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How the Beam Bending Spreadsheet Works 

 Introduction 

The spreadsheet described in this document was designed to parallel a Beam Bending Model in which 
thin rectangular beams are supported by clamped, simply-supported and free boundary conditions and 
loaded by weights that essentially produce point loads (Fig. 1.1).  

 

FIGURE 1.1   The beam bending model that inspired this spreadsheet 

The model is equipped with dial gauges so that the deflection of arbitrary points, though usually points 
beneath the applied loads, can be measured. This information can be used by the spreadsheet to 
calculate the load that had to be applied to the beam to produce the observed deflections, something 
the students enjoy seeing. Unfortunately, the self-weight of most of the physical beams is of the same 
order as that of the applied weights, and it contributes meaningfully to the total deflection. If the dial 
gauge readings before any external loads are applied are subtracted from the corresponding readings 
after all of the applied loads are in place, the self-weight-induced beam deflection can be effectively 
removed and the need to position the dial gauges at specific vertical locations, which would otherwise 
exist, can be eliminated. 

 Operation 

The spreadsheet can be used in two different ways. If the external loads on the beam are specified, the 
spreadsheet will calculate the resulting deflections. If, instead, the beam deflections are specified in the 
spreadsheet (presumably having been measured from the physical apparatus), the spreadsheet will 
calculate the loads required to produce those deflections (and these calculated loads should essentially 
match those actually acting on the physical apparatus). It is not necessary to choose which mode is 
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desired, as the calculation engine automatically takes proper account of the nature of the information 
provided and uses that information to structure the governing equations (as is done in a finite element 
or structural analysis program). 

Note also, that all measurements are in metric units, except that any specified deflections are assumed 
to be in thousands of an inch (the units of the dial gauges we were able to purchase). 

 

 Mathematical Representation 

For simplicity, the mathematical representation of the beam was assumed to consist of three segments 
that are joined together at four arbitrarily-positioned but sequential junctions A, B, C and D located, 
respectively, at positions x1, x2, x3 and x4 (Fig. 2.1). All boundary conditions and point loads are 
assumed to act at these points, and any deflection measurements are made at them, as well.  

 

FIGURE 2.1   Mathematical representation of the beam 

Because the segments between the junctions carry no load, the transverse load function q(x) along 
each segment is  

 q(x) = 0  (1) 

and the solution to the classical beam bending equation 

 d4w
dx4

=
q(x)

EI
  

(2) 

is a cubic deflection function w(x) that can be written as 

 w(x) = a + bx + cx2 + dx3. (3) 
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As suggested by Fig. 2.1, each of the three beam segments is described by its own cubic and its 
coefficients are distinguished by subscripts. For reference, a full set of beam plots is given in Fig. 2.4, 
and the deflection illustrated in the first part of that figure is described by three cubic displacement 
polynomials – one from A to B, another from B to C, and a final one from C to D. 

The plots assume the independent variable x to be positive to the right, and all deflections illustrated 
herein are assumed to be positive upwards (the usual direction of the y axis). The Properties tab of the 
spreadsheet, however, allows the user to independently select the positive sense of the deflection, 
slope, curvature, moment, shear and load (Fig. 2.2), and those preferences are applied just before the 
Plotting Data table is populated, but not in the Solver step. For the sake of clarity, the default values are 
used exclusively in the descriptions given here. All three deflection polynomials have a common origin 
for their independent variable x, as indicated in Fig. 2.1. 

 

 

 

FIGURE 2.2   Positive sign table on spreadsheet 

 

TABLE 2.1   Sign conventions 
Quantity      Default positive sense Alternate positive sense 
Deflection  Upwards  Downwards 
Slope   Uphill   Downhill 
Curvature   Sagging  Hogging 
Moment  Sagging    Hogging 
Shear   Down on the right   Up on the right 
Load       Upwards         Downwards 

 

Figure 2.3 illustrates how a section of a beam that contains no external loading can acquire a cubic 
shape, confirming the use of cubic polynomials to describe the deflected shape of beam segments that 
lie between any of the various loads or supports.  
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FIGURE 2.3   A non-loaded section of a ruler can exhibit a cubic shape 

Once the deflection is described mathematically, secondary quantities such as slope, curvature, 
moment and shear are easy to derive. For example, the slope θ(x) along any particular section will be 
given by the expression 

  θ(x) = dw
dx  =  b +  2cx +  3dx2. (4) 

By default, an upward slope is considered positive.  

