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Real-Time Crash Prediction Model for Application to Crash Prevention in Freeway Traffic 
 

CHRIS LEE, BRUCE HELLINGA, AND FRANK SACCOMANNO 

Department of Civil Engineering, University of Waterloo 

Waterloo, Ontario, N2L 3G1, Canada. 
 

The likelihood of a crash or crash potential is significantly affected by short-term turbulence of traffic flow. For this 

reason, crash potential must be estimated on a real-time basis by monitoring the current traffic condition. In this 

regard, a probabilistic real-time crash prediction model relating crash potential to various traffic flow characteristics 

which lead to crash occurrence, or “crash precursors”, was developed. However, several assumptions were made in 

the development of this previous model that had not been clearly verified from either theoretical or empirical 

perspectives. Therefore, the objective of this study is to (1) suggest the rational methods by which crash precursors 

included in the model can be determined on the basis of experimental results; and (2) test the performance of the 

modified crash prediction model. The study found that crash precursors can be determined in an objective manner 

eliminating a characteristic of the previous model that the model results were dependent on analysts’ subjective 

categorization of crash precursors.  

 

In improving traffic safety on freeways, proactively preventing vehicle crashes may have much greater benefits than 

minimizing the consequences once a crash has occurred. In this paper, a crash is defined as an accident involving a 

vehicle collision. To implement crash prevention, it is necessary that the future occurrence of a crash can be 

anticipated on the basis of hazardous traffic flow conditions that are present prior to the occurrence of the crash. 

According to the National Academy of Engineering (1), precursors are “signals that illuminate system failure points 

with potential for future catastrophic loss”. Precursors have been investigated to project future calamities and 

mitigate future risk exposure in many study areas – e.g. prediction of stock market crash in finance, prediction of the 

occurrence of earthquakes in geology, etc. In a similar manner, this study refers to the traffic conditions that exist 

prior to the occurrence of vehicle crashes as “crash precursors”.  

The identification of crash precursors from current traffic flow conditions is very important to predict the 

variation of crash potential over time and to establish real-time crash countermeasures to avoid the hazardous traffic 

condition leading to crashes. In this study, the term “crash potential” refers to the long-term likelihood that a crash 

will occur for given traffic, environment, and roadway conditions. Since crash potential is affected by many time-



Lee et al.  Paper No. 03-2749 2

dependent factors such as the variation of traffic flow, crash potential varies over time and therefore should be 

estimated in real time. 

To reduce time-varying crash potential, most researchers have focused on timely detection of incidents. 

However, incident detection algorithms are unable to prevent the occurrence of primary crashes although they may 

help in reducing secondary crashes. Despite this inherent limitation of incident detection algorithm, a great deal of 

effort has been invested in developing these algorithms and much less effort invested methods in real-time crash 

prevention.  

In real-time crash prevention, crash precursors based on real-time traffic measures are used to quantify crash 

potential. However, due to lack of real-time data in the past, most existing crash prediction models were not able to 

account for crash precursors in the prediction of crash occurrence. Instead, these models have used non-real-time 

and capacity-driven measures of traffic flow such as Average Annual Daily Traffic (AADT). Consequently, these 

models may be valuable for examining static, infrastructure based crash reduction measures such as paved 

shoulders, median barriers, etc. However, they are not helpful for evaluating the effect of real-time intervention 

measures such as those associated with Intelligent Transportation Systems (ITS) Advanced Traffic Management 

System (ATMS) concepts and services (2). Therefore, there is a need to develop a crash prediction model that 

estimates the variation of crash potential and enables us to evaluate the safety benefits of real-time crash prevention.  

In this regard, we have identified a number of important crash precursors and developed a probabilistic real-

time crash prediction model in our preliminary study (3). While this previous work demonstrated that a statistically 

significant real-time crash prediction model was possible, a number of assumptions were made in the development 

of this model. In particular, the assumptions were made with respect to the time duration over which the precursors 

were calculated and the categorization of the precursor variables. Thus, this study has the following objectives: 1) to 

suggest the rational methods by which observation time period duration and precursor categorization can be 

determined; and 2) to test the performance of the crash prediction model with the parameters modified using these 

rational methods. 

This paper is organized into five sections. The second section reviews the past studies on crash precursors and 

real-time crash prediction model. The third section explains crash precursors and the structure of the proposed 

model. The fourth section suggests the methods to determine crash precursors in the model using real traffic flow 
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data and evaluates the performance of the model. Finally, the fifth section discusses the findings from the results and 

recommends future work. 

