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ABSTRACT
Policy makers, transportation engineers, and the public have become increasingly concerned
about the impacts that transportation has on air quality.  Concerns exist about the production of
greenhouse-gases, such as CO2, that contribute to global warming, and other tail-pipe emissions
such as carbon monoxide, oxides of nitrogen, particulates, and hydrocarbons, which have
negative health consequences.

Transportation professionals are being challenged to objectively evaluate the impact that
competing traffic management strategies have on air quality. However, few tools currently exist
that are able to efficiently provide this evaluation, and those that do exist, such as microscopic
traffic simulation, often require specialised knowledge or extensive data collection and
calibration efforts.

In this paper, we examine the feasibility and accuracy of quantifying the environmental impacts
of traffic management strategies using second-by-second speed and acceleration data collected
via a GPS-equipped floating car. A kernel smoothing technique is proposed to overcome errors in
the GPS speed and acceleration data.  A 3rd order polynomial log linear energy and emissions
model is used to estimate fuel consumption and tail-pipe emissions on the basis of these
smoothed data.  Application of this technique to 72 GPS runs along an urban arterial
demonstrates that estimates of average fuel consumption and emission rates are significantly
underestimated (by 20 to 60%) if these estimates are made on the basis of average vehicle speed
profiles rather than individual vehicle profiles.

Two methods, namely two-stage sampling and 6-sigma, are examined for estimating the sample
size required to estimate the mean fuel consumption and emission rate with some predetermined
level of accuracy.  It is found that the 6-sigma method is sufficiently accurate and overcomes
several of the practical limitations inherent within the two-stage sampling method.

Introduction
Traditionally, data required for travel time and speed studies were collected manually via floating
car studies. In the floating car method, the driver attempts to maintain average traffic stream
speed by passing as many vehicles as the floating car is passed by.  While the driver concentrates
on the driving task, a passenger in the vehicle records the vehicle speed and cumulative travel
time at predetermined locations. 

The availability of low cost GPS (global positioning satellite) receivers enables transportation
professionals to automatically collect continuous speed and position data from the floating car. 
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These data can be used to support traditional analyses, including travel time and speed studies,
but they also provide the opportunity to estimate accurately vehicle fuel consumption and tail-
pipe emissions.  

Increasing public concern about degrading air quality, the depleting ozone layer, and global
warming, is also increasing the pressure on transportation professionals to explicitly include air
quality measures within impact analyses. While most transportation professionals have been
willing to include air quality within the evaluation process, robust and practical methods for
doing so have generally not been available. 

This paper examines the feasibility of using GPS data to quantify fuel consumption and vehicle
tail-pipe emissions.  The paper identifies issues related to the use of GPS data and proposed a
method for eliminating unwanted noise in the data.  Two methods of estimating vehicle
emissions are examined.  The trade-off between computational effort and accuracy is identified.
Finally, the issue of determining the necessary sample size is examined.  A method for estimating
required sample size is proposed and tested using actual GPS data. 

The next section describes the microscopic fuel consumption and emissions model used within
this paper.  The following section describes the GPS data and identifies several key
characteristics of GPS data that are undesirable when estimating emissions.  A non-parametric
smoothing method is proposed to eliminate the undesirable noise in the GPS data.  Two methods
of estimating average fuel consumption and emission rates for a particular corridor are identified
and examined in turn.  These methods are applied to 72 GPS runs along a 9.5km arterial corridor
in Scottsdale, Arizona. Finally, conclusions and recommendations are made. 

Fuel Consumption and Emission Model
A number of fuel consumption and emission models exist.  The US EPA Mobile 5 model is an
aggregate model that modifies rates developed for a predefined driving cycle using speed
correction factors. Experience has shown that large estimation errors can occur when the driving
conditions for which estimates are desired, differ significantly from the base driving cycle. The
EPA is currently attempting to reduce these errors in the next release of Mobile (Mobile 6) by
increasing from 2 to 13 the number of driving cycles considered (Sierra Research, 1999).
However, even with this increased number of cycles, the user is still faced with the problem of
deciding which of the predefined cycles most closely reflects the actual conditions experienced
on the corridor of interest. 