The curvature Ƙ(x) of the beam along that segment will be related to the second derivative of the 
deflected shape, and if curvatures that produce sagging (make the beam have a local smiling shape as 
opposed to a frowning one), then 

 Ƙ(x) = d2w
dx2 = 2c +  6dx.  

(5) 

The moment M(x) in a beam, taken as positive when it causes the beam to smile, is related to the 
curvature by  

 M(x)  =  EI Ƙ(x) (6) 

where I is the moment of inertia of the beam cross-section and E, the Young’s modulus of the material, 
describes its stiffness. Thus, we can write 

  M(x) =  EI Ƙ(x) =  EI d2w
dx2 =  EI (2c +  6dx).   

(7) 

A radio button pair in the Properties tab allows the user to choose whether curvature Ƙ(x) or moment 
M(x) is plotted.  

The shear V(x) in a beam, taken by default to be positive when it acts downward on a right end or cut 
face of the beam, is related to its moment by the relationship 
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  V(x) = dM
dx  (8) 

and so we can write that 

  V(x) =  EI d3w
dx3 =  EI(6d). 

(9) 

In general, beam loading is given by  

 q(x) =  EI d
4w
dx4

 , (10) 

a re-arranged version of Equation (2). However, direct application of this relationship to the deflection 
cubic gives  

 q(x) =  EI
d4w
dx4

=
dV
dx

= 0 (11) 

This result confirms that the transverse loading along each cubic segment must be zero, but it is not 
helpful for finding the values of the applied loads and reactions, both of which are considered to be 
applied within infinitesimal spaces between the polynomial segments (Fig. 2.1).  

To calculate derivatives that are useful for finding these point loads, we examine the shear graph in 
Fig. 2.4, where we note a step change at location x*. The shear value a small distance Δ to its left at 
x*- Δ is  

 V (x∗ − Δ)  = VL  (12) 

while the shear value just to its right is  

 V (x∗ + Δ)  = VR (13) 

Since it is true that 

 q(x) =
dV
dx

 (14) 

we can integrate both sides of this equation from x*-Δ to x*+Δ to obtain 

 ∫q(x)  = ∫ dV
dx

x∗+Δ
x∗−Δ  = VR  −  VL . (15) 

The integral of the load over the small interval from x*-Δ to x*+Δ is clearly the value of the 
concentrated reaction or external load P applied at x*. Based on Equation (15), we can state that the 
point load P in the neighborhood of x* can be derived from the shear plot through the simple 
relationship 

 P =  VR  −  VL. (16) 

The concentrated loads associated with the applied loads and reactions are drawn as impulses in the 
spreadsheet load plot (See Fig. 2.4).  
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FIGURE 2.4   Spreadsheet calculations for a representative beam 
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 Input 

The user inputs beam-specific information such as boundary conditions, applied loads and measured 
deflections using dropdown menus and boxes near the top of the Main tab of the spreadsheet. To 
begin this process, the drop-down menus associated with each of the four junction points A, B, C and D 
are used to specify the boundary condition, load or deflection measurement that occurs at each 
junction. The available options for each of the points are shown in Table 3.1. 

TABLE 3.1    Available boundary condition, loading and deflection measurement options                                 
for the Points A, B, C and D 

A B C D 
Specified Load Specified Load Specified Load Specified Load 
Measured Deflection Measured Deflection Measured Deflection Measured Deflection 
Simply Supported Simply Supported Simply Supported Simply Supported 
Free No Load No Load Free 
Clamped   Clamped 

Depending on the option chosen for any given junction, the 6 cells below its drop-down menu will be 
adjusted by the spreadsheet to allow any additional required information to be entered. 