 

REVIEWS OF PREVIOUS STUDIES 

 

By far, most studies of crash precursors have focused on the behavior of individual drivers/vehicles. For example, 

Krishnan et al. (4) claimed that braking capability of cars, response time of drivers, speed of cars, type of cars and 

mass of cars are important factors affecting crashes. They used these factors as criteria for designing their rear-end 

collision-warning system. Smith et al. (5) suggested that the headway of two successive cars and the variation of 

headway have major impact on crash potential. They classified the crash risk into four levels according to these two 

factors. However, their results are based on the experiments for the selected driver group and it is uncertain that the 

defined risk levels are generally applicable to different driver groups. Furthermore, it appears that as a result of 

many other factors which cannot be easily measured – e.g. driver’s characteristics, driving state, vehicle 

characteristics, etc, developing a general relationship using this approach is likely very difficult. 

It may be advantageous to identify more aggregated relationship between crash potential and the “collective” 

behavior of individual drivers – i.e. traffic flow characteristics. There are a few studies that have presented statistical 

links between real-time traffic flow conditions prior to crash occurrence and crash potential.  

Oh et al. (6) found that the standard deviation of speed 5 minutes prior to crash occurrence is the best indicator 

that distinguishes disruptive conditions (conditions leading to crash occurrence) from normal conditions in their 

analysis using loop detector data of a freeway section in California. Using this indicator, they developed probability 

density functions to estimate whether the current traffic condition belongs to either normal or disruptive traffic 

conditions. They concluded that reducing the variation in speed generally reduces the likelihood of freeway crashes.  

Despite their innovative approach, the study displays some limitations. First, only a single measure of traffic 

performance (standard deviation of speed) was used to predict the crash likelihood. Since crashes normally occur as 

a result of complex interaction of many traffic and environmental factors, it is questionable whether the single 

variable can sufficiently explain a broad spectrum of pre-crash conditions. Second, the measure of crash likelihood 

estimated from probability density function overlooked such exposures as volume, distance of travel and so on. To 
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control for these external conditions, the variation of exposures over space and time must be taken into account in 

the probability density function.  

Similar to this study, Kirchsteiger (7) described the distribution of accident precursors in generalized probability 

function such as the Gamma distribution. Although his study used industrial accident database instead of traffic 

accident data, his approach is very similar to the analysis of traffic accidents. In particular, he suggested that 

frequency of accidents in the observation time period is described as the product of two frequencies: 1) frequency of 

precursor and 2) conditional frequency of accident, given a precursor. 

In a recent approach, Lee et al. (3) proposed a probabilistic crash prediction model using 13 months of loop 

detector data from an urban freeway in Toronto. The details of this model are explained in the next section. 

However, the model also displays some limitations. First, the determination of precursor variables is subjective. The 

model made use of the traffic factors 5 minutes prior to crash occurrence but it was not verified whether 5 minutes 

are the most desirable observation time period. Second, the model used a number of categorical variables but the 

study did not clearly explain how to choose the optimal number of categories and the boundary values of each 

category. Finally, the study failed to show the sensitivity of different boundary values that are determined 

subjectively to the model performance. These issues will be addressed in the following sections. 

 

STRUCTURE OF PROPOSED MODEL 

 

This study uses real-time traffic flow characteristics to explain the effect of traffic performance on crash occurrence. 

These characteristics are reflected by crash precursors. However, to explain the exclusive effect of crash precursors, 

crash frequency should be controlled for external factors. These external factors include road geometry and time of 

day (or level of congestion) which have been commonly used in the past crash prediction models. It has been 

logically and empirically proven that these factors have significant impacts on crash occurrence in the past studies. 

Also, exposure measures should be combined with crash data so that the effects of various freeway and traffic 

elements on crash potential can be explicitly compared within or between classifications of interest (8). Similar to 

most other crash prediction models, the proposed model expresses crash frequency as a function of a variety of 

traffic and environmental characteristics as follows: 
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Crash frequency = f (crash precursors, external control factors, exposure) 

 

Using this functional relationship, the model is calibrated using actual crash data and the effects of crash 

precursors on crash potential can be examined. In the next subsections, the calculation of crash precursors in the 

above function and the model specification are described. 

 

Specification of Crash Precursors 

In our previous study (3), we identified three crash precursors representing the traffic flow conditions prior to the 

crash occurrence: (1) the average variation of speed on each lane (CVS1); (2) the average variation of speed 

difference across adjacent lanes (CVS2); and (3) traffic density (D). Variation of speed is measured by the coefficient 

of variation of speed (CVS) (= standard deviation of speed / average speed) computed over the given observation 

time slice duration. The mathematical expression of these three precursors is described in Lee et al. (3).  