The Comprehensive Modal Emissions Model (CMEM) was developed by a team of researchers
led by Dr. Barth from the University of California at Riverside (Barth et al, 1997; Barth et al,
2000; Barth et al, 1999; and An, et al., 1997). CMEM uses a physical, power-demand modal
modelling approach that is an analytical representation of the emission production system. The
physical process by which emissions are produced is separated into constituent components.
Each of these components is modelled as an analytical representation consisting of various
parameters that are characteristic of the physical process. The parameter values are dependent on
the type and condition of the vehicle, engine, and emission controls. The model was calibrated on
the basis of emission measurements collected from over 300 in-use vehicles tested on a vehicle
dynamometer over predefined driving cycles.  
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Researchers at Virginia Tech Transportation Institute have also developed a microscopic fuel
consumption and emission model (VTMicro1).  This model is based on 8 vehicles tested on a
dynamometer at Oak Ridge National Laboratory (Ahn et al., 1999; Rakha et al., 2000a; Rakha et
al., 2000b). Unlike many energy and emission data collection efforts, data were collected for a
matrix of speeds ranging from 0 to 120 km/h and for acceleration ranging from −1.5 to 3.7 m/s2.
No attempt was made to collect data over a driving cycle representative of contiguous field
driving conditions.  These data were then used to calibrate a log-linear 3rd order polynomial
regression model (Equation 1). 
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where:
F = instantaneous fuel consumption or pollutant emission rate in litres/s or

mg/s
A = instantaneous acceleration of vehicle in km/h/s
S = instantaneous speed of vehicle in km/h
a0, a1, ... a15 = vehicle specific calibration coefficients

The microscopic model does not consider high emitters, cold-starts, effects of vertical gradient of
the road, or secondary loads on the engine, such as air conditioning.  Furthermore, because the
model considers only the instantaneous speed and acceleration of the vehicle, it cannot reflect
history effects on fuel consumption and emissions.  Coefficients for the model are provided in
Table 1.

Table 1: Parameter values for composite vehicle VTMicro Model
Coefficient Fuel HC CO NOx

a0 -7.5370E+00 -7.2804E-01 8.8745E-01 -1.0677E+00
a1 1.2328E-01 0.0000E+00 1.3565E-01 2.3181E-01
a2 1.3244E-02 1.9411E-02 2.5373E-02 7.3636E-03
a3 -8.9997E-04 -7.0577E-05 -1.0203E-03 -7.1983E-04
a4 2.7035E-02 2.2738E-02 6.4700E-02 4.2307E-02
a5 -2.2923E-04 -1.7026E-04 -6.5281E-04 -1.4368E-04
a6 1.1255E-06 1.4752E-06 3.4939E-06 4.3069E-07
a7 3.9933E-03 8.4259E-03 3.2142E-03 1.2859E-02
a8 -1.5543E-05 -7.7962E-05 7.0566E-05 -9.9156E-05
a9 3.8216E-08 4.2630E-07 -4.8701E-07 2.2626E-07
a10 6.3073E-05 -4.1555E-04 -7.0090E-04 2.1769E-03
a11 6.4635E-07 2.5931E-05 3.3926E-05 -4.0464E-05
a12 -1.5591E-08 -1.3390E-07 -1.9740E-07 1.5088E-07
a13 -4.2300E-05 -7.7949E-05 0.0000E+00 -2.2143E-04
a14 1.9111E-07 2.0809E-06 -8.8640E-07 1.2215E-06
a15 -2.5610E-09 -9.9688E-09 0.0000E+00 -7.2188E-09

While the model explains a large portion of the variance in the observed data (i.e. r2 > 0.9),
model predictions are extremely sensitive to large absolute values of acceleration.  For example,
consider Figure 1, which illustrates the model's predictions of HC and CO emissions, in
mg/second, as a function of acceleration at a constant speed of 40 km/h.  It is clear from this

                                                  
1 The researchers at Virginia Tech have recently extended their model to a two-regime structure, with one
regression for deceleration and one for acceleration conditions.  The authors of the model claim increases in
explanatory power of the extended model, however, the coefficients for this model have not yet been published. 
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figure that for large absolute values of acceleration, the model provides highly unrealistic
estimates.  