 

FIGURE 3.1    Additional user-entered information for each boundary 
condition, load or deflection measurement option 

A Language tab along the bottom of the spreadsheet allows the titles on the spreadsheet to be 
customized by the user (Fig. 3.2), and a Properties tab allows the cross-sectional dimensions and 
material properties of beams in any conceptual models or matching experiments to be listed (Fig. 3.3). 
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FIGURE 3.2   A sample of the information on the language tab page 

 

FIGURE 3.3   Representative beam properties in the Background Information tab 

Key intermediate calculations are displayed in the Solver tab (Fig. 3.4), and they are useful for those 
who wish to understand the inner workings of the spreadsheet.  

 

FIGURE 3.4   The structure of the cells in the Solver tab 

English French Spanish 中文
Title Titre Título 标题

Beam Bending Spreadsheet Feuille de calcul du fléchissement des poutres Hoja de calculo para flexión de vigas 梁的形变工作表

Boundary Conditions Conditions limites Condiciones de Borde 限制条件

Clamped Encastrée Empotrada 固定端

Simply Supported Sur appuis simples Simplemente apoyada 支座

Free Libre Libre 活动端

No Load Aucune charge Sin carga 无特殊限制

Specified Load Charge spécifiée Con carga especificada 力

Measured Deflection Déplacement mesuré Medida de deflección 挠度

Plotting Traçage Graficar 插入

x Position Emplacement Posición 位置

w(x) Deflection Déplacement Deflección 挠度

θ(x) Slope Pente Pendiente 斜率

Ƙ(x) Curvature Courbure Curvatura 曲率

 М(x) Moment Moment fléchissant Momento 弯矩

 V(x) Shear Cisaillement Cortante 剪力

F(x) Load Charge Carga 力

Units Unités Unidades 单位

m Meters Mètres Metros 米

N Newtons Newtons Newtons 牛顿

Beam Properties Propriétés de la poutre Propiedades de Viga 性质

Beam Poutre Viga 梁

Material Matériau Material 材料

w Width [mm] Largeur [mm] Ancho 宽 [mm]
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 Construction of the Boundary Condition Equations 

5.1 Clamped Ends 

If point A is clamped, then the deflection and slope are zero there. The value of x at Point A is x1, and 
Polynomial 1 describes the segment of the beam that includes point A. Thus we write 

 w1(x1) = 0 (17) 

and 

 θ1(x1) = 0 (18) 

as shown in the corresponding cell of Table 4.1. See also, the deflection and slope curves in Fig. 2.4. 
Using the explicit deflection equation (3), we get 

 w1(x1)  =  a1  + b 1x1  +  c1x12  + d1x13  =  0 (19) 

and this restraint provides one equation, namely that 

 a1  +  b 1x1  + c1x12  +  d1x13  =  0 (20) 

In a similar way, the slope condition equation (4) requires that 

 θ1(x1)  =  b1  +  2c1x1  +  3d1x12  =  0 (21) 

which implies that  

 b1  +  2c1x1  +  3d1x12  =  0 (22) 

If, for illustrative purposes, x1=2 at the left end of the beam, these equations become 

 
1a1  +  2b1  +  4c1 +  8d1 =  0 

(23) 

and 

 1b1  +  4c1 +  12d1 =  0 (24) 

giving exactly the numbers in the first two rows of the two resulting conditions in the Solver tab of the 
spreadsheet. 

If the clamped boundary were at D instead, we would have (Table 4.1) that 

 w3(x4) =  a3 +  b3x4 +  c3x42 + d3x43 = 0 (25) 
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and 

 θ3(x4) =  b3 + 2c3x4 + 3d3x42 = 0. (26) 

which would give rise to the constraint equations 

 a3 +  b3x4 + c3x42 + d3x43 = 0 (27) 

and 

 b3 + 2c3x4 + 3d3x42 = 0 (28) 

The last two rows in the matrix shown in the Solver tab of the spreadsheet (Fig. 3.4) correspond to 
these equations for the case where x = x4. 

If the spreadsheet is used with the corresponding experimental apparatus, the clamed supports must 
turned so that the U-shaped cut-out faces away from the center of the beam, as illustrated in Fig. 4.1. 
Otherwise the innermost edge of the finite-width clamping zone will not correspond to the tick mark 
on the ruler. Clamped conditions are not allowed internal to the beam. 

