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ABSTRACT 
 
Quantifying intersection performance is often a key aspect of transportation engineering studies. 
These studies commonly use micro simulation tools to evaluate the intersection performance in terms 
of vehicle delay by averaging results from several simulation runs (each with a different pseudo 
random number seed) for a set of traffic and control conditions. Previous research has shown that this 
approach may lead to a bias in the estimation of both the mean and standard deviation of field delay.  

This paper examines the issue of explicitly modelling the day-to-day variability in intersection delay 
using micro simulation modeling.  The results show that the prevalent method of using multiple runs, 
each with the same traffic demands but with different pseudo random number seeds, does not 
adequately capture the day-to-day variability that is observed in the field. Consequently, two 
alternative methods of modelling day-to-day variability of intersection performance are presented 
and examined. 
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INTRODUCTION 

Increasingly micro simulation models are being used by traffic engineers to analyze the expected 
performance of road networks operating under proposed physical or operational changes.  Most 
of the popular micro simulation models, such as Paramics, VISSIM, Aimsun, Integration, and 
NetSim, are discrete event simulation models that simulate the movement of individual vehicles 
as they travel through the road network.  Conceptually, each of these models can be considered 
to be composed of various sub-models, each of which defines the logic associated with a specific 
behavioural attribute, such as car-following, lane selection, routing, vehicle generation, etc. The 
micro simulation models tend to differ in the details of these behavioural sub-models.   

These micro simulation models are considered “stochastic” in that many of the 
behavioural sub-models contain random distributions.  Specific values are selected from the 
distribution using a pseudo random number selected from a sequence of random numbers.  A 
random number seed is used to generate the sequence of random numbers.  Each time the micro 
simulation model is executed with the same random number seed the same sequence of random 
numbers is generated and, if all model inputs remain unchanged, the model produces the same 
outputs.  

However, if the random number seed is changed and all other model inputs remain 
unchanged, then model outputs vary due to the different values selected from the distributions 
within the behavioural sub-models. For example, vehicles are generated at the entry nodes 
(origins) based on the input volumes and an assumed headway distribution. When a vehicle is 
generated the simulation model assigns driver and vehicle characteristics such as vehicle type 
(car, bus, truck, etc.), vehicle length, width, maximum acceleration and deceleration, maximum 
speed, maximum turn radius, etc. For each driver, values are assigned for driver aggressiveness, 
reaction time, desired speed, critical gaps (for lane changing, merging, crossing), destination 
(route), etc.  Most of these attributes are selected from distributions on the basis of the pseudo 
random numbers.  

As a result of the randomness of model results, traffic engineers and simulation model 
users typically carry out several model runs for each set of traffic and control conditions (each 
run with a different random number seed) in order to imitate the randomness in field 
observations. Often, the results from the replications are averaged in the hope that the mean of 
the multiple runs is a reliable predictor of the average conditions that would occur in the field.  

This paper presents the finding of a study that has been carried out to determine the 
extent to which the use of multiple runs each with a different random number seed captures the 
degree of variability typically present in real networks. This paper seeks to answer the following 
specific questions that begin to address these issues with respect to modelling arterial networks; 

1. What level of variability is introduced into the intersection approach volumes by the 
random number seeds?  

2. How does this level of variability compare to what is observed in the field? 
3. How does the variability in approach volumes vary with the volume to capacity ratio? 
4. What is the distribution of intersection delay resulting from different random seeds at 

different volume to capacity ratio? 
5. What implications do these results have in terms of appropriate methods for using micro 

simulation models to evaluate alternatives? 
The following sections summarize findings from previous research that is relevant to this 

paper, examines the randomness in peak hour approach volumes that is created by the VISSIM 
simulation model using each of the three methods for representing day-to-day variability, 
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explores the variation in intersection performance (in terms of delay) corresponding to each of 
the three methods of representing day-to-day variability.  Finally, provide conclusions and 
recommendations.  