CVS2 was formulated as a surrogate measure of lane change behavior in the assumption that lane changing tends 

to increase crash potential. However, in spite of its statistical significance in previous study, this current study found 

that CVS2 does not have a direct impact on crash potential because there was no significant difference in its values 

calculated for crash cases and non-crash cases. The details of the comparison between crash and non-crash cases are 

explained in the next section. Therefore, CVS2 was eliminated from the model. Since only one variation of speed is 

left in the model, CVS1 is re-named as CVS. 

In addition to the existing crash precursors, CVS and D, we considered a new crash precursor to reflect the 

impact of a traffic queue on crash occurrence. This impact can be reflected by the difference of speeds at upstream 

and downstream ends of road sections. The underlying principle of this variable is that as the difference in speed 

increases, there is more abrupt change in traffic condition within the road section – i.e. queue formation or 

dissipation. For example, if the speed at the downstream end is significantly lower than the speed at the upstream 

end for a prolonged time period, a tail of a queue is likely to exist somewhere within the section. Conversely, 

relatively high speed at the downstream end and low speed at the upstream end indicates the dissipation of a queue. 

In either case, drivers are required to react promptly to adjust their speed and these conditions are likely to increase 

crash potential. This additional precursor (Q) can be expressed by Equation 1.  
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where, 

   Q : average speed difference between upstream and downstream ends of road section (km/hr); 

21, ss  : average speed computed over period of t∆ at upstream and downstream ends of road section, 

respectively (km/hour); 

   tp  : time interval of observation of speed (seconds); 

  ∆  : observation time slice duration (seconds); t

  t  : actual time of crash occurrence; *

)(1 ts i  : speed on lane i at time t at upstream end of road section (km/hour); 

)(2 ts i  : speed on lane i at time t at downstream end of road section (km/hour); 

21,nn  : number of lanes at upstream and downstream ends of road section, respectively. 

 

To illustrate the property of this new crash precursor, Equation 1 was applied to a section of the Gardiner 

Expressway in Toronto, Canada. Q was calculated at every 20-second interval with t∆  assumed to be 2 minutes. As 

shown in Figure 1, Q clearly shows the patterns of typical queue formation and dissipation in daily traffic. 

Particularly, Q characterizes high chances of queue propagation during afternoon peak period. On the other hand, Q 

is generally small and constant during non-peak period when a queue is highly unlikely to form. 

 

Exposure 

As explained in the model structure, exposure is included to reflect frequency of traffic events that create chances of 

crash occurrence. In this study, exposure is described as the product of daily traffic volume and the length of each 

road section. These are split into the volume-kilometers according to the probabilities of occurrence of crash 

precursor values and external control factors in daily traffic. However, the weather was excluded in external control 

factors since the available weather data do not adequately reflect the actual weather condition at the time of crashes.  
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By definition, crash rate is crash frequency divided by exposure. Thus, exposure must be determined for a given 

crash frequency. This means that individual crashes should be classified into generalized crash types based on their 

common characteristics. In this study, the crash types are characterized by typical traffic conditions when crashes 

occurred, such as (1) crash precursor values prior to crash occurrence; (2) congestion level (peak/off-peak period) at 

the time of crashes; and (3) road section type (straight section or merge/diverge section), traffic volume, and length 

of road section type where crashes occurred. For the ease of determining the exposure for given crash precursor 

values, precursors should be categorized into a number of discrete levels. For this reason, precursors are expressed 

in categorical variables instead of continuous variables in the model. For example, the exposure for crash type A can 

be estimated based on the levels of crash precursors, road geometry and congestion level corresponding to crash 

type A as shown in Equation 2. 

 
 

EXPA = p(CVSA)⋅ p(DA)⋅ p(QA)⋅p(PA)⋅VA⋅LA⋅T      (2) 

 
where, 

             EXPA : exposure for crash type A (vehicle-kilometers of travel); 

       CVSA , DA , QA:  : the levels of CVS, D and Q for crash type A, respectively; 

 p(CVSA), p(DA), p(QA): probabilities that the levels of CVSA, DA and QA occur in daily traffic, respectively; 

              p(PA) : proportion of volume during peak or off-peak periods in daily traffic for crash type A; 

                VA  : average annual daily traffic of the road section (vehicles/day) for crash type A; 

                LA  : length of road section type (km) for crash type A; 

                T  : total observation time period (number of days). 

 

Model Specification 

To analyze the effects of crash precursors and external control factors on crash potential, a probabilistic model of 

crash prediction was developed. The model estimates the relationship between crash frequency and the variables 

discussed in previous sections.  