The model developers have attempted to avoid the problem of these highly unrealistic estimates
by constraining the region of application of the model to within a feasible region of speed and
acceleration combinations.  This feasible region (Equations 2a and 2b) represents the speed and
acceleration combinations that are physically possible for a typical automobile. However, as
illustrated in Figure 1 for very large deceleration rates, the model may still provide vastly
overestimated emission results for speed and acceleration combinations that are within the
feasible region. 
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where:
Amin = minimum instantaneous acceleration of vehicle in m/s2

Amax = maximum instantaneous acceleration of vehicle in m/s2

S = instantaneous speed of vehicle in km/h
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Figure 1: Illustration of unrealistic emission estimates produced by VTMicro for extreme
acceleration/deceleration rates

Description of Field Data
The field data used in this study were collected in Scottsdale, Arizona as part of the Phoenix
Metropolitan Model Deployment Initiative (Rakha et al, 2000c). The Scottsdale/Rural Road
corridor is an arterial connecting the cities of Tempe and Scottsdale.  The study area extended
over 9.6-km and covered 21 signalized intersections. Four cars were equipped with GPS Placer
450 receivers and drove along the corridor over a three-day period in January 1999. Runs were
conducted during the AM, PM and off-peak periods. Vehicle position and speed were collected
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each second. A total of 72 runs were conducted in the southbound direction and 69 in the
northbound direction.  Only the southbound data are used this paper. Speed data were not
computed from finite difference of position data, but was computed directly by the Placer GPS
unit. The specifications of the Placer 450 GPS unit indicate that speed accuracy is within 1 m/s
(3.6 km/h). Table 2 provides descriptive characteristics of the data whereas Figure 2 illustrates
the distribution of trip travel times for the 72 runs. It is evident that the runs have been collected
over a broad range of traffic conditions, as the maximum trip duration is more than twice as long
as the minimum. 

Figure 3 illustrates the speed profiles of 3 typical runs.  As expected, the individual vehicle
profiles exhibit significant variation, as some vehicles experience delay at a signal and others do
not.  

Table 2: Selected characteristics of field data
Mean Minimum Maximum

Trip Duration (seconds) 839 608 1433
Mean Trip Speed (km/h) 43.0 24.0 56.2
Std of Speed (km/h) 24.4 16.3 30.1
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Figure 3: Speed profiles obtained from GPS data for a typical sample of runs

GPS Data Filtering and Smoothing
It is possible to directly compute acceleration on the basis of the measured speed data using
numerical differentiation (Equation 3).

∆
−

= −1tt
t

SSa (3)

where:
at = estimate of instantaneous acceleration at time t (km/h/s)
St = measured speed of vehicle at time t (km/h)
St-1 = measured speed of vehicle at time t-1 (km/h)
∆ = duration between speed observations at time t and t-1 (seconds)