 

 

FIGURE 4.1   A Clamped Boundary Condition 
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TABLE 4.1   Equations arising from boundary conditions and applied loads 

5.2 Simple Supports 

Simple supports provide vertical reactions, but carry no moment. If this kind of support occurs at the 
left end (at A), we have  

 w1(x1)  =  a1  + b 1x1  +  c1x12  + d1x13  =  0 (29) 

and 

 Ƙ(x1) =  2c1 + 6d1x1 = 0. (30) 

A simple support at the right end gives similar equations, as shown in Fig. 4.1. 

If a simple support occurs internally (at B, for example), then the zero deflection it enforces applies to 
both of the deflection polynomials (w1 and w2) that impinge on Point B, and we have that 

 w1(x2) =  0 (31) 

 w2(x2) =  0 (32) 

It is further required that the beam must not have a sharp bend at B, and so the slope of the 
polynomial describing the portion of it just to the left of B must match the slope of the polynomial 
describing the portion just to its right (Fig. 4.2). In other words, we must have that 

Boundary Condition 
Location A 

(x = x1) 
Location B 

(x = x2) 
Location C 

(x = x3) 
Location D 

(x = x4) 

Specified Load V1(x1) = −P  
Ƙ1(x1) = 0  

w1(x2)  =  w2(x2) 
θ1(x2) =  θ2(x2) 
Ƙ1 (x2) =  Ƙ2(x2) 

V1(x2)
=  V2(x2) + P 

w2(x3)  =  w3(x3) 
θ2(x2) =  θ3(x3) 
Ƙ2(x3) =  Ƙ3(x3) 

V2(x3)
=  V3(x3) + P 

V3(x4) = +P 
Ƙ3(x4) = 0 

Measured Deflection w1(x1) = d 
Ƙ1(x1) = 0 

w1(x2) = d 
w2(x2) = d 
θ1(x2) =  θ2(x2) 
Ƙ1 (x2) =  Ƙ2(x2) 

w2(x3) = d 
w3(x3) = d 
θ2(x3) =  θ3(x3) 
Ƙ2 (x3) =  Ƙ3(x3) 

w3(x4) = d 
Ƙ3(x4) = 0 

Simple support w1(x1) = 0 
Ƙ1(x1) = 0 

w1(x2) = 0 
w2(x2) = 0 
θ1(x2) =  θ2(x2) 
Ƙ1 (x2) =  Ƙ2(x2) 

w2(x3) = 0 
w3(x3) = 0 
θ2(x3) =  θ3(x3) 
Ƙ2(x3) =  Ƙ3(x3) 

w3(x4) = 0 
Ƙ3(x4) = 0 

Free Ƙ1(x1) = 0 
V1(x1) = 0 n/a n/a Ƙ3(x4) = 0 

V3(x4) = 0 

No Load  n/a 

w1(x2)  =  w2(x2) 
θ1(x2) =  θ2(x2) 
Ƙ1 (x2) =  Ƙ2(x2) 
V1(x2) =  V2(x2) 

w2(x3)  =  w3(x3) 
θ2(x2) =  θ3(x3) 
Ƙ2 (x3) =  Ƙ3(x3) 
V2(x3) =  V3(x3) 

n/a 

Clamped 𝑤𝑤1(x1) = 0 
θ1(x1) = 0 n/a n/a w3(x4) = 0 

θ3(x4) = 0 
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 θ1(x2) = θ2(x2) (33) 

Because a simple support introduces no moment where it acts, the moment in the beam just to the left 
of B must be equal to that just to its right (Fig. 2.4). Thus, we must have that 

 M1 (x2) =  M2(x2) (34) 

or, equivalently, that 

 Ƙ1 (x2) =  Ƙ2(x2) (35) 

The same constraint equations result regardless of whether they are derived from the moment or 
curvature equations. As shown here and in Table 4.1, this boundary condition gives rise to four 
constraint equations if it occurs internal to the beam,  

It turns out that every allowed choice of a boundary condition, load or deflection measurement (Table 
4.1) gives rise to two constraint equations when it occurs at the end of a beam (Points A or D) and four 
when it occurs internally (at B or C). 