In this study, an aggregate log-linear model is developed since it allows us to investigate the nature of the 

relationship between selected precursors and frequency of crashes adjusted by the appropriate level of exposure. The 
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log-linear model in this study has only a limited number of parameters instead of all possible parameters to achieve a 

parsimonious representation of the data. In this analysis, a first-order log-linear model of crash prediction was 

derived as follows.  

First, the multiplicative models are more preferable to additive (linear) models in describing the nature of crash 

occurrence because 1) they can describe a non-linear relationship between mutually independent variables and, 2) 

they can avoid the problem of negative-value prediction (9). Thus, the crash rate can be described in the following 

functional form: 

 

Crash Rate = ( )()()()()( mPlRkQjDiCVSf
EX

)
P

F λλλλλθβ ⋅⋅⋅⋅⋅=     (3) 

 

where, 

     F  : the expected number of crashes over the analysis time frame; 

  EXP  : the exposure in vehicle-kilometers of travel; 

    β  : the parameter for the exposure; 

    θ  : constant; 

 )(iCVSλ  : effect of the crash precursor variable CVS having i levels; 

  )( jDλ  : effect of the crash precursor variable D having j levels; 

  )(kQλ  : effect of the crash precursor variable Q having k levels; 

  )(lRλ  : effect of road geometry (control factor) having l levels; 

  )(mPλ  : effect of time of day (control factor) having m levels. 

 

It should be noted that crash precursors and external control factors are categorical variables whereas exposure 

is continuous variable. To express the above equation in a linear function of independent variables, the factors are 

converted to logarithmic terms as follows: 
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To estimate the parameters in Equation 4, the model is calibrated for actual crash data using the maximum 

likelihood estimate (MLE) method. The MLE method runs an iterative process to fit the estimated data to the 

observed data. This fitting process continues until the difference between the current and previous estimates 

converges to the pre-specified error level. 

 

MODEL CALIBRATION 

 

This section describes the data used for the calibration of the model and suggests the methods to determine several 

important parameters to calculate crash precursors such as 1) actual time of crash, 2) observation time slice duration, 

and 3) number of categories and boundary values for each category of crash precursors. 

 
Description of Data 

To calibrate the proposed model, this study used incident logs and traffic flow data extracted from loop detectors 

along a 10-km stretch of the Gardiner Expressway in Toronto, Canada. A total of 38 loop detector stations are 

located along this stretch of freeway as shown in Figure 2. The data were collected for weekdays over a 13-month 

period from January 1998 to January 1999. A total of 234 crashes were confirmed by operators at the traffic control 

center on this section of the roadway during the study period. The crashes on ramps were not considered because 

they are likely to be more influenced by site-specific characteristics such as geometric design and traffic operation 

(9). 
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Determination of Actual Time of Crash 

In this study, the actual time of crash (t*) was estimated from the analysis of changes in detector speed profiles. To 

illustrate the method of estimation, the change of speed on the road section between two loop detectors upstream and 

downstream of the crash site is described on a time-space diagram as shown in Figure 3.  

The figure shows that before the crash occurs at the location marked by “X” between a pair of loop detectors, 

all individual cars are assumed to travel at the speed in normal traffic condition (sn) as indicated by arrows. After the 

crash occurs at “X” (separated by d* from upstream detector) at time t*, the vehicles upstream of the crash site 

experience delays and their speed suddenly drops to speed in the congested queue (sq). On the contrary, the speed of 

vehicles downstream of the crash site increases to free-flow speed (sf) due to a decrease in volume. As a forward-

moving shock wave (u) passes over the downstream detector at time td and a backward-moving shock wave (ω) 

passes over the upstream detector at time tu, the speed change can be observed at both detectors as shown in the two 

figures below the time-space diagram. 

From these figures, we can see that it is normally easier to detect tu than td since there are more noticeable 

changes in speed at upstream detector than downstream detector. This is because the impact of a queue formed by 

lane blockages on traffic flow disruption is more severe than the impact of the reduction in volume downstream of 

the crash site. Also since precursors represent the traffic condition before vehicles reach the crash site, we need to 

observe the condition immediately upstream of the crash site. Thus, tu was used as a surrogate measure of t*. 