However, in practice, the measured speed data contain error, which can lead to large errors in the
estimated instantaneous acceleration rate. For example, consider Figure 4, which illustrates the
instantaneous acceleration rate computed using Equation 3 from the raw speeds measured for run
61.  It is clear that during a number of time intervals, the computed acceleration rate falls outside
the feasible acceleration limits (i.e. Equation 2). For all 72 runs, the acceleration computed on the
basis of the raw speed data falls outside the feasible region for 166 of the 60,360 observations or
0.275%.  While this does not appear to be a large problem in terms of the number of outliers,
some of the computed accelerate rates fall far outside the feasible limits. For example, the
maximum acceleration rate is 16.98 m/s2 and the minimum acceleration is -16.62 m/s2. If these
acceleration values, along with their associated speeds, are used directly in the microscopic
emission model, the emission model provides nonsensical results.  For example, the acceleration
rate of 16.98 m/s2 is associated with a speed of 68.12 km/h.  For this conditions, the emission
model predicts the instantaneous HC emission to be 1.11×10233 mg/second! Since the model is so
sensitive to speed and acceleration rates that fall near to or outside the feasible region, even a
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small number of outliers can radically alter the mean fuel consumption and emission rate.
Therefore, it is necessary to filter the raw speed data to reduce the impact of errors in the
measured speed data. 
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Figure 4: Acceleration rate computed from the raw GPS speed data (Run #61)

There exists a wide range of smoothing methods that can be applied to this specific problem.
Parametric approaches assume that the distribution of the errors be known a priori and then make
use of the characteristics of the distribution to make decisions regarding outliers.  These methods
can work quite well as long as the data do in fact follow the assumed distribution.  Non-
parametric approaches differ in that do not make any assumption about the structure of the
underlying process.  Examples of non-parametric smoothing approaches include weighting
moving average (or more generally termed density kernels). 

Rakha et al (2001) investigated the suitability of a number of smoothing techniques for
application to GPS data.  They applied these smoothing methods to the instantaneous
acceleration rates computed using Equation 3 and found that the Epanechnikov density kernel
performed well in comparison to other smoothing methods. In this paper, we apply the
Epanechnikov Kernel smoothing method to the raw speed data and compute the instantaneous
acceleration rates on the basis of the smoothed speeds. 

The Epanechnikov Kernel is computed as 
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i = current time interval (seconds)
j = time interval j for which density kernel is being computed (seconds)
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α = duration of time period in the past and in the future considered within the
smoothing (bandwidth)

When computing the smoothed speed at time interval i ( iŜ ), the weight associated with each
speed in time interval j (Wij), is computed by 
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Finally, the smoothed speed in interval i ( iŜ ) is computed by,
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As indicated by Figure 5, the Epanechnikov kernel smoothing function provides parabolic
weights that are dependent on the bandwidth (α). 
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Figure 5: Epanechnikov Kernel smoothing weights for different bandwidths

Figure 6 illustrates the application of Epanechnikov kernel smoothing with α = 3 seconds to a
portion of a typical speed profile.  The smoothed speeds follow the measured speeds quite
closely, with only some moderate flattening of the peaks and valleys.  Note that the proposed
smoothing function does not guarantee that the computed acceleration falls within the feasible
region.  However, application of the smoothing function to all 72 runs resulted in only 5
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acceleration observations, out of the total of 60,360, violating the feasible region constraints
(Table 3).
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Figure 6: Raw speed and Epanechnikov kernel smoothed speed data (α = 3 seconds)

Table 3: Acceleration data falling outside of feasible region after application of Epanechnikov
Kernel smoothing 

Run
#

Time Interval
(sec)

Speed (t-1)
(km/h)

Speed (t)
(km/h)

Acceleration
(m/s2)

Max Accel
(m/s2)

Min Accel
(m/s2)

59 788 60.28 68.02 2.15 2.05 -5.00
60 611 15.82 26.97 3.10 3.00 -5.00
63 1240 17.03 29.66 3.51 3.00 -5.00
63 1241 29.66 41.67 3.34 2.71 -5.00
66 139 59.64 68.52 2.47 2.04 -5.00

Estimating Fuel-Consumption and Vehicle Tail-Pipe Emissions
Once the smoothed speed and acceleration data have been obtained, it is necessary to apply the
fuel consumption and emissions model.  However, two alternate methods exist by which this can
be done, as described below.