 

FIGURE 4.2   Two Simply Supports 

5.3 Free Ends 

If an end of a beam is free, that is if it is unattached to a support and carries no applied loads or 
moments, one can show that the curvature (or moment) and shear at that end are zero (Table 4.1 and 
Fig. 2.4). For example, the boundary condition equations associated with a free end at A are 

 M(x1)  =  EI (2c1  +  6d1x1)  =  0  (36) 

and 
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 V1(x1)  =  EI (6d1)  =  0 , (37) 

which give rise to the constraint equations, 

 EI (2c1 +  6d1x1)  =  0  (38) 

and 

 EI (6d1)  =  0 . (39) 

Similar equations result for a free end at D.  

5.4 No Load  

The spreadsheet requires that 4 Points be identified by the user so that the solution matrices are 
properly populated. Sometimes fewer than 4 Points are meaningful, as in an end-loaded cantilever 
beam (Fig. 4.3). “No load” points are then added arbitrarily so that a total of 4 points can be defined 
(Fig. 4.4). The positioning of these “dummy points” does not affect any of the plots, but for the sake of 
matrix conditioning and solution accuracy, they should not be placed unnecessarily close to any of 
other points. 

 

FIGURE 4.3    A Cantilever Beam with an End Load 
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FIGURE 4.4    A cantilever beam with “No load” or “dummy” points. 

At an arbitrary point (say Point B) inside a beam, away from any concentrated loads that might arise 
from externally-applied loads or reactions, all of the beam functions should be smooth and continuous 
(Fig. 2.4). These continuity equations can be written as 

 w1(x2)  =  w2(x2) 
(40) 

 θ1(x2) =  θ2(x2) (41) 

 Ƙ1 (x2) =  Ƙ2(x2) (42) 

And 

 V1(x2) =  V2(x2) (43) 

and they provide 4 equations at any internal points where they occur.  
 

5.5 Specified Loads 

If a point load is applied at the left end of a beam (at A), then the moment at that end is zero  

 M1(x1) = 0 (44) 

and the shear is equal to 
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 V1(x1) = −P (45) 

(Table 4.1 and Fig. 4.5) The negative sign is needed since load is considered positive upwards while 
shear is deemed positive when it is down on a right cut face (up on a left cut face as at A). On a right 
end, as at Point D, shear is positive downwards while load is positive upwards and so no negative sign is 
required. Note the shear diagram in Fig. 2.4. 

When point loads occur internally (as at point B), continuity of the beam there requires that 

 w1(x2)  =  w2(x2) 
(46) 

 θ1(x2) =  θ2(x2) (47) 

Note that a jump of magnitude P occurs in the shear diagram. 

 Ƙ1(x2) =  Ƙ2(x2) (48) 
 

V1(x2) =  V2(x2) + P (49) 

   
The No load case is actually a special case of this one, with P set to zero. 

 

FIGURE 4.5   An applied load 
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5.6 Measured Deflections 

If the deflection d is known at a particular location, that information can be used to help determine 
some of the polynomial coefficients. For example, if the deflection at the left end (at A) is known, then 
one can write that 

 w1(x1) = d (50) 

and that 

 M1(x1) = 0 (51) 

In principal, the observed deflection might have been forced, as in the cantilever beam shown in Fig. 
4.1. In that case, it is clear that an external load or a reaction from an offset simple support could have 
been present there. Either of these situation would produce a jump in the shear curve. As a result, it 
would be incorrect to assume that no load is present at location with known (or forced) displacements, 
and it would be erroneous to assume zero shear there. Indeed, the measured or forced displacement 
condition can be used to analyze beams with offset simple supports (Fig. 4.2). 

If an applied load acts internally (as at B), then both of the deflection polynomials that approach Point 
B must produce the observed deflection, and so we have that 

 w1(x2) = d (52) 
 

 w2(x2) = d (53) 
In addition, the beam slope and moment must be continuous at B, and so we have that 

 θ1(x2) =  θ2(x2) (54) 
 

M1 (x2) =  M2(x2) 
(55) 

as shown in Table 4.1. As in the case of a beam end, the reported internal displacement may have been 
“forced” by an applied load or an offset simple support, and a jump may occur in the shear curve.  