To evaluate the accuracy of tu in estimating t*, the expected error caused by the travel time of the backward-

moving shock wave ( = tu - t* ) can be calculated as follows. If the crashes are likely to occur equally at any point of 

a road section with the length of n unit (i.e. the probability of crash occurrence at any point is the same), the 

expected location of crashes is estimated by Equation 5.  
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Also, the past studies observed that the speed of the backward-moving shock wave ranges from 10 km/hr to 30 

km/hr on urban freeways (10-13). In this study, the average speed of the backward-moving shock wave (ω ) is 

assumed to be 20 km/hr. For example, if the length of the section (n) is 500 meters which is a typical spacing of 

detectors on urban freeways, the expected error (ε) can be calculated as follows: 

 

[ ] [ ] 45
km/hour 20

km )2/5.0(2/
][
** ====−=

ωω
ε n

E
dEttE u  seconds    (6) 

 

Considering the fact that typical polling intervals of loop detectors are 20~30 seconds, the expected errors are 

only 2~3 polling intervals. Due to relatively low expected errors, this study assumes that the errors do not 

significantly affect the calculation of crash precursors and tu can be used as a good estimate of t*.  

 

Determination of Observation Time Slice Duration 

In our previous study (3), observation time slice duration (∆t) prior to crash occurrence was assumed to be 5 

minutes. However, this duration was arbitrarily chosen on the basis of subjective judgment rather than empirical 

results. In this study, a more objective method was developed to determine ∆t. The premise of the method is that ∆t 

should be chosen to maximize the difference between precursor values calculated for crash cases and non-crash 

cases. For the analysis, crash precursors (CVS, D and Q) were calculated for the sample of 234 crash cases and 234 

non-crash cases. Non-crash cases contain the data collected at the same road sections for the same time periods 

under the same weather condition as crash cases, but in different days when crashes did not occur. In this way, other 

traffic environmental factors such as road geometry, weather and typical traffic pattern are assumed to be controlled.  

The objective of this analysis is to identify ∆t which maximizes the difference in crash precursor values 

between crash and non-crash cases. Total difference can be directly obtained from the sum of absolute differences in 

precursor values between the two cases. However, since the variation of speed (CVS) tends to increase with ∆t, the 

“standardized” differences must be used rather than absolute differences. Consequently, the distributions of crash 

and non-crash cases were compared based on the frequency of precursors for given ranges of precursor values. The 

number of intervals within the given ranges were determined such that the frequency of precursors is reasonably 

dispersed. The frequency differences were calculated using the following expression: 
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where, 

     δ : difference in frequency of precursor values between crash and non-crash cases; 

     I : total number of intervals within a given range; 

ii ff ',  : frequency of precursor values for an interval i in crash and non-crash cases, respectively.  

 

As a result, it was found that the frequency differences in the three precursor variables (CVS, D and Q) between 

crash and non-crash cases were maximum at ∆t = 8, 3 and 2 minutes, respectively, as shown in Figure 4. This 

implies that the variation of speed (CVS) has relatively a longer-term effect on crash potential than D and Q. 

Although it is uncertain whether the maximum value identified within the range (1~20 minutes) actually represents a 

global maximum, it is hard to believe that the traffic condition more than 20 minutes prior to crash occurrence has a 

significant impact on crashes. Thus, the above-mentioned values were chosen as optimal observation time slice 

durations. 

 
Categorization of Crash Precursors 

In categorizing crash precursors, we need to define the level of crash precursors based on the distribution of normal 

traffic flow condition in daily traffic. For this purpose, 24-hour traffic data on two typical weekdays in clear weather 

condition when no crash has occurred was extracted from loop detectors. As shown in Figure 5, the distribution of 

precursor values from the 24-hour data is substantially different from that of the crash data. The figure shows that 

the frequency of high crash precursor values was relatively higher in the crash data than the 24-hour data. This 

implies that crash precursor values were relatively higher when crashes occurred compared to when crashes did not 

occur. Also, it should be noted that the disparity between the distribution of the 24-hour data and that of the crash 

data is much larger than the disparity between the two distributions of the 24-hour data. This indicates that crash 

precursors are good indicators of discriminating between crash and non-crash conditions. 

In the categorization, the number of categories and the boundary values (or proportion of each category) must 

be determined. However, it is difficult to determine these factors objectively from the distribution of crash precursor 
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values. Instead, the proposed log-linear model was calibrated for different cases of categorization. Then, the 

performance of the calibrated log-linear models was evaluated in terms of 1) overall model fit, 2) the statistical 

significance of coefficients and 3) consistency of coefficients with the order of levels of crash precursors (i.e. high-

level precursors have higher impact on crash potential than low-level precursors, vice versa). The categorization that 

produced the best model performance was chosen as the most suitable categorization. 

In this study, the number of categories was considered varying from 2 to 4 inclusive. To insure statistical 

stability, total number of cells in a log-linear model should be less than the number of samples used to calibrate the 

model. Therefore, given that the calibration sample consisted of 234 observations, more than 4 categories were not 

considered. For each number of categories (2, 3 or 4), boundary values for the precursor variables were selected to 

achieve the specified proportions of crash precursors for each level in the 24-hour data under normal traffic 

condition as shown in Table 1. In most cases, the proportion of the highest level was set lower than all other lower 

levels in order to reflect rare occurrence of high-level precursors in normal traffic conditions. These proportions will 

affect the calculation of both crash frequency and exposure for each category as defined in Equation 2 and 3.  