Method 1: Individual GPS Runs 

We can apply the model to each run independently to obtain the total emission for each trip
(Equation 8). The average emission rate in units of g/veh-km is computed by summing the total
trip emission across all 72 trips and dividing by the cumulative distance travelled by all 72 runs
(Equation 9). 
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where:
R = run number
N = total number of runs (in this study N=72)
t = time interval (seconds)
DR = duration of run R (seconds)
ER = total fuel consumption/emission associated with run R (mg for emissions

and litres for fuel consumption)
LR = length of run R (km)
Ft,R = instantaneous fuel consumption/emission at time t for run R which is

estimated using Equation 1.

Table 4 provides the mean, maximum, minimum, standard deviation, and coefficient of variation
for each of the tail-pipe emissions and for fuel consumption that result from the application of
Equations 8 and 9. 

Table 4: Descriptive statistics of fuel consumption and emission rates
estimated using Method 1 

Emissions (g/veh-km)Fuel
(ml/veh-km)

HC CO NOx
Average 128.69 0.140 2.515 0.363
Max 168.82 0.18 3.66 0.49
Min 105.78 0.11 1.96 0.27
Std 16.18 0.02 0.35 0.05
COV 0.13 0.13 0.14 0.15

Method 2: Average Speed Profile

In many cases, such as calibration of simulation models, GPS data are collected and average
speed versus distance profiles are determined.  In such cases, it may be computationally attractive
to apply the fuel consumption and emissions model directly to the mean speed profile rather than
applying it to each individual run. Of course, since the emissions model is based on time rather
than distance, the mean speed versus distance profile must be transformed into a mean speed
versus time profile. Acceleration is computed using Equation 3 as before, except this is done
using the mean speeds rather than the speeds of the individual runs. 

The instantaneous mass of emission produced and fuel consumed at time t (Ft) is computed on
the basis of the mean speed and acceleration at time t. The mean emission and fuel consumption
rate is computed using Equation 10. The numerator in Equation 10 represents the weighted total
emission produced or fuel consumed by all GPS vehicles as they traverse the roadway.  The
denominator represents the total combined distance travelled by all GPS vehicles. 
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where:
E = average fuel consumption or emission rate (l/veh-km for fuel and mg/veh-

km for emissions)
nt = number of runs for which a smoothed speed exists at time t (in this study nt

≤72)
t = time interval (seconds)
D = duration of average speed profile (seconds)

tS = mean smoothed speed at time t (km/h)
Ft = instantaneous fuel consumed or emission produced at time t (litres for fuel

and mg for emissions)

Results

Table 5 provides the average fuel consumption and emission rates associated with the 2
estimation methods.  It is evident that estimating average fuel consumption or emission rate on
the basis of averaged speed and acceleration data (i.e. Method 2) introduces significant errors.
Fuel consumption is underestimated by 25% and tail-pipe emissions are underestimated by 34%
to 46%. 

Table 5: Comparison of two methods for estimating fuel consumption and emission rates
Estimated Average

Emissions (g/veh-km)
Estimation Error (%)1Fuel

(l/veh-km)
HC CO NOx Fuel HC CO NOx

Method 1 - individual runs 0.129 0.140 2.515 0.363
Method 2- average profile 0.096 0.092 1.579 0.198 -25.1% -34.6% -37.2% -45.5%
1 Error computed as ((Method 2 - Method 1)/Method 1 x 100%

These results are obtained because averaging speed profiles tends to produce speed profiles that
have less severe acceleration and deceleration events. To illustrate, consider Figure 7, which
provides the relative frequency distribution of acceleration as well as descriptive statistics for
both methods.  The range and standard deviation of instantaneous acceleration rate are the
greatest for Method 1. Since emission rates are sensitive to acceleration rate, the reductions in the
severity of acceleration that results from application of Method 2 also produces a corresponding
reduction in the estimated average emission rate. 