The spreadsheet calculates the magnitude of any jump that is produced in the shear curve by the 
specified deflection, and uses it to calculate the applied load curve (Fig. 2.4). 

 Equation Solution 

As shown in Table 4.1, a boundary condition, applied load or specified displacement condition gives rise 
to two constraint equations at each end of the beam. In addition, every internal junction point give rise 
to 4 equations. For a beam with 3 segments there are 2 external points (A and D) and 2 internal points 
(B and C), giving a total of 12 constraint equations. Each of the 3 segments of the beam are described 
by a cubic deflection function having 4 unknowns and so the total number of unknowns is also 12. If the 
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number of cubic segments is changed and the number of internal points correspondingly changed, it 
turns out that there will always be just enough equations to find all of the unknown coefficients. 

The coefficient constraint conditions are shown in the Solver tab of the spreadsheet (Fig. 3.4). There, it 
is clear how the 2+4+4+2 constraint equations produce equations for solving for the 12 polynomial 
equations. Fig. 5.1 shows the 12 equations used in the solver tab with correspond color. 

Provided that none of the junction points, such as the No load dummy points is placed at essentially 
the same location as another point, the resulting equations are well conditioned. If, furthermore at 
least one non-zero load or deflection is specified, the equations cease to be homogeneous, and a 
unique solution can be found. 

To solve the resulting matrix constraint equation,  

 𝐀𝐀 𝐜𝐜 = 𝐠𝐠  (56) 

Where c is the matrix of unknown polynomial coefficients, the 12 by 12 matrix A is inverted (Fig. 3.4) 
and forward multiplied by g, the vector on the right hand side of the original equation. The result is 

 𝐀𝐀−𝟏𝟏 𝐠𝐠 = 𝐜𝐜 (57) 

which gives the unknown coefficients c.  
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FIGURE 5.1   Equations options in spreadsheet 

 

 Curve Plotting 

Once the 12 coefficients for the three segmental cubic deflections equations are known, the slope, 
curvature, shear and load curves can be found easily, using the relationships outline in Section 2.  

The resulting equations can be plotted by specifying an arbitrary number of calculation points along 
each segment of the beam and evaluating the various equations at each of these points. The only 
difficulty that arises is that jumps can occur in the shear curve and pulses in the load curves (Fig. 2.4), 
and this can be overcome by plotting many points along each polynomial sections, as we have done. 

Some of the points from the Plotting Data tab used to calculate the curves shown in Fig. 2.4 are shown 
in Fig. 6.1. 
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FIGURE 6.1   Plotting tab in Spreadsheet 

 

For further information, please visit our website: http://www.civil.uwaterloo.ca/brodland. 

 

x w(x) θ(x) Ƙ(x) М(x)  V(x) F
Position Deflection Slope Curvature Moment Shear Load