As a result of the calibration, as the number of categories increases, both log-likelihood ratio and Pearson chi-

square statistics decrease, which means the model fits to the observed data better. However, it should be noted that 

this result stems from the fact that as the number of categories increases, the increased number of zero cells in a 

contingency table has a more dominant effect on overall model fit. But it is unclear whether these zero cells actually 

reflect that no crash occurred under the given circumstances or they are the result of missing data. With this 

uncertainty, increasing the number of categories does not necessarily improve the model performance.  

For this reason, the statistical significance and consistency of coefficients also need to be checked. As a result, 

for 2 and 4 categories, some of the coefficients were insignificant and also they were inconsistent with the order of 

levels. Only for 3 categories, were all the coefficients statistically significant at a 95% confidence level and 

consistent with the order of levels in all 9 cases as shown in Table 2. Also, log-likelihood ratio and Pearson chi-

square statistics were low, and p-values at a 95% confidence level were large in all cases. This means that there is no 

significant difference between observed and predicted crash frequency and therefore, the model fits the observed 

data well. This result implies that the performance of the log-linear model is not sensitive to our subjective 

categorization for 3 categories. Among 9 different cases, it was found that the proportions of 50%(low)-

30%(intermediate)-20%(high) produced the best model fit (i.e. the lowest log-likelihood ratio and Pearson chi-
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square). The boundary values for each crash precursor in this case are as follows as shown in Table 1: 0.056 and 

0.074 for CVS; 16.4 and 25.8 veh/km for D; and 2.7 and 8.3 km/hr for Q.  

In Table 2, lower coefficients indicate less impact on crash potential with respect to aliased cells. This result 

suggests that high-level crash precursors contribute to higher crash potential than low-level crash precursors. The 

control factors such as road geometry and time of day also have significant effect on crash potential. The result 

indicates that crash is more likely to occur on the road sections with on-ramp or off-ramp and during peak period. 

Finally, as expected, crash potential increases with exposure. 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This paper suggests the rational methods by which crash precursors are determined from experimental results and 

also evaluates the performance of the crash prediction model for different assumptions of categorized crash 

precursors. The findings from this study are summarized as follows: 

 

1. The main criterion for selecting crash precursors is that the distribution of precursor values for traffic conditions 

when crashes occurred should be significantly different from the distribution of precursor values for normal 

traffic condition.  

2. The difference between the speed at the upstream detector and the speed at the downstream detector was 

significantly higher when crashes occurred. This implies that the abrupt transition of speed within the road 

section, i.e. the formation and dissipation of a traffic queue, has positive effects on crash occurrence. 

3. The time when the speed abruptly drops at the detector station immediately upstream of crash site is considered 

to be a good estimate of actual time of crashes. This speed drop occurs when a queue forms after the crash 

occurrence and the backward-moving shock wave passes over the nearest upstream detector station. 

4. The observation time slice duration (∆t) prior to crash occurrence is determined such that the difference in 

distribution of crash precursor values for given ∆t between crash and non-crash cases is maximized. It was 

found that the optimal observation time slice durations were different for each selected crash precursor – i.e. 

some precursors need to be observed for longer time period than other precursors to investigate their impact on 

crash occurrence. 
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5. The categorization of crash precursors is determined based on overall fit of crash prediction model, the 

statistical significance of coefficients and consistency of coefficients with the order of levels of crash 

precursors. In the analysis, three categories appear to be the most suitable to explain differential impact of 

precursors in different levels on crash potential as the model estimates showed consistent results for any 

combination of boundary values. Thus the performance of the model was reliable, not being affected by 

subjective categorization of crash precursors. 

 

Having calibrated the model for historical crash data, the proposed model can be used to predict crash potential 

in real-time on the basis of the current traffic flow data. For the next step, we need to apply this model to actual 

traffic condition and examine how the crash potential estimated by the model can help reduce the crash potential and 

improve the safety of freeway traffic.  

Since we can predict the crash potential on a real-time basis using the proposed model, we can also implement 

the automated real-time countermeasures to reduce crash potential such as variable speed limit. This certainly saves 

manual human intervention and effectively controls the traffic flow to prevent crashes. For the systematic 

implementation of real-time countermeasures, it is necessary to classify crash potential into different levels of risk 

tolerance. For example, variable speed limit is in operation only when the estimated crash potential exceeds the 

specified threshold value of risk tolerance.  