From these results, it can be concluded that the benefits of reduced computational load and
convenience associated with Method 2 are not sufficiently large to warrant the acceptance of the
associated reductions in accuracy.
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Figure 7: Distribution of acceleration rates for the two computational methods

Effect of Sample Size
The number of GPS runs required to accurately determine fuel consumption and emission rates is
an important consideration, since collecting GPS data and subsequently processing it can be time
consuming and costly.  For any data collection effort, it is necessary to determine the sample size
required to provide population estimates with some desired degree of reliability.  In this case, we
assume we are interested in estimating the mean emission rate, in terms of mass of pollutant
emitted per vehicle per unit distance for vehicles travelling along a particular corridor. If we
assume a large (infinite) population, then Equation 11 expresses the confidence we have that the
sample mean emission rate will lie within plus or minus some distance of the population mean
emission rate (µ). 

[ ] ασzµEσzµP µαµα −=+≤≤− 122 (11)
where
µ = population mean emission rate 
z = normal standard deviate
α = probability associated with sample mean falling outside of confidence

limits
E = sample mean emission rate

µσ = standard deviation of the population mean = 
n
σ

σ = standard deviation of individual observations about the population mean
n = number of observations in the sample

If we define d as the maximum error we are willing to tolerate in our estimate of the population
mean emission rate, then
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Thus, if we know that σ = 1 g/veh-km, and we are willing to accept a maximum error of 0.25
g/veh-km in our estimate of the population mean with a reliability of 95% (i.e. α = 5%), then z =
1.96 and
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==n  GPS runs are required.

Of course, in practice, we do not know the standard deviation of individual vehicle average
emission rates for the population (σ), and therefore we can not actually use Equation 13. 

There exist several choices for dealing with this problem. In this paper we examine two
approaches, namely the two-stage sampling method, and the 6-sigma method.  Each of these
methods is described in the following sections.

Two-Stage Sample Method

In the two-stage sampling method, an initial sample is taken, from which the sample standard
deviation (σ̂ ) is computed.  This sample standard deviation is used as a point estimate of the
population standard deviation (σ).  On the basis of the estimated population standard deviation,
the sample size required to satisfy some prescribed maximum error is computed using Equation
13. 

Of course, any errors in the estimate of the population standard deviation will result in the square
of the error in the estimate of the sample size required. For example, estimating the population
standard deviation as 1.25, when the true population standard deviation is actually 1 (an error of
25%) will result in an estimate of the required sample size that is 56% higher than is necessary. 

To quantify the error associated with using this two stage sampling approach, we applied this
method to the field data.  A range of initial sample sizes was considered.  For each, a random
sample of the GPS runs was chosen from the 72 runs.  A total of 20 samples (repetitions) were
selected for each initial sample size examined. For each sample, the sample standard deviation
was computed and used in Equation 13 as a point estimate of the population standard deviation. It
was assumed that the standard deviation and mean computed from all 72 GPS runs represented
the population.  A reliability of 95% (i.e. zα/2 = 1.96) was chosen, and the maximum error was
specified as 10% of the population mean.  Thus, for CO, d = 0.25 g/veh-km. 

Figure 8 illustrates the mean, maximum, and minimum estimates of the required sample size as a
function of the size of the initial sample for CO.  Similar results were obtained for HC, NOx, and
fuel.  Using the population standard deviation computed from all 72 runs in Table 4 (rather than a
point estimate from a sample) indicates that 7.6 runs are required to meet the maximum error
constraint for estimates for CO.  However, it is evident from Figure 8 that using the 2-stage
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sampling approach with an initial sample size up to even 30 runs can result in estimates of the
required sample size that exceeds 10 runs. 

As is evident from Figure 8, there is a trade-off between the size of the initial sample and the
reliability with which it is possible to predict the sample size required to satisfy the desired
maximum error in the population estimate.  If the initial sample consists of 6 runs, then using
Equation 13 will result in an estimate of the required sample size that will range from 3 to 21
runs. As the initial sample size increases, the range in the estimate of the required sample size
decreases.
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On the basis of the results obtained, it can be concluded that the two-stage sampling method
suffers from three undesirable characteristics. First, the method cannot be used to estimate the
required sample size without first collecting the initial sample. In many cases, such as estimating
data collection costs for proposals, or developing a data collection schedule, taking an initial
sample is not feasible. Second, for the corridor examined in this paper, a relatively large initial
sample size is required to estimate the required sample size with even a reasonable degree of
accuracy. Third, errors in the estimate of the population standard deviation produce a square of
this error in the estimate of the required sample size.