0 0 0 -8.626639061 -1.875 3.4375 3.4375
0.01 -0.000428696 -0.085475615 -8.468484012 -1.840625 3.4375 0
0.02 -0.00170424 -0.16936968 -8.310328963 -1.80625 3.4375 0
0.03 -0.003810818 -0.251682195 -8.152173913 -1.771875 3.4375 0
0.04 -0.006732613 -0.332413159 -7.994018864 -1.7375 3.4375 0
0.05 -0.010453809 -0.411562572 -7.835863814 -1.703125 3.4375 0
0.06 -0.014958592 -0.489130435 -7.677708765 -1.66875 3.4375 0
0.07 -0.020231146 -0.565116747 -7.519553715 -1.634375 3.4375 0
0.08 -0.026255655 -0.639521509 -7.361398666 -1.6 3.4375 0
0.09 -0.033016304 -0.71234472 -7.203243616 -1.565625 3.4375 0
0.1 -0.040497278 -0.783586381 -7.045088567 -1.53125 3.4375 0
0.11 -0.04868276 -0.853246492 -6.886933517 -1.496875 3.4375 0
0.12 -0.057556936 -0.921325052 -6.728778468 -1.4625 3.4375 0
0.13 -0.067103989 -0.987822061 -6.570623418 -1.428125 3.4375 0
0.14 -0.077308105 -1.05273752 -6.412468369 -1.39375 3.4375 0
0.15 -0.088153468 -1.116071429 -6.25431332 -1.359375 3.4375 0
0.16 -0.099624262 -1.177823787 -6.09615827 -1.325 3.4375 0
0.17 -0.111704672 -1.237994594 -5.938003221 -1.290625 3.4375 0
0.18 -0.124378882 -1.296583851 -5.779848171 -1.25625 3.4375 0
0.19 -0.137631077 -1.353591557 -5.621693122 -1.221875 3.4375 0
0.2 -0.151445441 -1.409017713 -5.463538072 -1.1875 3.4375 0
0.21 -0.165806159 -1.462862319 -5.305383023 -1.153125 3.4375 0
0.22 -0.180697416 -1.515125374 -5.147227973 -1.11875 3.4375 0
0.23 -0.196103395 -1.565806878 -4.989072924 -1.084375 3.4375 0
0.24 -0.212008282 -1.614906832 -4.830917874 -1.05 3.4375 0
0.25 -0.22839626 -1.662425236 -4.672762825 -1.015625 3.4375 0
0.26 -0.245251514 -1.708362089 -4.514607775 -0.98125 3.4375 0
0.27 -0.26255823 -1.752717391 -4.356452726 -0.946875 3.4375 0
0.28 -0.28030059 -1.795491143 -4.198297677 -0.9125 3.4375 0
0.29 -0.298462781 -1.836683345 -4.040142627 -0.878125 3.4375 0
0.3 -0.317028986 -1.876293996 -3.881987578 -0.84375 3.4375 0
0.31 -0.335983389 -1.914323096 -3.723832528 -0.809375 3.4375 0
0.32 -0.355310176 -1.950770646 -3.565677479 -0.775 3.4375 0
0.33 -0.37499353 -1.985636646 -3.407522429 -0.740625 3.4375 0
0.34 -0.395017637 -2.018921095 -3.24936738 -0.70625 3.4375 0
0.35 -0.41536668 -2.050623994 -3.09121233 -0.671875 3.4375 0
0.36 -0.436024845 -2.080745342 -2.933057281 -0.6375 3.4375 0
0.37 -0.456976315 -2.109285139 -2.774902231 -0.603125 3.4375 0
0.38 -0.478205276 -2.136243386 -2.616747182 -0.56875 3.4375 0
0.38 -0.478205276 -2.136243386 -2.616747182 -0.56875 3.4375 0
0.4 -0.521432405 -2.185415229 -2.300437083 -0.5 3.4375 0
0.41 -0.543398944 -2.207628824 -2.142282034 -0.465625 3.4375 0
0.42 -0.56557971 -2.22826087 -1.984126984 -0.43125 3.4375 0
0.43 -0.587958889 -2.247311364 -1.825971935 -0.396875 3.4375 0
0.44 -0.610520666 -2.264780308 -1.667816885 -0.3625 3.4375 0
0.45 -0.633249224 -2.280667702 -1.509661836 -0.328125 3.4375 0
0.46 -0.656128748 -2.294973545 -1.351506786 -0.29375 3.4375 0
0.47 -0.679143423 -2.307697838 -1.193351737 -0.259375 3.4375 0
0.48 -0.702277433 -2.31884058 -1.035196687 -0.225 3.4375 0
0.49 -0.725514962 -2.328401771 -0.877041638 -0.190625 3.4375 0
0.5 -0.748840196 -2.336381412 -0.718886588 -0.15625 3.4375 0
0.51 -0.772237319 -2.342779503 -0.560731539 -0.121875 3.4375 0
0.52 -0.795690515 -2.347596043 -0.40257649 -0.0875 3.4375 0
0.53 -0.819183968 -2.350831033 -0.24442144 -0.053125 3.4375 0
0.54 -0.842701863 -2.352484472 -0.086266391 -0.01875 3.4375 0
0.55 -0.866228385 -2.352556361 0.071888659 0.015625 3.4375 0
0.56 -0.889747719 -2.351046699 0.230043708 0.05 3.4375 0
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