)  (𝑦𝑦)

68.67
= 6𝑥𝑥𝑥𝑥 

 

and the resulting stress distributions at x=1 and x=2 are shown in the figure below. 
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c) Calculate the shear flow acting on the beam cross section at x=1”. 

The shear flow in a beam is given by the formula  
I

VQq =  

Analysis of the Flanges 

We cut through the thin dimension of the 
flange a distance “a” from the tip of the flange. 
The rectangular area that is shaded in the 
figure below becomes separated from the rest 
of the beam cross-section and is used to 
calculate Qf. 

 

 
 

 

 

 

Analysis of the Web 

We cut through the thin dimension of the web 
a distance “d” from the neutral axis of the 
beam cross-section, and the T-shaped area 
that is shaded in the figure below becomes 
separated from the rest of the cross-section 
and is used to calculate Qw.  

The Q value for the flanges is
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and the shear flow (force per unit of cut 
length along the beam length) in the 
flanges is 
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The shear stress (force per unit of cut area) 
in the flanges is 
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where tf is the thickness of the flange. 

The Q value for the flanges is 
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and the shear flow (force per unit of cut 
length along the beam length) in the 
web is 
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The shear stress (force per unit of cut area) 
in the web is 
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where tw is the thickness of the web. 
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We can make a 
table of values 
showing the shear 
as a function of 
cutting plane 
position, “a”. 

 

 

We can make a 
table of values 
showing the shear 
as a function of 
cutting plane 
position, “d”.  

 

These values can then be plotted on a composite “shear flow diagram” which, by convention, is 
drawn as shown on the left below. 

 

 

        

 

 

 

 

 

 

 

 

 

We can also consider the axial imbalance in each of 14 square blocks that one might consider 
to make up the beam cross-section – as in the model in the Shear in Beams video. In the figure 
on the right above, the axial imbalance in each block is shown in the square representing that 
block, and the total shear at each of the interfaces between blocks is labelled with a number and 
arrow in the figure below. 

 

Notice how the discrete shear numbers in the figure on the right agree exactly with the shear 
values calculated at corresponding points by the formulas in the figure on the left. For example, 
the total shear at the root of the top right flange (a2 =2) has a value of 30 in both cases. Also, 
the shear in the web 1” above the neutral axis is 84 in both cases. 
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To figure out the direction of the shear flow, consider the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fiber at the top right of the beam experiences the bending stresses indicated by the red 
arrows. The tension on the back face of the fiber (x=1) is smaller than the tension on its front 
face (x=2), and so the rest of the beam must exert a shear force on that fiber in the backward 
direction, as indicated by the single-sided black shear arrow on the top of that fiber. At the same 
time, that fiber exerts a shear force on the second block from the top right corner that is in the 
opposite direction. Similar arguments can be made to determine the shear that acts elsewhere 
in the beam. 

The shear on the top flange of the cross-section must act so that when that surface is viewed 
from above, the shear arrows at corners that are at 90° to each other go head to head and tail to 
tail. Thus the shear on the cross section must point outwards on the top flanges, as indicated by 
the black arrows. By similar arguments when the web is viewed from the side, we find that the 
shear on it is upwards, as shown by the black shear arrows on it. Finally, the shear on the 
bottom flanges flows inwards.  

The curved green arrows show how the shear “Flows” over the cross-section. 
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The shear flow at the junction between the flanges and web is a bit more complex, and is not 
shown. It must be calculated using finite elements or some other advanced numerical method.  

 

As a point of interest, if we integrate the vertical shear from the center of the lower flange 
(y=-2.5) to the center of the upper one (y=2.5), we obtain a total vertical shear force of 
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which is in reasonable agreement with the expected value of 412 lb. 

 

Notice also, that the shear flow is the same for any cross-section along the length of the beam 
since the shear function V(x) is constant with respect to x. The values of the bending stresses 
would vary with x, but the differences in the bending stresses between any one section and 
another one that is 1” further toward the clamped end of the beam would be identical those that 
arise in this analysis. 