Six-Sigma Method

The 6-sigma method is an alternative to the two-stage sampling method for estimating the sample
size required to achieve some desired level of accuracy in estimating average fuel consumption
rate or average emission rate.  In the 6-sigma method, it is assumed that the population of mean
fuel consumption and emission rates is Normally distributed.  On the basis of this assumption, it
is known that 99.7% of individual observations (i.e. mean fuel consumption and emission rates)
will fall within ± 3σ of the population mean. We define the upper and lower bounds as 
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where:
BU = 99.85% upper bound on mean fuel consumption and emission rate
BL = 0.15% lower bound on mean fuel consumption and emission rate
σ = population standard deviation of mean fuel consumption and emission rate
µ = Population average of individual mean fuel consumption and emission rate

Subtracting the lower bound from the upper bound is equal to 6σ (thus the name of the method).
The population standard deviation is then equal to 

6
LU BB −

=σ (14)

Of course, in order to use Equation 14, we must be able to estimate values for BU and BL.  We
cannot compute these values directly as they depend on the unknown population mean and
standard deviation.  However, we can estimate these values by attempting to estimate the
minimum and maximum expected mean fuel consumption and emission rate. 

For example, we can safely assume that the lowest average fuel consumption and emission rate
for a vehicle trip along the Scottsdale corridor would be associated with a vehicle travelling at a
constant speed (i.e. zero acceleration).  For zero acceleration, Equation 1 becomes,

( ) 3
6

2
540ln SaSaSaaF +++= (15)

From this we can say that the lowest average CO emission rate we would expect could be
determined by examining a plot of emission (mg/veh-km) as a function of speed.  Figure 9
indicates that the minimum expected CO emission is 1240 mg/veh-km (i.e. for CO BL = 1240
mg/veh-km).  
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Figure 9: CO Emission as a function of speed for zero acceleration (from Equation 15)
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The maximum emission rate is more difficult to estimate.  However, we can examine some
candidate boundary values by applying Equation 1 to a set of predefined driving cycles.  These
driving cycles have been developed for use in the US EPA energy and emissions model Mobile
6.  Equation 1 was applied to a total of 10 predefined driving cycles, 4 for arterial roadways and 6
for freeways.  In each case the average fuel consumption and emission rate computed over the
driving cycle (Table 6).  

Table 6: Average fuel consumption and emission rates for selected
predefined driving cycles

Emission (g/veh-km)Driving Cycle

CO HC NOx

Fuel
(ml/veh-km)

Arterial LOS A-B 2.35 0.14 0.35 129.60
Arterial LOS C-D 2.47 0.16 0.37 148.74
Arterial LOS E-F 2.78 0.20 0.47 204.30
FTP Urban 2.08 0.15 0.29 150.68
Frwy High-Speed 3.85 0.19 0.36 95.60
Frwy LOS A-C 3.47 0.16 0.35 95.47
Frwy LOS D 3.27 0.15 0.34 97.53
Frwy LOS E 2.46 0.13 0.32 115.28
Frwy LOS F 2.32 0.15 0.35 151.87
Frwy LOS G 1.74 0.15 0.25 166.74

Since the Scottsdale corridor is an arterial roadway, it is likely most appropriate to consider only
those driving cycles associated with arterials (i.e. first 4 rows in Table 6).  The driving cycle
having the largest fuel consumption and emission rate is the Arterial LOS E-F driving cycle. This
driving cycle (Figure 10) is representative of arterial driving under congested traffic conditions.
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Figure 10: Arterial LOS E-F driving cycle

Having made estimates for BU and BL for each emission and for fuel consumption, Equation 14
can be used to estimate the associated population standard deviation. For example, for CO, the
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population standard deviation is estimated as σ = (2780 - 1240)/6 = 257 mg/veh-km. In
comparison, the true population standard deviation (Table 4) is 350 mg/veh-km. 