Furthermore, we can also assess the safety benefit of an automated traffic control using the proposed crash 

prediction model. For one thing, the simulation can be performed before and after implementing the automated 

traffic control. From the simulation results, the impact of a change in driver behavior caused by this external control 

on the variation of traffic flow and real-time crash potential can be examined. This before-and-after study evaluates 

whether this automated traffic control can effectively reduce the overall crash potential on freeways for given 

conditions.  
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TABLE 1  Cases of Categorization and Boundary Values 

CVS D (veh/km) Q (km/hr) No. of 
Categories 

Assumed 
Proportions* B1** B2** B3** B1 B2 B3 B1 B2 B3 

2 Categories 50/50 
60/40 
70/30 
80/20 

0.056 
0.060 
0.065 
0.074 

- 
- 
- 
- 

- 
- 
- 
- 

16.4 
18.0 
20.3 
25.8 

- 
- 
- 
- 

- 
- 
- 
- 

2.7 
3.5 
4.7 
8.3 

- 
- 
- 
- 

- 
- 
- 
- 

3 Categories 20/60/20 
20/50/30 
30/50/20 
33/33/33 
40/40/20 
40/30/30 
50/30/20 
50/20/30 
60/20/20 

0.046 
0.046 
0.048 
0.049 
0.052 
0.052 
0.056 
0.056 
0.060 

0.074 
0.064 
0.074 
0.063 
0.074 
0.064 
0.074 
0.064 
0.074 

- 
- 
- 
- 
- 
- 
- 
- 
- 

13.2 
13.2 
14.2 
14.5 
15.2 
15.2 
16.4 
16.4 
18.0 

25.8 
20.3 
25.8 
19.4 
25.8 
20.3 
25.8 
20.3 
25.8 

- 
- 
- 
- 
- 
- 
- 
- 
- 

1.1 
1.1 
1.6 
1.7 
2.1 
2.1 
2.7 
2.7 
3.5 

8.3 
4.7 
8.3 
4.2 
8.2 
4.7 
8.3 
4.7 
8.3 

- 
- 
- 
- 
- 
- 
- 
- 
- 

4 Categories 40/20/20/20 
30/30/20/20 
30/20/30/20 
25/25/25/25 
20/20/40/20 
20/30/30/20 
20/40/20/20 

0.052 
0.048 
0.048 
0.047 
0.046 
0.046 
0.046 

0.060 
0.060 
0.056 
0.056 
0.052 
0.056 
0.060 

0.074 
0.074 
0.074 
0.068 
0.074 
0.074 
0.074 

15.2 
14.2 
14.2 
13.6 
13.2 
13.2 
13.2 

18.0 
18.0 
16.4 
16.4 
15.2 
16.4 
18.0 

25.8 
25.8 
25.8 
22.3 
25.8 
25.8 
25.8 

2.1 
1.6 
1.6 
1.3 
1.1 
1.1 
1.1 

3.5 
3.5 
2.7 
2.7 
2.1 
2.7 
3.5 

8.3 
8.3 
8.3 
5.9 
8.3 
8.3 
8.3 

*The first number denotes the percentage of the lowest level, the second number the percentage of the second lowest 
level, and so on.  
**B1 denotes the boundary value between the lowest level and the second lowest level for given crash precursor, B2 
the boundary value between the second lowest level and the third lowest level, and so on. 
 
 
Sample Illustration: 
 
For example, in the case of 3 categories, 20/60/20 indicates that when the crash precursor values are ordered from 
the smallest to the largest, the first 20 percentile of crash precursor values represents “low” level, the next 60 
percentile “intermediate” level and the remaining 20 percentile “high” level. The boundary values between “low” 
and “intermediate” levels for CVS, D and Q are 0.046, 13.2 and 1.1, respectively. The boundary values between 
“intermediate” and “high” levels for CVS, D and Q are 0.074, 25.8 and 8.3, respectively. Thus, the criteria of 
categorizing crash precursor values are as follows: 
 
Low level: CVS  ≤ 0.046   D  ≤ 13.2  Q  ≤ 1.1 
Intermediate level:  0.046 < CVS ≤ 0.074  13.2 < D ≤ 25.8  1.1 < Q ≤ 8.3 
High level:  CVS  > 0.074   D > 25.8   Q > 8.3 
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TABLE 2  Estimated Parameters of Log-linear Model (Three Categories) 