LITERATURE REVIEW 

Representing Variability in Micro-Simulation Models 
There is a common consensus among traffic engineers and microscopic simulation model users 
on the need for performing multiple runs when using any stochastic simulation model. When 
evaluating the expected impact of one or more possible future treatments (e.g. new traffic control 
devices, operating strategies, policies, etc.) the scenarios simulated typically consist of the base 
traffic conditions (e.g. peak and off-peak traffic demands) modelled without the treatment(s) and 
then modelled with the treatment(s). In current practice, it is typical to simulate each with and 
without treatment scenario multiple times, each time with a different random number seed but 
holding all other simulation model inputs constant. The median or the average results from 
multiple simulation runs using different seeds are assumed to reflect the average traffic condition 
of a specific scenario.  

There are ample examples in the literature in which this approach has been taken for 
various models including SimTraffic (1), PARAMICS (2), VISSIM (3), Integration (4) and 
TRAF-Netsim (5).  

However, this is not the only method of modelling stochastic variability. In this paper we 
identify three methods of modelling day-to-day variability of transportation system performance 
(TABLE 1). Method 1, reflecting the typical current practice, introduces variability through the 
use of different random number seeds but other model inputs, including traffic demands are held 
constant. In general, many of the model inputs that are held constant in Method 1 are in fact 
subject to stochastic variation and ought to be represented by a distribution.  Peak hour approach 
volumes are particularly important with respect to the performance of signalized intersection.  
Other factors that may influence intersection performance and are subject to stochastic 
variations, such as the peak hour factor, saturation flow rate, etc. are considered to have a smaller 
degree of variability (6) and therefore the variability of these other factors is not separately 
modelled. Consequently, Method 2 consists of using only a single random number seed but 
traffic demands are randomly selected from a distribution that is calibrated to field data. Method 
3 consists of using different random seeds and randomly selecting traffic demands from the field 
calibrated distribution.  In each method, multiple runs of the simulation are conducted in order to 
estimate both the average (mean) and variance of the transportation measures of performance 
that are of interest.  

In the literature there is substantial variation in the methods used to decide on how many 
simulation runs need to be conducted. Some researchers and practitioners arbitrarily decide on 
the required numbers of runs. The literature shows that there is a large variation in the number of 
runs considered to be necessary such as 2 replications (5) , 3 replications (7), 5 replications (3) 
and 30 replications (4).  

Rather than arbitrarily selecting the number of runs, it is possible to determine the 
number of simulation runs required to achieve a specified accuracy (1, 2, 6, 8).An initial set of 
simulation runs is executed first and the mean and standard deviation of the performance 
measure is calculated. Using this mean and standard deviation, the required number of 
simulation runs is calculated as follows:  
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Whereμ  and δ are the mean and standard deviation of the performance measure based on the 
initial set of simulations runs; ε  is the allowable error specified as a fraction of the mean μ ; and 

is the critical value of the t-distribution at significance level 2/αt α . 
In a recent study (8) CORSIM, SimTraffic and VISSIM models were compared using 

various levels of traffic congestion under pre timed signalized control. Using equation 1, the 
authors determined the number of required runs at different volume to capacity ratio. It was 
found that more runs are needed as the volume reached capacity due to increased variation. The 
increase in variation is in line with the other studies (6, 9).  

However the use of Equation 1 does not assist the model user in determining whether or 
not the variation arising from the simulation model (from the use of different random seeds) 
appropriately imitates the variation observed in the field.   

In an effort to examine the implications of using Method 1, 2, or 3 for modelling 
variability, we focus on signalized intersection performance as measured by average delay 
during a peak hour. In the next section we examine the day-to-day variability that exists in 
arterial peak hour approach volumes and use these field data to calibrate a distribution that is 
required for Methods 2 and 3.  

VARIABILITY OF PEAK HOUR VOLUMES IN THE FIELD 
There appears to be relatively little work reported in the literature examining the variability of 
intersection performance in terms of day-to-day variations. A study (9) conducted an analysis to 
examine the impact of day to day variations in urban traffic peak hour volumes on intersection 
service levels. Using weekday data from 22 directional continuous traffic counting stations in the 
City of Milwaukee, the authors found that the coefficient of variation (COV) (Standard deviation 
divided by mean) of peak hour traffic volume ranged from 5% to 16% with a mean of 8.9%. 

In another similar analysis (6), using weekday data from 16 continuous traffic counting 
stations located mid-block on major arterial roadways in the City of Waterloo, the authors found 
that the COV ranged from 5.4% to a maximum of 13.1% and on average is equal to 8.7%. The 
authors (6) also developed a linear regression model showing that the COV of peak hour volume 
decreases as the mean peak hour approach volume increases. Although the regression intercept 
and coefficient are statistically significant at the 95% level, the regression explains only a small 
portion of the variance within the data (adjusted R2 = 0.15) and therefore must be viewed with 
scepticism.  