Figure 11 illustrates the estimated number of sample runs required to meet a specified maximum
allowable error in the estimate of the population mean CO emission rate.  In this figure, the
maximum allowable error is expressed as a function of the population mean CO emission rate
(2.515 g/veh-km).  Two curves are shown in Figure 11.  The upper curve represents the sample
size required when the true population standard deviation is actually known.  The lower curve
represents the sample size estimated using the 6-sigma method.  The difference between the
estimates of the two methods is quite large for very small maximum estimation errors (i.e. < 5%).
However, when the maximum allowable error exceeds approximately 10% of the population
mean, the curves provide rather similar estimates of the required sample size. 

The 6-sigma method is straight-forward to implement, however, its accuracy depends entirely on
the accuracy of the estimates of BU and BL. And since these values are not computed on the basis
of sample data, the analyst's judgement of what constitutes appropriate conditions for the upper
and lower bounds significantly influences the estimates of the required sample size.
Nevertheless, the 6-sigma method does provide a practical means of estimating required sample
size without having to take any initial samples.

We can compare the 2-stage sampling method with the 6-sigma method.  Assuming we specify a
maximum error of 10% of the population mean, then the 6-sigma method indicates the required
sample size is 4 runs.  The actual number of required runs, based on use of the population
standard deviation, is 8. Thus the use of only 4 runs will result in a maximum error of 14% rather
than 10%. The results of the 2-stage sampling method depend on the size of the initial sample.  If
we assume the initial sample is 6, then the estimates of the required sample size may range from
3 to 21 runs.  Obviously, as 6 runs are already taken in the 1-stage of the sampling, any estimate
for the required sample size that is less than or equal to 6 would mean no additional runs are to be
performed. Therefore, with an initial sample of 6, the maximum error would be 11%.  If a sample
of 21 runs were used, the maximum error would only be 6%, but 5 times more runs would be
required than using the 6-sigma method. 
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Figure 11: Required sample size for estimating the population mean CO emission rate 

Conclusions and Recommendations
The availability of low cost GPS receivers provide a mechanism for collecting detailed vehicle
speed and position data cost effectively. In addition to other uses, these data can be used to
estimate fuel consumption and vehicle tail-pipe emissions.  On the basis of the study described in
this paper, the following conclusions can be made:

1. As a result of sources of error inherent within the GPS system, errors in speed measurements
occur. Since instantaneous acceleration is computed on the basis of these speed
measurements, errors in the speed data create errors in the computed acceleration rates. 

2. Fuel consumption and emissions models having a polynomial structure (e.g. VTMicro
Model) can be particularly sensitive to speed or acceleration errors. Consequently, a robust
method is required to filter the GPS speed and computed acceleration data to ensure values
are within feasible vehicle operating conditions. 

3. The Epanechnikov Kernel (EK) method of smoothing, applied to the raw GPS speed data,
appears to be quite effective in producing speed and acceleration data within the defined
feasible region. Furthermore, the EK method is simple to implement and computationally
efficient.

4. The use of an average speed profile, rather than individual vehicle profiles, results in
estimates of average fuel consumption and emission rates that are under estimated by 25% to
45%. These errors are quite large, and consequently, it is recommended that average emission
and fuel consumption rates be estimated on the basis of individual trip emission rates, rather
than mean vehicle speed profiles. 

5. The 6-sigma method is a statistically valid method that can be practically implemented for
determining the sample size required for estimating average fuel consumption and emission
rates.
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6. The two-stage sampling method is statistically valid; however, the method is not as attractive
as the 6-sigma method for practical reasons.  For example, the 2-stage sampling method
cannot be used to estimate the cost of data collection or devise a data collection schedule
unless the first set of data are collected.
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