Assumed Proportions (Low/Intermediate/High) Parameter 20/60/20 20/50/30 30/50/20 33/33/33 40/40/20 40/30/30 50/30/20 50/20/30 60/20/20 
θ  2.8920 3.0353 2.9050 0.5366 2.8272 1.0898 2.6569 2.5347 2.8191 
λCVS=1 -4.9018 -4.4238 -3.2432 -2.8002 -3.0481 -3.6619 -3.3065 -3.2087 -2.3741 
λCVS=2 -1.4274 -2.3140 -1.7207 -1.7216 -2.0652 -1.9155 -1.8415 -1.9522 -1.7157 
λCVS=3* 0 0 0 0 0 0 0 0 0 
λD=1 -1.3901 -1.4572 -1.4367 -1.4831 -1.7390 -2.7063 -2.3797 -2.3627 -0.9045 
λD=2 -0.3733 -1.7751 -0.5753 -1.1818 -0.9418 -1.1090 -0.7088 -0.8791 -0.5833 
λD=3* 0 0 0 0 0 0 0 0 0 
λQ=1 -2.7247 -2.5041 -2.1406 -2.0095 -2.1778 -3.0160 -2.6859 -2.6107 -1.6682 
λQ=2 -1.0554 -2.2371 -1.3869 -1.8993 -1.7864 -1.9362 -1.4794 -1.9960 -1.4076 
λQ=3* 0 0 0 0 0 0 0 0 0 
λR=0 -0.4171 -0.8405 -0.5613 -2.7014 -0.9062 -2.5029 -0.9916 -1.1961 -0.4728 
λR=1* 0 0 0 0 0 0 0 0 0 
λP=0 -0.4604 -0.5777 -0.4877 -1.0353 -0.5468 -0.9743 -0.4929 -0.6406 -0.4368 
λP=1* 0 0 0 0 0 0 0 0 0 
β  
(Exposure 
in 109 veh-
km) 

0.0075 0.0367 0.0228 0.1502 0.0710 0.1715 0.0964 0.0682 0.0171 

Likelihood 
Ratio 87.4 62.9 85.7 57.2 62.8 54.6 44.5 66.6 106.27 

p-value 
(α=0.05) 0.77 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.27 

* This cell serves as the basis against which log-linear parameters are applied to obtain crash frequency for any 
combination of crash precursors. The cell is called the “aliased” cell. 
 

Description of Parameters: 
θ : Constant; 

λCVS=1, λCVS=2, λCVS=3: Effect of CVS (=1 (low), =2 (intermediate), =3 (high)); 
λD=1, λD=2, λD=3,: Effect of D (=1 (low), =2 (intermediate), =3 (high)); 
λQ=1, λQ=2, λQ=3: Effect of Q (=1 (low), =2 (intermediate), =3 (high)); 
λR=0, λR=1: Effect of road geometry (=0 (straight section), =1 (merge/diverge section)); 
λP=0, λP=1: Effect of time of day (=0 (off-peak), =1 (peak)); 
β : Coefficient for exposure. 

 

Sample Calculation: 
 
At current time t* (during peak period), if CVS(t*) = 0.04, D(t*) = 10 veh/km, and Q(t*) = 1 km/hr, then the crash 
potential on the merge road section with exposure of 1×109 vehicles-km of travels over a 13-month period can be 
estimated as follows: 
 
If the proportions of crash precursors are assumed to be 20/60/20, categories for CVS, D, and Q are 1 (low level) as 
the above values are lower than the boundary values between low level and intermediate level. 
 
     F(t*) = exp(θ + λCVS=1 + λD=1 + λQ=1 + λR=1 + λP=1+ β⋅ln(EXP))  
 = exp(2.8920 – 4.9018 – 1.3901 – 2.7247 + 0 + 0 + 0.0075⋅ln(1)) = 2.2 × 10-3 crashes 
 
Crash Potential (t*) = F(t*) / EXP = 2.2 × 10-3 / 109 = 2.2 × 10-12 crashes/veh-km. 
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FIGURE 1  Profile of queue formation precursor (Q) in typical daily traffic. 
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Note: 
1. The arrows pointing outward indicate off-ramps and the arrows pointing inward indicate on-ramps. 
2. The letters inside the squares denote the station ID. 
3. The numbers shown above or below the station ID are the number of lanes. 
4. The numbers shown between two successive detectors are the distance in meter. 
5. Shaded detector stations are the stations where traffic is influenced by merging or diverging vehicles. 
6. The bold numbers shown above or below the distance are total number of crashes in 13 months. 

 

FIGURE 2  Location of loop detector stations on Gardiner Expressway. 
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FIGURE 3  Illustration of speed changes after crash occurrence. 
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FIGURE 4  Determination of observation time slice duration. 
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FIGURE 5  Distribution of crash precursors in two 24-hour data and crash data. 
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