In this study we have also acquired traffic counts for a 12 month period from 9 permanent 
count stations located in the City of Toronto.  The COV of peak hour volume was computed for 
these locations using PM peak hour week-day non-holiday data and found to vary from 3.1% to 
9.5% with a mean of 7.0%.   

For all three data sets (FIGURE 1), the peak hour volumes were found to follow a 
Normal distribution.  Consequently, on the basis of these data, we conclude that a Normal 
distribution with a coefficient of variation of 0.084 is suitable to model the variation in day-to-
day peak hour approach volumes on arterial roadways.  
In the next section we simulate a hypothetical signalized intersection approach using the VISSIM 
model and introduce variability using each of the three methods identified in earlier section. We 
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examine the performance of these methods in terms of the resulting distribution of peak hour 
approach volumes. 

VARIATION OF PEAK HOUR VOLUME 

Hypothetical Intersection 
A hypothetical signalized intersection approach was simulated. The approach consisted of three 
exclusive through lanes.  All lane widths, grade, curb radii, etc. were considered to be ideal with 
no on-street parking, no transit vehicles, and adequate storage and discharge space. The 
intersection geometry was developed using links and connectors and modelled in VISSIM. 

The intersection approach was controlled by a two-phase signal timing plan with a cycle 
length of 80s; 38s effective green for the modelled approach; 34s effective green for the cross 
street phase; and 4 seconds of inter green between each phase.  Right-turn on red was not 
permitted and no turning movements were modelled. 

Six traffic demand scenarios were developed such that mean intersection volume to 
capacity (v/c) ratios ranged from 0.8 to 1.10. Each demand scenario was replicated 50 times 
using each of the three methods. For Method 1, each of the 50 replications used a different 
random number seed but all approach volumes remained constant. For Method 2, a single 
random number seed was used for all replications, but for each replication the peak hour 
approach volumes were randomly selected from a Normal distribution having a mean equal to 
the mean volume for the v/c demand scenario being simulated and a standard deviation equal to 
0.084 times the mean (i.e. COV = 0.084).  For each replication of Method 3, a different random 
number seed and a random selected peak hour approach volume (from the same distribution as 
used in Method 2) was applied. For all cases, the traffic stream was assumed to consist of only 
passenger cars.  

Vehicles were generated within the simulation model for 60 minutes. An additional 30 
minutes were used to ensure that all generated vehicles were able to complete their trips. For all 
simulations, the signal timing plan and all other inputs except the approach volumes and random 
number seed remained unchanged. 

The VISSIM model was calibrated to have a base saturation flow rate of 1900 pcphpl. 

Results 
The volume of vehicles generated by the simulation was recorded for each of the replications 
conducted for each of the five traffic demand scenarios. The mean, standard deviation and COV 
of the generated volumes were also computed.  

FIGURE 2 shows the resulting mean approach peak hour volume generated by the 
simulation model for each of the three methods as a function of the v/c ratio as well as the 
expected average peak hour volume. The results show that all three methods produce average 
approach volumes that are very similar to the target average. These results suggest that the 
distribution of approach volumes that results from the use of random number seeds is 
symmetrical.   

FIGURE 3 shows the coefficient of variation of the generated peak hour volumes for 
each of the three methods. The average coefficient of variation of peak hour approach volumes 
observed in the field data (i.e. COV=0.084) is also shown in the FIGURE 3 as a benchmark 
against which the results from the three methods can be evaluated.   
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It is evident from the results that the COV of peak hour volume resulting from Method 1 
is substantially smaller than the variation exhibited in the field data.  The COV from Method 1 
ranged from approximately 4.4% to 3.7% with an average of 4.1% (only 49% of the COV 
associated with the field data). 

Method 2 resulted in an average COV of peak hour volumes of 9.4% which is very 
similar to the COV of the field data. This result is not surprising since the simulation runs were 
set up with specified traffic demands that were drawn from a distribution having a COV = 8.4%.  
Method 3 resulted in an average COV of peak hour volumes of 9.6%.  This result suggests that 
the use of random seeds with random volumes does not substantially increase the resulting 
variability in the generated volumes.   

The COV can be used to characterise the variability within the approach volume 
distribution, however we are also interested to determine the shape of the distribution. The 
resulting peak hour volumes for each scenario were tested to determine the shape of distribution. 
For this task, the Kolmogorov-Smirnov (KS) test was used to determine if each distribution 
could be adequately described by the Normal distribution at the 99% level of confidence.  It was 
found that the distributions of generated peak hour volume for all demand scenarios for all three 
methods follow the Normal distribution.  

These results indicate that though Method 1 introduces variability into the peak hour 
approach volumes generated by the simulation model this level of variability is substantially less 
than that typically observed in the field. However, in most cases model users are interested in 
measures of performance (i.e. intersection delay) rather than the approach volumes.  
Consequently, the next section examines the impact of method used to simulate variability (i.e. 
Methods 1, 2, or 3) on intersection delay.   

IMPACT ON INTERSECTION PERFORMANCE  
Ideally, the distributions of intersection delay resulting from the use of Methods 1, 2, and 3 
would be compared to distributions of delay obtained from the field (similar to that done for the 
variation of volumes in Section 3).  Unfortunately, intersection delay can not be computed from 
permanent count station data and direct measurement of delay is a resource intensive effort that 
is sensitive to measurement errors (10, 11, 12). Not surprisingly then, we were unable to locate 
an existing database or collect sufficient data to create our own database of measured intersection 
delays that would contain a sufficient number of observations for a range of intersections 
experiencing a range of v/c conditions.  Consequently, we opted to consider a hypothetical 
intersection and to explore the impact that Methods 1, 2 and 3 have on estimates of mean and 
variance of delay.  

Hypothetical Intersection 
A hypothetical 4-leg intersection with a single exclusive lane on each approach was created.  The 
intersection was controlled by a 2-phase fixed time signal running the same signal timings as 
used in Section 3. All geometry, queuing space, etc. was considered to be ideal.  

For each of the three methods described in Table 1 and Section 2.1, eleven traffic demand 
scenarios were developed encompassing intersection volume to capacity (v/c) ratios ranging 
from 0.6 to 1.10. Each demand scenario was simulated 100 times (replications).  For all cases, 
the traffic stream was assumed to consist of only passenger cars. Intersection volume was 
generated for 15 minutes. Adequate link lengths were provided so that even at the highest 
volume to capacity ratio queues did not spill off of the network. An additional 30 minutes were 
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provided to ensure that adequate time is available to capture delay of vehicles still in the system. 
The total delay including the car-following delay was recorded. For all simulations, the signal 
timing plan, turning movement proportions and all other inputs, except the average approach 
volumes and random number seed remained unchanged. 

Results 
FIGURE 4 shows the average intersection delay (seconds/vehicle) as a function of v/c ratio for 
all three methods. In this figure, average delay represents the peak hour intersection delay 
averaged over many days. In this study each simulation replication represents a different 
simulated “day”. FIGURE 5 shows the standard deviation of intersection delay as a function of 
v/c ratio for all three methods.   

The results depicted in FIGURE 4 and FIGURE 5 suggest that Method 1, which produces 
the smallest variability in peak hour approach volumes, also produces the lowest estimate of the 
mean delay and the smallest variation in delay. In contrast, Method 3 provides the highest mean 
delay and the largest variation in delay despite the fact that Method 3 produces almost the same 
mean and variance of approach volumes as Method 2.  

The F-test was used to determine if the variances of peak hour delay exhibited by the 
three methods were statistically different.  A 2-tailed test at the 95% confidence limit was used 
(TABLE 2). The test results suggest that the three methods produce statistically different 
variances of estimated peak hour intersection delay over almost all v/c ratios examined.  

The t-test was used to determine if the mean delays estimated by the three methods are 
statistically different from each other.  A 2-tailed test at the 95% confidence limit was used 
assuming unequal variances (as suggested by the results in FIGURE 5 and TABLE 2).  The test 
results (TABLE 3) indicate that the average delays resulting from the three methods are 
statistically different from each for almost v/c scenarios examined.   

The relative differences in the mean delay estimated by the three methods were 
quantified in terms of the Relative Error (RE) as: 

 

 
1

1

d
ddRE i −=   (2) 

Where, di = Average intersection delay estimated using Method i (i = 2 or 3), d1 = Average 
intersection delay estimated using Method 1. 

FIGURE 6 shows the relative error for different v/c ratios. The results indicate that the 
estimates of average peak hour delay obtained from Method 2 may be as much as 15% larger 
than the corresponding average delay obtained using Method 1 and the estimates from Method 3 
may be may be as much as 50% larger. These findings have several implications: 

1. Intersection evaluation and design is typically based primarily on mean intersection delay 
(though other intersection characteristics may also be important such as queue lengths). 
The intersection delay estimated from a microscopic simulation model is clearly 
dependent on the method used to reflect variability (i.e. Method 1, 2, or 3).  Depending 
on the method used, different estimates of mean intersection delay may result.    

2. In practical terms, the absolute magnitude of the differences (and relative differences) in 
average delays estimated by the three methods is very small for v/c less than about 0.80. 
Consequently, if only the mean delays are being used as measures of performance, then 
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the current practice (i.e. Method 1) of simulating multiple runs each with a different 
random seed while holding traffic demands constant, is likely adequate.  

3. Though there is no opportunity for a direct comparison between the mean delays 
estimated by the simulation model and field delays, it seems reasonable to expect that 
since Method 1 significantly under represents the degree of variation of peak hour 
approach volumes observed in the field, and the mean delays estimated from Method 1 
are significantly lower than the means delays estimated by Method 2 and 3, that the mean 
delays from Method 1 are also lower than those that would be observed in the field.  

Increasingly, traffic engineers are interested in variability, which is often thought of in terms of 
fraction of time that the intersection performs more poorly than some specified level of service.  
For this type of analysis, the variability of simulation results is particularly important. To 
illustrate, consider the fraction of days for which the intersection is expected to experience peak 
hour delays greater than some threshold – in this case computed as 1.4 times the mean 
intersection delay. Since each method produces different mean delays (as per FIGURE 4) the 
threshold delay is computed separately for each Method and for each v/c ratio.  FIGURE 7 
shows the fraction of the 100 simulated “days” (replications) for which the estimated peak hour 
delay exceeds the threshold delay for Methods 1 and 2. The figure illustrates that if an analyst is 
using a simulation model to determine how often a design is likely to fail (i.e. delay exceeds 
some design threshold) then the use of Method 1 (with smaller variance) tends to predict many 
fewer ‘failures’ than does Method 2.  

From a statistical perspective, the variance of delay is also important for testing whether 
or not any change in the mean delay due to the evaluated treatment (e.g. traffic control strategy, 
technology, or policy) is statistically significant. Given that each of the three Methods provides 
different estimates of the mean delay and of the variation in delay, it is quite possibly, and even 
likely, that under some conditions, conclusions about the significance of a treatment option may 
vary depending on the Method used to model variability.  

This possibility is particularly troubling given that the current practice is to model 
variability using Method 1 and the evidence provided in this study suggests that Method 1 
significantly under-represents the day-to-day variability of intersection approach volumes 
observed in the field. This also suggests that Method 1 significantly under-estimates the mean 
intersection delay and the variability of intersection delay.   

CONCLUSIONS AND RECOMMENDATIONS 
The primary purpose of this study was to initiate an exploration (and spur discussion) of the most 
appropriate ways to reflect variability that occurs in the field within micro-simulation studies 
when these studies are used to establish the effect of a treatment option (e.g. traffic control 
strategy, technology, policy, etc.). On the basis of the results obtained from this study, the 
following conclusions can be made:  
1. There appears to be at least three methods of reflecting variability within microscopic traffic 

simulation models.  The most commonly used method in practice is to hold all simulation 
parameters and traffic demands constant and to conduct a set number of model runs 
(replications), each replication having a different random number seed.  

2. This method of introducing variability significantly under-represents (approximately half) the 
day-to-day variability that is observed within peak hour intersection approach volumes.  

3. The under-representation of variability in intersection approach volumes suggests that 
Method 1 also under estimates the mean delays that occur in the field.   
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4. Differences in mean delay appear to be very small for v/c ratios of less than about 0.8 and 
suggest that for these conditions, there is little practical difference between using Method 1, 
2, or 3. 

5. The use of Method 1 produces significantly smaller variation in peak hour intersection delays 
than Methods 2 and 3. As a result of this smaller variation, Method 1 also predicts many 
fewer ‘failures’ (i.e. peak hour intersection delay exceeding some threshold) than may 
actually be experienced. 

The evidence obtained from this study seems to suggest that Method 1 is not an adequate means 
of capturing the day-to-day variation in peak hour approach volumes that is observed in the field. 
However, the study also raises a number of unanswered questions, including the following: 
1. The COV of peak hour approach volumes generated by the simulation model under Methods 

1, 2, and 3 seem to decline as mean peak hour approach volume increases.  This observation 
has also been made from field data (6, 9). However, the sensitivity of this trend needs to be 
established for a wider range of mean volumes.  

2. In practice, how can/should model users implement either Method 2 or Method 3 to simulate 
day-to-day variability?  How much field data must be collected to adequately define the 
distribution of traffic demands?  How many simulation runs must be performed?  

3. This study has used only the VISSIM simulation model.  Are the issues raised and results 
obtained in this study applicable to other commonly used microscopic traffic simulation 
model? 

The answers to these questions will require additional research. 
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TABLE 1  Description of three methods for simulating day-to-day  
variability of intersection performance 

Method 

Random 
Number 
Seeds 

Input 
Volumes 

Method 1 Random Constant 
Method 2 Constant Random 
Method 3 Random Random 
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TABLE 2  F-test results from comparing variance of delay 

Method 1 
Versus 
Method 2 

Method 2 
Versus 
Method 3 

Method 1 
Versus 
Method 3 

Volume 
to 
Capacity 
Ratio P-Value Conclusiona P-Value Conclusion P-Value Conclusion

0.600 0.000 Different  0.331 Same 0.000 Different 
0.700 0.000 Different 0.028 Same 0.000 Different 
0.800 0.000 Different 0.018 Different 0.000 Different 
0.850 0.000 Different 0.000 Different 0.000 Different 
0.900 0.000 Different 0.000 Different 0.000 Different 
0.925 0.000 Different 0.000 Different 0.000 Different 
0.950 0.000 Different 0.000 Different 0.000 Different 
0.975 0.000 Different 0.001 Different 0.000 Different 
1.000 0.000 Different 0.004 Different 0.000 Different 
1.050 0.000 Different 0.015 Different 0.000 Different 
1.100 0.000 Different 0.036 Same 0.000 Different 

NOTE: aDifferent = variance are statistically different. 
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TABLE 3  t-test results from comparing estimates of mean delay 
 

Method 1 
Versus 
Method 2 

Method 2 
Versus 
Method 3 

Method 1 
Versus 
Method 3 

Volume 
to 
Capacity 
Ratio P-Value Conclusiona P-Value Conclusion P-Value Conclusion 

0.600 0.124 Same 0.000 Different 0.006 Different 
0.700 0.373 Same 0.112 Same 0.010 Different 
0.800 0.023 Different 0.075 Same 0.000 Different 
0.850 0.000 Different 0.023 Different 0.000 Different 
0.900 0.000 Different 0.000 Different 0.000 Different 
0.925 0.001 Different 0.000 Different 0.000 Different 
0.950 0.001 Different 0.000 Different 0.000 Different 
0.975 0.003 Different 0.000 Different 0.000 Different 
1.000 0.006 Different 0.000 Different 0.000 Different 
1.050 0.016 Different 0.000 Different 0.000 Different 
1.100 0.054 Same 0.000 Different 0.000 Different 

NOTE: aDifferent = Means are statistically different. 

 



Abdy & Hellinga   16 
 

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0 500 1000 1500 2000 2500
Mean Peak Hour Volume (vph)

C
O

V
 o

f P
ea

k 
H

ou
r V

ol
um

e
Waterloo
Millwaukee (Sullivan et al, 2006)
Toronto
Average of all Field Data

 
FIGURE 1  COV of peak hour volumes observed in the field. 
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FIGURE 2  Average simulated peak hour volumes. 
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FIGURE 3  COV of simulated peak hour volumes.  
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FIGURE 4  Mean intersection delay.  
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FIGURE 5  Standard deviation of intersection delay. 
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FIGURE 6  Relative error of estimated intersection delay. 
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FIGURE 7  Fraction of days exceeding intersection delay threshold. 
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